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Individuals with schizophrenia (SZ) consistently show deficits in spatial working memory
(WM) and associated atypical patterns of neural activity within key WM regions, including
the dorsolateral prefrontal cortex (dlPFC) and parietal cortices. However, little research
has focused on adolescent psychosis (AP) and potential age-associated disruptions
of WM circuitry that may occur in youth with this severe form of illness. Here we
utilized each subject’s individual spatial WM capacity to investigate task-based neural
dysfunction in 17 patients with AP (16.58 ± 2.60 years old) as compared to 17 typically
developing, demographically comparable adolescents (18.07 ± 3.26 years old). AP
patients showed lower behavioral performance at higher WM loads and lower overall
WM capacity compared to healthy controls. Whole-brain activation analyses revealed
greater bilateral precentral and right postcentral activity in controls relative to AP
patients, when controlling for individual WM capacity. Seed-based psychophysiological
interaction (PPI) analyses revealed significantly greater co-activation between the left
dlPFC and left frontal pole in controls relative to AP patients. Significant group-
by-age interactions were observed in both whole-brain and PPI analyses, with AP
patients showing atypically greater neural activity and stronger coupling between WM
task activated brain regions as a function of increasing age. Additionally, AP patients
demonstrated positive relationships between right dlPFC neural activity and task
performance, but unlike healthy controls, failed to show associations between neural
activity and out-of-scanner neurocognitive performance. Collectively, these findings are
consistent with atypical WM-related functioning and disrupted developmental processes
in youth with AP.
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INTRODUCTION

Schizophrenia (SZ) is considered a neurodevelopmental disorder of brain connectivity (Stephan
et al., 2006, 2009; Fatemi and Folsom, 2009; Pettersson-Yeo et al., 2011; Fornito et al., 2012;
Fitzsimmons et al., 2013) but few functional magnetic resonance imaging (fMRI) studies
have examined brain connectivity during the putatively critical developmental period of
adolescence. To date, the focus has been on connectivity abnormalities in adults with SZ by
examining neural activity during cognitively demanding tasks, such as working memory (WM).
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Deficits in WM, particularly visuospatial, are a well-documented
and robust core feature of SZ (Silver et al., 2003; Lee and Park,
2005; Piskulic et al., 2007; Forbes et al., 2009; Park and Gooding,
2014). Furthermore, WM impairment is considered a reliable
cognitive endophenotype of SZ given the presence of WM
deficits and related neural dysfunction in clinically unaffected
relatives (Callicott et al., 2003a; Saperstein et al., 2006; Knowles
et al., 2014) and individuals with elevated genetic and clinical risk
(Glahn et al., 2003; Wood et al., 2003; Smith et al., 2006; Fusar-
Poli et al., 2010; Choi et al., 2012). Deficits in WM have also been
shown to predict future development of overt psychosis (Brewer
et al., 2006; Pukrop et al., 2007).

Although visual short term capacity has been estimated at
approximately four separate items among healthy individuals
(Todd and Marois, 2004; Cowan, 2010), individual variability
(Cowan, 2001, 2010; Gold et al., 2003; Barrett et al., 2004;
Unsworth and Engle, 2007) has led to the estimation of
subjects’ individual short-term WM capacity from behavioral
data (Cowan, 2001). Individual capacity has been used to assess
neural circuitry abnormalities in SZ, with patients demonstrating
decreased individual visual WM capacity compared to healthy
controls across a range of tasks; this has been posited
to result from difficulties encoding the information (Gold
et al., 2003, 2010; Jansma et al., 2004) and/or impaired
attentional control (Mayer et al., 2012; Leonard et al., 2013).
Spatial WM capacity among adults with SZ also correlates
with overall cognitive abilities (e.g., IQ; Johnson et al.,
2013).

Neuroimaging studies to date have largely focused on the
dorsolateral prefrontal cortex (dlPFC) and parietal cortex,
key regions involved in WM processing (e.g., Jonides et al.,
1998; D’Esposito et al., 2000; Petrides, 2000; Curtis and
D’Esposito, 2003; Constantinidis and Wang, 2004; Pasternak
and Greenlee, 2005), though a larger network of WM-related
dysfunction including the anterior cingulate cortex (ACC) and
left frontal pole has also been proposed (Glahn et al., 2005).
Specifically, dlPFC activity among SZ patients varies depending
on task load demands and range of capacity/performance
ability (Manoach, 2003; Jansma et al., 2004; Karlsgodt et al.,
2009), suggesting generalized dlPFC ‘‘inefficiency’’ during
WM (Potkin et al., 2009). Notably, these studies did not
directly utilize capacity load estimates in group comparisons
of neural activity during WM performance, focusing primarily
on post hoc correlations and regressions. However, the
proposed ‘‘neural inefficiency’’ in patients with SZ mimics
the inverted-U pattern described among healthy individuals;
while increased WM demand is associated with increased
activity within the dlPFC and other regions (e.g., superior
frontal cortex, intraparietal cortex; Klingberg et al., 2002;
Curtis and D’Esposito, 2003; Finn et al., 2010), dlPFC
activation decreases once WM load exceeds individual capacity
(Callicott et al., 2003b; Manoach, 2003; Van Snellenberg
et al., 2015). Additionally, reduced connectivity between
fronto-parietal and fronto-hippocampal regions during WM
performance among patients with SZ has been associated
with severity of positive symptoms and reduced task accuracy
in a cross-sectional analysis, in line with neural dysfunction

underlying the clinical and cognitive phenotype (Henseler et al.,
2010).

However, the focus on WM dysfunction among adults with
SZ disregards the major neural reorganization that occurs in
adolescence (Paus, 2005; Insel, 2010; Stiles and Jernigan, 2010;
Petanjek et al., 2011). This is striking, as age-related increases
in neural activity have been found within core fronto-parietal
WM circuitry during visual WM tasks in healthy adolescents
(Andre et al., 2016). Moreover, significant associations between
WM capacity and neural activity have been found in the same
regions, suggesting that WM capacity may also increase with age
(Klingberg et al., 2002). Yet the literature remains inconsistent,
as increasing age has also correlated with decreasing activation
in the superior frontal, limbic cingulate gyrus (Andre et al.,
2016), and superior parietal regions (Schweinsburg et al., 2005).
Regardless, differences in the role of the PFC during WM
performance can be distinguished within the adolescent period.
For example, while the PFC is recruited during WM tasks
throughout adolescence, neural activity correlates with behavior
(i.e., task accuracy) only in late adolescence (Finn et al., 2010),
suggesting further refinement of WM-related circuitry and PFC
maturation with increasing age (Casey et al., 2005; Paus, 2005;
Petanjek et al., 2011).

Given this role of age on neural and cognitive development,
an investigation of WM deficits and underlying neural
dysfunction among individuals who develop overt psychosis
during adolescence may be particularly enlightening. Adolescent
psychosis (AP; overt psychosis emergence prior to age 18) is a
particularly virulent and chronic form of psychotic disorder that
is associated with poor prognosis (Vyas and Gogtay, 2012). AP
is also typically associated with more severe cognitive deficits
relative to the adult-onset form of illness, particularly in the
domain of WM (Frangou, 2010; Zabala et al., 2010). This
model therefore may provide greater insight into the neural and
neurocognitive abnormalities associated with the disorder, while
simultaneously allowing for investigations of effects of earlier
onset age on brain development.

Existing functional imaging studies of WM in AP have
revealed both abnormal patterns of neural activity across brain
regions critical for higher-order cognitive activity (e.g., frontal
regions, ACC) and disrupted functional connectivity within
prefrontal/limbic and visual processing networks (e.g., occipital
lobe) relative to healthy controls (Thormodsen et al., 2011;
White et al., 2011a,b; Kyriakopoulos et al., 2012; Sugranyes
et al., 2012; Bittner et al., 2015). AP patients also evidence
reduced coupling of the dlPFC with other key regions implicated
in WM (e.g., ACC) as compared to healthy adolescents
when individual capacity is not factored in Kyriakopoulos
et al. (2012). Interestingly, an investigation of age-associated
changes revealed decreases in dlPFC activity and increases
in dlPFC-ACC coupling among AP patients as compared to
controls, suggesting growing inefficiency of neural networks
with increasing age (Kyriakopoulos et al., 2012). However,
to our knowledge, only one prior study of AP to date has
considered individual capacity, finding that relative to healthy
controls, AP patients evidence reduced capacity at each WM
load and a negative correlation between neural activity and
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capacity during a late maintenance phase (Bittner et al.,
2015). Correspondingly, the literature addressing functional
dysconnectivity during WM performance in AP is still in its
infancy, particularly with respects to the effects of manipulating
memory demand and accounting for individual WM capacity
on task-based activation and functional connectivity. The utility
of incorporating each subject’s capacity into analyses has been
previously described for a verbal WM task (Karlsgodt et al.,
2009). Briefly, this method attempts to control for differences in
neural activity that might result when task demands exceed an
individual’s own WM ability. Additionally, by more accurately
capturing the WM-related neural activity/connectivity present
at optimal capacity, inconsistencies in the literature may be
resolved.

The present study therefore investigated behavioral correlates
of neural activity and connectivity during WM engagement in
adolescents with AP relative to typically developing controls. As
a novel extension of prior work, we examined the relationship
between individual WM capacity, calculated via a parametric
manipulation of WM load, and task-based neural activation, and
further assessed the association with development. In particular,
we examined whether the fine-tuning of functional networks
during adolescence is disrupted in AP, which may result in an
absence of typical age-associated increases in focal activation as
well as abnormal patterns of functional connectivity, particularly
in the prefrontal and parietal regions. Lastly, we examined the
relationship between WM-related neural dysfunction and out-
of-scanner neurocognitive performance. We thus hypothesized
the following:
1. Individuals with AP will evidenceWM impairment compared

to controls, as indexed by lower overall WM capacity and
decreased task accuracy at higher spatial WM loads.

2. Controlling for individual WM capacity, AP patients
will show an abnormal pattern of neural activity within
WM-relevant neural circuitry (i.e., prefrontal and parietal
cortices) during task performance relative to controls.
Specifically, based on prior studies in adult patients with
SZ, we expect youth with AP to evidence reduced neural
activity in dlPFC and parietal regions, but increased activity
in less task-relevant regions, such as the frontal pole, anterior
cingulate and occipital cortex.

3. Relative to controls, AP patients will demonstrate reduced
efficiency of WM-related neural circuitry as evidenced by
a decoupling of typically interactive regions (e.g., fronto-
parietal connections).

4. Given that patients with AP are hypothesized to differentially
and/or inefficiently recruit relevant brain regions during
WM performance as a function of increasing age, we
anticipate that, relative to controls, AP patients will show an
altered pattern of age-associated changes in WM circuitry.
Specifically, patients will fail to show the expected positive
association between age and increased neural activity within
frontal and parietal regions during task performance.

5. Decreased neural activity during spatial WM task
administration will be associated with poorer behavioral
performance and poorer performance on neurocognitive
tasks completed outside the scanner.

MATERIALS AND METHODS

Participants
Twenty-one healthy volunteers (18.07 ± 3.26 years old,
range = 14.81–21.33 years) and 23AP patients (16.58± 2.60 years
old, range = 13.98–19.18 years) were recruited as part of
a larger, ongoing study (UCLA Adolescent Brain-Behavior
Research Clinic; ABBRC). Demographic variables (age, IQ,
participant and parental education level) did not differ between
the groups, nor did gender, handedness and race/ethnicity
distributions (see Table 1 for demographic and diagnostic
information). AP patients with past substance abuse diagnoses
were permitted to participate if they were free of substance
abuse for the preceding 6 months; patients with substance
dependence diagnoses were excluded. Inclusion criteria for AP
patients included the following diagnoses: SZ, psychotic disorder
not otherwise specified (NOS), schizophreniform disorder and
schizoaffective disorder. All control participants were free of
Axis I disorders and of SZ-spectrum disorders among first-
degree relatives. This study was carried out in accordance with
the recommendations of UCLA’s Institutional Review Board
with written informed consent from all subjects, and from their
parents for participants under the age of 18. All subjects gave
written informed consent in accordance with the Declaration of
Helsinki. The protocol was approved by the UCLA’s Institutional
Review Board.

Behavioral Assessments
All diagnostic and neuropsychological assessment measures
used have been previously described (Bachman et al., 2012).
Diagnoses for all participants were determined using the
Structured Clinical Interview for DSM-IV Axis I diagnoses
(SCID; First et al., 1998) and by review of medical records;
final diagnoses required consensus among supervising clinical
psychologists. Current level of symptomatology (within the
current month of the clinical assessment) was determined
via the Structured Interview for Prodromal Syndromes (SIPS;
McGlashan et al., 2001). Participants were also administered
a neurocognitive battery, including measures of intelligence
(Wechsler Abbreviated Scale of Intelligence—Full-scale IQ,
T-score) and WM (Wechsler Memory Scales-3 (WMS)—Spatial
Span, total scaled score; Wechsler Adult Intelligence Scale-III
(WAIS-III)—Digit Span, total scaled score). Control subjects
were screened for Axis I disorders with the SCID and
for history of SZ-spectrum disorders among first-degree
relatives using the Family Interview for Genetic Studies
(FIGS; Maxwell, 1992). All assessments were administered by
clinicians trained to a standard reliability criterion (Ventura
et al., 1998). Medication information was obtained via
participant and parent/guardian report and medical record
review.

fMRI Acquisition and SCAP Task
Following behavioral assessments, participants were scanned on
a 3.0 Tesla (3T) Siemens Allegra scanner. The fMRI sequence
consisted of 180 echoplanar images for a total scan time of
9 min (TR/TE 3000/45 ms, 90◦ flip angle, 33 3 mm slices).

Frontiers in Human Neuroscience | www.frontiersin.org 3 August 2017 | Volume 11 | Article 394

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Eckfeld et al. Disrupted Working Memory in AP

TABLE 1 | Demographic information characterizing study sample1.

Controls (N = 17) AP patients (N = 17) p value

Mean age, years (± SD) 18.07 (3.26) 16.58 (2.60) 0.15
[range, years] [14.81–21.33] [13.98–19.18]

Number female (%) 8 (47.1) 6 (35.3) 0.49
Number left-hand dominant (%) 0 (0) 1 (5.9) 0.31
Mean participant education, years (± SD) 11.53 (2.62) 10.41 (2.29) 0.20
Mean parental education, years (± SD) 15.97 (2.67) 14.59 (2.45) 0.64
Race/Ethnicity (%) 0.61

Caucasian, Non-Hispanic 10 (58.82) 9 (52.94)
Caucasian, Hispanic 2 (11.76) 5 (29.41)
African-American 2 (11.76) 1 (5.88)
Asian-American/Pacific Islander 2 (11.76) 2 (11.76)
Other 1 (5.88) 0 (0)

Diagnoses (%)
Schizophrenia 0 (0) 6 (35.29)
Psychotic disorder NOS 0 (0) 5 (29.41)
Schizophreniform disorder 0 (0) 3 (17.65)
Schizoaffective disorder 0 (0) 3 (17.65)

Medication (%)2

Atypical antipsychotic 0 (0) 10 (58.82)
Typical antipsychotic 0 (0) 1 (5.88)
SSRI 0 (0) 6∗ (35.29)
Mood stabilizer 0 (0) 2§ (11.76)
Antidepressant 0 (0) 3§ (17.65)
Anxiolytic 0 (0) 3§ (17.65)
Sedative 0 (0) 1§ (5.88)
Anticonvulsant 0 (0) 2 (11.76)

Mean SIPS: total positive symptoms score (±SD)3 1.38 (1.96) 16.40 (7.20) <0.001
Mean neurocognitive score (±SD)4

WASI IQ 111.56 (11.34) 103.00 (14.92) 0.08
WMS spatial span 11.63 (3.46) 9.50 (3.25) 0.08
WAIS-III digit span 11.88 (2.63) 9.50 (3.46) 0.04

Mean load corresponding to highest capacity 3.76 (0.44) 3.24 (0.75) 0.02

1Mean values for each continuous variable were tested for group differences at the univariate level. Gender, handedness and race/ethnicity distributions were tested with

Chi-squared analyses; no significant group differences were detected for any comparisons except on clinical and neurocognitive measures (all p > 0.05). 2Patients reported

a mean of 94.15 (SE = 27.85) days on antipsychotic medication and a mean of 130.48 (SE = 41.04) days on other psychoactive medications at the time of assessment.

Mean days on medication was missing for one patient. Medication history was missing for one adolescent psychosis (AP) participant and one control participant.
3SIPS, Structured Interview for Prodromal Syndromes. Higher scores denote better levels of functioning. SIPS data was missing for one control participant and seven

AP participants. 4WASI, Wechsler Abbreviated Scale of Intelligence; WMS, Wechsler Memory Scales-3; WAIS-III, Wechsler Adult Intelligence Scale-III. Neurocognitive

data was missing for one control and one AP patient. ∗Taken concurrently with antipsychotic medication for all but one patient. §Taken concurrently with antipsychotic

medication.

While in the scanner, participants were administered a spatial
WM task assessing spatial capacity (SCAP), which has been
shown to be sensitive to spatial WM deficits in individuals
with SZ (Glahn et al., 2003; Cannon et al., 2005). The SCAP
task involved showing participants a target array of 1, 3, 5,
or 7 yellow circles per trial (2-s presentation) after a 1-s
fixation period. Following a fixed delay of 3 s, subjects were
shown a probe of a single green circle for 3 s. They were
then asked whether the probe dot’s location corresponded to a
location of one of the yellow target dots in the most recently
presented set. There were 12 trials of each load (48 trials
in total) presented in two acquisition sessions. Each load
was presented in pseudorandom order in sets of two trials
(three per session), and data were analyzed in those blocks
(correct trials only). To better isolate effects due to WM
activity only, the fixation period was excluded from analysis.
Preprocessing steps included the following: functional analysis
was performed using FSL (FMRIB’s Software Library v3.3;

Smith et al., 2004). Each BOLD image in the time series was
registered (using a 3D co-registration, six parameter rigid-body)
to the middle data point. Data were then registered, first the
EPI to the subject’s individual T2-weighted structural image,
then the T2 to the study specific common brain (Jenkinson
and Smith, 2001; Jenkinson et al., 2002). Individual subject
analyses employed FMRI Expert Analysis Tool (FEAT) using a
5 mm (FWHM) Gaussian smoothing kernel and 72 s high-pass
filter. Time-series statistical analysis on each subject was carried
out using FMRIB’s Improved Linear Model (FILM) with local
autocorrelation correction (Woolrich et al., 2001). Regarding the
design matrix, in the individual first-level analyses, loads 1, 3,
5 and 7 were modeled. Participants with more than 3 mm of
average translational motion were also excluded from subsequent
analyses (n = 6 patients, four controls), resulting in a final sample
of 17 patients and 17 controls. Timepoints corresponding to
motion outliers were added to the model as nuisance regressors
using framewise displacement as determined by FSL motion
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outliers1. Analyses of overall neural activation utilized a whole-
brain approach.

Statistical Analysis
Analysis I: Behavioral Performance
Behavioral data from the SCAP task were analyzed in SPSS
(v20) using repeated measures ANOVA with group (AP patients
or controls) as the between subjects factor, load as the within
subjects factor, and percent correct at each load as the dependent
variable (as described in Karlsgodt et al., 2009; Shilyansky
et al., 2010). Additionally, we covaried for age. Between-group
differences in reaction time were also examined.

Analysis II: WM Capacity-Associated Neural Activity
and Age-Associated Effects
In order to examine group differences in neural activity during
SCAP task performance, each subject’s WM capacity was first
calculated at each load. The formula k = n∗(H + CR − 1) was
used, where k = capacity, n = load #,H = hit rate and CR = correct
rejection rate (Cowan, 2001). Final capacity was identified by the
highest value calculated; the load corresponding to each subject’s
highest capacity was entered into group analyses. Overall group
differences in WM capacity (via selected load) were compared
using SPSS (v20). Group analyses related to neural activity
were then performed using FSL FEAT (Local Analysis of Mixed
Effects; FLAME), which has been shown to be less vulnerable
than other methodologies to inflation of familywise Type-1 error
rates (Eklund et al., 2016), with age, gender and handedness as
covariates. Overall behavioral performance (% correct) was also
included as a covariate to control for differences in ability related
to clinical status and to ensure group differences in magnitude
of activation were not due to non-specific effects (e.g., effort
or strategy; Meda et al., 2009; White et al., 2011a; Satterthwaite
et al., 2013; Wadehra et al., 2013). Main effects of group and age
were modeled, as well as a group-by-age interaction, in order to
investigate differential effects of age between groups. Threshold
for cluster statistical significance was set at Z > 2.3, p < 0.05,
with multiple comparison correction implemented in FSL FEAT
(Friston et al., 1994; Forman et al., 1995; Jenkinson and Smith,
2001).

Analysis III: Psychophysiological Interaction (PPI)
Analysis and Age-Associated Effects on Functional
Connectivity
To test whether patients show a de-coupling of regions that
typically are functionally connected during WM demands (e.g.,
dlPFC with parietal regions), a psychophysiological interaction
(PPI) analysis (O’Reilly et al., 2012) was conducted. Structural
regions of interest (ROIs) including the dlPFC and parietal
cortex in each hemisphere were identified using a probabilistic
cluster atlas (Harvard-Oxford, 2 mm). Next, functional ROIs
were defined in the study-specific average brain space. Activation
clusters were identified using the FSL cluster option from the all-
participants, all-loads omnibus contrast. Those that overlapped
with the above anatomical ROIs were masked. Final masks

1http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLMotionOutliers

FIGURE 1 | Anatomical-functional regions of interest (ROIs; bilateral
dorsolateral prefrontal cortex (dlPFC) and parietal cortex).

were created from the voxels common to both the functional
and anatomical ROIs, resulting in four final ROIs in the right
and left dlPFC and parietal lobes (Figure 1). Mean activation
for each ROI was then extracted following registration to each
participant’s preprocessed data.

First-level PPI analyses modeled the interaction between
mean activation within each ROI and load condition, with loads
determined by each subject’s WM capacity as previously defined;
other load conditions were controlled for. Group analyses were
then modeled identically as described above, including main
effects and group-by-age interaction. Specifically, the regressors
used in the PPI analysis included age, gender, handedness and
overall behavioral performance (% correct).

Analysis IV: Association between Neural Activity and
Task Performance/Neurocognitive Measures
Partial correlations were calculated examining the relationship
between neural activity within WM task-related regions (%
signal change; %SC) within each bilateral dlPFC and parietal
ROI) and task performance (% correct), controlling for the
effects of age and gender. Similar partial correlations were
performed for neural activity and each of three neurocognitive
measures completed outside of the scanner (IQ, digit span, spatial
span). IQ was particularly examined given previous findings
that spatial WM capacity is associated with IQ among adults
with SZ (Johnson et al., 2013). Due to the inherent group
differences in task performance and neurocognition, correlations

FIGURE 2 | Group differences in working memory (WM)-task accuracy. As
depicted, when adjusting for age, group differences in performance were
significant at load seven only (t(32) = −3.051, p < 0.01), although controls
performed nominally better than adolescent psychosis (AP) patients at each
WM load.
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were run separately for AP patients and controls, with a total
of 16 comparisons per group. Given the exploratory nature of
these analyses, comparisons for multiple corrections were not
performed. In order to determine %SC, the Featquery2 program
applied the inverse of the initial transformation matrix from
individual to the average brain to transform the ROIs back
into each participant’s individual space. The motion corrected,
smoothed and filtered data across each entire ROI were probed
for %SC (i.e., individual loads as compared to resting baseline)
for use in correlation analyses.

RESULTS

Analysis I: Behavioral Performance
Age was significantly correlated with task performance (percent
correct; r = 0.336, p < 0.001), and was thus included as a
covariate in subsequent behavioral analyses. Because gender and
task performance were not significantly correlated (r = −0.140,
p = 0.429), gender was not included in final models. A repeated
measures ANOVA showed a significant age-by-load interaction
(F(3,96) = 7.07, p < 0.001) along with a significant group-by-load
interaction (F(3,96) = 2.72, p< 0.05). Decomposed effects revealed
that age was significantly positively correlated with increased
task performance at load 3 only (r = 0.581, p < 0.001), and
while controls performed nominally better than AP patients at
each load, group differences in performance were significant
at the highest load (Load 7) only (t(32) = −3.051, p < 0.01;
Figure 2). Reaction time did not significantly differ between
groups (t(32) =−0.08, p = 0.94).

2https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/UserGuide#Featquery_-
_FEAT_Results_Interrogation

Analysis IIa: WM Capacity-Associated
Neural Activity
AP patients evidenced lower overall WM capacity as compared
to controls (t(26) = 2.508, p < 0.05). Whole-brain analyses based
on individual subject capacity revealed a significant main effect
of group, with greater bilateral precentral and right postcentral
gyrus and precuneus activity in healthy controls relative to
patients (Figure 3). AP patients did not exhibit greater neural
activity in any regions relative to controls.

Analysis IIb: Age-Associated Effects on
Neural Activity during Spatial Working
Memory
fMRI contrasts based on individual capacity also revealed a
significant group-by-age interaction, with differentially greater
activation in the bilateral middle frontal, right superior frontal
gyrus, left inferior frontal gyrus, left insula, left lingual gyrus,
left precentral gyrus and left occipital pole as a function of
increasing age in AP patients relative to controls (Figure 4A);
controls exhibited concomitant decreased activation in these
areas (Figure 4B). Additionally, significant main effects of age
indicated that, overall, older subjects exhibited greater activity in
the left superior parietal lobule, precuneus, postcentral gyrus and
lateral occipital cortex.

Analysis IIIa: PPI Analysis
PPI analyses based on individual capacity revealed that, relative
to youth with AP, controls exhibited greater connectivity
between the left dlPFC and left frontal pole. No significant group
differences were observed for any other ROI, and AP patients
did not evidence greater co-activation between any regions as
compared to healthy controls.

FIGURE 3 | Main effect of group in whole-brain WM capacity analysis. Healthy controls displayed greater bilateral precentral and right postcentral/precuneus activity
relative to AP patients.
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FIGURE 4 | SCAP group-by-age interaction. Top panels (A) depict group
differences in neural activity as a function of age, based on individual capacity.
As shown, increasing age in the AP patients was associated with greater
activity in bilateral middle frontal gyrus, right superior frontal gyrus, left inferior
frontal gyrus, left insula, left lingual gyrus, left precentral gyrus and left occipital
pole activation during task performance, which was not observed in healthy
controls. The bottom panel (B) depicts the direction of effect based on
percent signal change from the most significant cluster. While increased age
was associated with increased task-based neural activity among AP patients,
the opposite effect was observed among controls.

Analysis IIIb: Age-Associated Effects on
Connectivity
PPI contrasts revealed a significant group-by-age interaction
for the left dlPFC ROI (Figure 5). Increased WM-associated
coupling between the left dlPFC and right cerebellum, right
lateral occipital cortex and right occipital fusiform gyrus was
observed among older as compared to younger AP patients;
this pattern was not observed among healthy controls. All
other age main effect and interaction contrasts were not
significant.

Analysis IVa: Association of Neural Activity
with Task Performance
Partial correlations controlling for the effects of age and gender
revealed a significant relationship between right dlPFC activity

FIGURE 5 | Psychophysiological interaction (PPI) group-by-age interaction for
the left dlPFC. Top panels (A) depict that as compared to healthy controls,
increased age among AP patients was associated with increased coupling
between the left dlPFC and the right cerebellum, right lateral occipital cortex
and right occipital fusiform gyrus. The bottom panel (B) depicts the direction
of effect based on percent signal change from the single significant contrast
cluster. While task-based neural activity did not vary with age among controls,
increased age among AP patients was associated with an increase in activity.

and overall % correct among AP patients (r = 0.628, p < 0.05;
see Figure 6A) but not among healthy controls (r = 0.146,
p = 0.605). Correlations between task accuracy and %SC in
all other ROIs were nonsignificant across both participant
groups.

Analysis IVb: Association of Neural Activity
with Neurocognitive Measures
Controlling for the effects of age and gender, controls
demonstrated a significant association between %SC in the left
dlPFC and IQ (r = 0.534, p < 0.05; see Figure 6B), which was
not observed in AP patients (r = −0.258, p = 0.373). Partial
correlations also revealed a significant relationship between %SC
in the left parietal cortex and IQ in controls (r = 0.648, p < 0.05;
see Figure 6C), but not in AP patients (r = −0.356, p = 0.212).
All other correlations between neuropsychological measures and
%SC were not significant.
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FIGURE 6 | Correlation plots between neural activity and task performance/neurocognitive measures. Graphs depict (A) significant association between %SC in the
right dlPFC and SCAP task accuracy among patients only (r = 0.628, p < 0.05); (B) significant association between %SC in the left dlPFC and IQ in control group
only (r = 0.534, p < 0.05); and (C) significant association between %SC in the left parietal cortex and IQ among controls only (r = 0.648, p < 0.05).

CONCLUSION

This study investigated the nature and magnitude of spatial
WM-related neural circuitry disruption as well as age-associated
changes in WM circuitry in AP patients as compared to
healthy adolescents. It further examined whether alterations
in neural activity were related to neurocognitive functioning.
To our knowledge, this is the first study to investigate
both individual differences in WM capacity in AP and their
relationship to development. The study yielded several main
findings: (1) AP patients, relative to healthy controls, exhibited
lower neural activity within bilateral precentral and right
postcentral/precuneus areas during spatial WM performance
when controlling for individual capacity, which is consistent with
previous findings that did not incorporate capacity estimations
(White et al., 2011a); (2) similarly, relative to typically developing
controls, AP patients showed reduced coupling between the left
dlPFC and frontal pole during WM task engagement relative
to controls, which is distinct from a prior study suggesting
reduced connectivity between the dlPFC and ACC, inferior
parietal lobule and middle occipital gyrus among AP patients
(Kyriakopoulos et al., 2012); (3) differential effects of age on
neural activity and functional connectivity, respectively, suggest
preliminary (cross-sectional) evidence for altered developmental
trajectories inWM circuitry in AP; and (4) AP patients evidenced
distinct relationships between neural activity and both SCAP
task performance and global cognition as compared to controls,
in that only patients showed an association between task
accuracy and % signal change in the right dlPFC, whereas
only controls demonstrated a significant association between
IQ and % signal change in the left dlPFC and left parietal
cortex.

Consistent with our hypotheses and with previous literature
that both did (e.g., Bittner et al., 2015) and did not take
individual capacity into account (White et al., 2011a), AP
patients in the current study evidenced lower whole-brain
activation in specific frontal and parietal regions relative to
healthy adolescents during a WM task. However, we identified
fewer regions of significant group differences in neural activity
as compared to other reports that did not factor in individual
capacity differences (Kyriakopoulos et al., 2012). We did not

find evidence of hyperactivation in prefrontal and temporal
regions in AP patients relative to controls, which has been
reported in some prior studies of youth with AP that did not
include capacity and utilized either an n-back (Thormodsen
et al., 2011; Sugranyes et al., 2012) or Sternberg paradigm (White
et al., 2011a). Some of these distinctions may be accounted
for by paradigm differences, particularly those that primarily
utilized verbal WM tasks vs. our spatial WM design (e.g.,
Kyriakopoulos et al., 2012; Sugranyes et al., 2012). As previously
suggested, recent work points to a generalized inefficiency of
WM circuitry that varies by WM load (Potkin et al., 2009).
Thus, discrepancies in prior neural findings may be reflective
of how well the capacity of each participant mapped on to the
various task demands, which has not been well considered to
date.

Controlling for individual capacity may have also led to
distinct patterns of functional connectivity, indicating greater
co-activation between the left dlPFC and left frontal pole
among controls, relative to AP patients. This suggests that at
their own maximum WM level, controls are better able to
sustain the prefrontal network to process visual information
as compared to patients. This is consistent with previous PPI
work among healthy adults showing that increased connectivity
between bilateral frontoparietal areas, as a function of increasing
WM load, predicted better n-back task performance (Cassidy
et al., 2016). Although the PPI approach has not been widely
applied to the SZ WM literature, previous findings in an AP
sample similarly noted reductions in dlPFC coupling, albeit
with other brain regions (ACC, occipital gyrus and inferior
parietal lobule; Kyriakopoulos et al., 2012). However, in addition
to not accounting for capacity, Kyriakopoulos et al. (2012)
utilized a letter-based 2-back task that did not parametrically
vary WM demand, perhaps also accounting for the lack of
performance deficit in the SZ group that we and others have
found.

This study additionally found a positive association between
age and frontal and occipital activation at WM capacity in
individuals with AP. In contrast, among healthy controls,
WM-related brain activity in some of these regions (e.g., right
superior frontal gyrus) has instead been shown to negatively
correlate with age (Andre et al., 2016). Previous work has
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identified a progression of increasing network specialization
from childhood to adulthood, in that children are more likely
to recruit regions such as the lateral cerebellum and thalamus,
while adolescents rely on premotor and inferior parietal regions,
and adults primarily recruit the dlPFC and ventromedial PFC
(Klingberg et al., 2002; Scherf et al., 2006; Geier et al., 2009).
Cerebellar recruitment during visuospatial WM tasks has been
uniquely found among children, and has been associated with
unskilled performance related to error detection and corrections
(Scherf et al., 2006). Here, AP patients also demonstrated
increased coupling between prefrontal and occipital/cerebellar
regions with increasing age, suggesting more pronounced
network inefficiency over time. Thus, AP patients evidence
atypical development of WM-related regions, consistent with
our hypotheses. Results are also in line with previous findings
suggesting differential recruitment of cerebellar regions among
patients with SZ as compared to healthy controls during WM
tasks (Meyer-Lindenberg et al., 2001).

These functional findings are corroborated by behavioral
and WM capacity group differences. Patients performed with
decreased task accuracy as compared to controls, significantly
so at the highest WM demand, which is in agreement
with our hypotheses and previous literature (Lee and Park,
2005; Piskulic et al., 2007; White et al., 2011a; Bittner
et al., 2015). Correspondingly, patients evidenced reduced
overall WM capacity compared to controls, thus leading to
expectations that their performance would degrade accordingly
above that lowered threshold. Task accuracy also correlated
with neural activity in the right dlPFC among patients
only, suggesting atypical recruitment of frontal regions while
attempting to sustain performance. Of note, dlPFC activity
has been shown to increase parametrically with WM demand
until load exceeds the individual’s capacity, though WM
capacity for those with SZ is reduced relative to controls
(Manoach, 2003). Given our study’s selection of each individual’s
optimal load/capacity, it is possible that findings reflect
patient’s experience of a more challenging task relative to
controls, thus requiring increased dlPFC recruitment to sustain
better task accuracy. In fact, previous literature has also
suggested that increased task difficulty via increased WM
demand correlates with increased frontal lobe activation, as
well as decreased activation in visually-mediated areas (e.g.,
Grady et al., 1996; Bokde et al., 2005; Höller-Wallscheid
et al., 2017; Siciliano et al., 2017), comparable to our study
findings.

Higher neural activity in both the left dlPFC and left parietal
regions was associated with higher overall intelligence among
healthy controls only. This suggests that neural activity during
higher-order cognitive tasks is less predictive of global cognition
in AP patients relative to healthy controls. While prior research
among adults with SZ has demonstrated positive correlations
between cognitive functioning and WM/capacity (Piskulic et al.,
2007; Gold et al., 2010; Johnson et al., 2013), the relationship may
be attenuated as compared to healthy individuals (Gold et al.,
2010). Prior work has suggested that the neural mechanisms
leading to reduced WM capacity in SZ are not identical to
those producing variations among healthy controls (Vogel and

Machizawa, 2004; Gold et al., 2006; Leonard et al., 2013); for
AP patients who are undergoing atypical neural development
of WM-related networks, these correlations may be even more
diminished when compared to typical adolescents.

It is important to note that the regression analyses examining
relationships between neural activity, task performance and
neurocognitivemeasures were exploratory andwould not survive
corrections for multiple comparisons. This is likely due in large
part to the limitations of our sample size and the heterogeneity of
the patient sample, including the wide age range of participants.
Future, larger-scale studiesmay benefit from conducting analyses
with subjects stratified by age clusters. Moreover, we were
unable to investigate effects of age of illness onset on neural
and behavioral WM measures; however, earlier onset may yield
more significant impairment across multiple cognitive domains
as compared to adult-onset patients (Basso et al., 1997; Collinson
et al., 2003; Rajji et al., 2009; Frangou, 2010). Furthermore,
given the extensive history of psychotropic medication use in
several patients, studies with medication-naïve AP individuals
would be necessary to confirm that observed differences were
independent of medication effects. Lastly, an important caveat
of this version of the SCAP task (Glahn et al., 2003) is that
the maintenance period always follows the encoding period;
as jittering was not utilized between trials, BOLD signal from
the encoding period may contaminate the signal within the
maintenance period. However, as only correct response trials
were modeled in analyses, the interference of encoding on the
maintenance signal may be relatively minimized.

Through emphasizing early indicators of neural dysfunction,
this work has the potential to better elucidate endophenotypes
of SZ (Glahn et al., 2003; Wood et al., 2003). The abnormal
developmental trajectories of WM-associated neural activity
that we observed in youth with AP also suggest a window of
opportunity for early intervention. Visual WM capacity in both
healthy adults and adult patients with SZ is strongly correlated
with overall cognitive abilities (Kyllonen and Christal, 1990;
Johnson et al., 2013; Luck and Vogel, 2013). Replication of
this work in AP samples is critical to determine if reduced
capacity can lead to decreased intellectual functioning over time
(Luck and Vogel, 2013). Studies have demonstrated that early
detection and treatment of SZ is associated with improved
long-term outcomes (Larsen et al., 2011). These findings suggest
reduced WM capacity may be a key area for potential cognitive
remediation studies. Finally, this work further highlights the need
for longitudinal studies, which are essential to determine when in
the course of development abnormal patterns of WM-associated
neural activity emerge.
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