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Observation of a high degree of stopping for
laser-accelerated intense proton beams in dense
ionized matter
Jieru Ren1,11, Zhigang Deng2,11, Wei Qi2, Benzheng Chen1,3, Bubo Ma1, Xing Wang1, Shuai Yin1, Jianhua Feng1,

Wei Liu1,4, Zhongfeng Xu1, Dieter H. H. Hoffmann 1, Shaoyi Wang2, Quanping Fan2, Bo Cui2, Shukai He2,

Zhurong Cao2, Zongqing Zhao2, Leifeng Cao2, Yuqiu Gu 2, Shaoping Zhu2,5,6, Rui Cheng7, Xianming Zhou1,8,

Guoqing Xiao7, Hongwei Zhao7, Yihang Zhang9,10, Zhe Zhang 9,10, Yutong Li9,10, Dong Wu 3✉,

Weimin Zhou 2✉ & Yongtao Zhao 1✉

Intense particle beams generated from the interaction of ultrahigh intensity lasers with

sample foils provide options in radiography, high-yield neutron sources, high-energy-density-

matter generation, and ion fast ignition. An accurate understanding of beam transportation

behavior in dense matter is crucial for all these applications. Here we report the experimental

evidence on one order of magnitude enhancement of intense laser-accelerated proton beam

stopping in dense ionized matter, in comparison with the current-widely used models

describing individual ion stopping in matter. Supported by particle-in-cell (PIC) simulations,

we attribute the enhancement to the strong decelerating electric field approaching 1 GV/m

that can be created by the beam-driven return current. This collective effect plays the

dominant role in the stopping of laser-accelerated intense proton beams in dense ionized

matter. This finding is essential for the optimum design of ion driven fast ignition and inertial

confinement fusion.
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A lpha-particle stopping in dense ionized matter is essential
to achieve ignition in inertial confinement fusion1–5. Fast
ignition (FI) relies even more on a detailed understanding

of ultrahigh-current ion stopping in matter, which is therefore
considered as a fundamental process of utmost importance to
nuclear fusion. In the fast ignition scheme6–9, a short and intense
pulse of energetic charged particles—electrons, protons, or heavy
ions—generated by an ultra-high-intensity laser, is directed
toward the pre-compressed fusion pellet. The charged-particle
beam requirements to achieve ignition have been discussed and
studied in detail previously10–14 based on single-particle stopping
theory. However, the collective effects induced by high-current
charged-particle beams could alter significantly the projected
range, the magnitude of energy deposition, and therefore change
the requirements for ignition correspondingly. Besides, in the
cases of ion beam-driven inertial confinement fusion and high-
energy density science, which require ultrahigh beam intensity from
accelerators15–19, no collective effects on ion stopping processes due
to high beam intensity are considered nor—to the best of our
knowledge—were they reported in any previous experiments.

Since the discovery of alpha decay and the availability of ener-
getic fission fragments, it became interesting to study fast particle
stopping processes in matter20–25. In past decades, numerous
theoretical models26–32, some of which can be considered to
be further developments of the early work of Bethe28 and Bloch29,
are built to describe individual charged particle stopping in dense
ionized matter. Only recently experiments with sufficient precision
were carried out with dense ionzied matter to distinguish between
different models25,33–35. In these experiments, incident particles
are generated from laser-induced nuclear reactions33,34, or from
traditional accelerators25,35. Hence the beam intensity was low, and
the individual ion stopping theories can be discriminated36.

Ultra-high-intensity lasers (1018–1022W/cm2) have opened up
perspectives in many fields of research and application37–44. By
irradiating a thin foil with ultra-high-intensity lasers, an ultrahigh
accelerating field (1 TV/m) can be formed and multi-MeV ions
with high intensity (1010 A/cm2) in short timescale (~ps) are
produced45–53. Such beams provide experimental opportunities to
investigate the beam-driven complex collective phenomena54–59.
In particular, the stopping power for these intense beam could be
orders of magnitude higher than that for individual particles if the
beam intensity is high enough60–63. In our previous experiment,
we sent the laser-accelerated ion beams directly into the plasma
target, and observed that the energy spectra of the ions were
significantly downshifted after passing though the dense
plasma64. This energy downshift was far beyond the Bethe–Bloch
predictions (see Supplementary Figs. 8 and 9 for details). How-
ever, the large energy spread of the incident beam makes it dif-
ficult to correctly interpret the results.

In this article, we improve the precision of the measurement by
using a magnetic dipole to trim out a quasi-monoenergetic proton
beam. The dense ionized target is produced by irradiating a tri-
cellulose acetate (TCA) foam sample with soft X-rays from a laser-
heated hohlraum. Thus the temperature and density are homo-
geneous across the ionized target. This state can be maintained for
a period of more than 10 ns. This period is two to three orders of
magnitude longer than the beam duration and the beam-plasma
interaction timescale. Therefore, the target can be considered to be
quasi-static. This kind of experimental scenario allows for precise
measurement of intense proton beam stopping in dense ionized
matter. We observed that the energy loss is enhanced by one order
of magnitude in comparison to the predictions from individual-
proton stopping theories, Bethe–Bloch28,29, Li–Petrasso (LP)26,
standard stopping model (SSM)32. Through PIC simulation, we
attribute the high degree of enhancement to a strong decelerating

electric field induced by the intense proton beam. This collective
effect is the primary cause for the enhanced stopping, and it is
likely to have a major impact on nuclear fusion scenarios like fast
ignition, alpha-particle self-heating, as well as ion driven inertial
confinement fusion.

Results
The experiment was carried out at the XG-III laser facility of
Laser Fusion Research Center in Mianyang. The experimental
layout is displayed in Fig. 1. Here a short and intense laser beam
of 800 fs duration, 20 μm focal spot, and 150 J total energy
irradiates a CH-coated tungsten foil (15-μm thick) to generate a
charged-particle beam. The beam consists of a mixture of protons
(H1+) and carbon ions with different charge states (C1+, C2+,
C3+, and C4+). They originate at the backside of the target by
means of the target normal sheath acceleration (TNSA). The
predominant particle species is H1+, because the charge- to-mass
ratio is maximum for this species, and is, therefore, more effec-
tively accelerated than the lower charge-to-mass ratio species of
carbon ions. The TNSA mechanism results in a broad range of
particle energies, which is not favorable for quantitative analysis
of the particle energy loss. A magnetic dipole, with entrance and
exit slits, was used to generate a monoenergetic beam. The ions,
spatially collimated by the 500 μm entrance slit, are dispersed
laterally by the magnetic dipole according to their specific p/q
value, where p and q are the particle momentum and charge,
respectively. A second 500 μm exit slit, selects the quasi-
monoenergetic ion pulses. The selected ions consist of different
particle species, with similar p/q value, they have, however, dif-
ferent velocities and therefore arrive at the target pulse by pulse
with different time delay. In the current case, the C4+ ion pulse
lags behind proton pulse by about 30 ns at the plasma target, and
C3+, C2+, and C1+ pulses are delayed more, therefore the laser-
accelerated carbon ions have no influence on the proton beam
stopping measurement.

A gold hohlraum converter was used to generate soft X-rays by
interaction of a ns laser pulse (150 J), with the hohlraum walls.
The X-rays subsequently irradiated and heated the foam target
(C9H16O8, density of 2 mg/cm3 and thickness of 1 mm) to pro-
duce ionized matter. The hydrodynamic response of the heated
foam target under this kind of scheme has been very well-
investigated and the state has been well characterized65–67. Once
heated by soft X-rays from hohlraum radiation, the material
expansion occurs inside the target between the sponge-like
structures. This micro expansion leads to target homogenization,
while the volume and density of the entire target stay constant for
more than 10 ns. Therefore, homogeneous, ns-long-living, and
quasi-static ionized matter is generated. Unlike producing ionized
matter through direct heating by high-power lasers—in which
case strong electromagnetic fields are generated in the target and
will greatly influence the proton transportation behavior68–70—
here the electromagnetic fields resulted from the heating process
can be neglected.

In order to determine plasma parameters, the emission spectra of
the gold hohlraum and target matter were measured. The gold
hohlraum radiation spectrum is well-represented by a 20 eV black
body radiation spectrum, while the temperature of the plasma target
is 17 eV. This value was obtained from a Boltzmann slope analysis
of the He-like carbon lines. Given a temperature of 17 eV, and mass
density of 2mg/cm3, the number density of free electrons is
determined to be 4 × 1020 cm−3 based on the FLYCHK code71.

A Thomson parabola spectrometer (TPS)72–74 in conjunction
with a plastic track detector CR39 was used to obtain the energy
spectrum of the charged particles. The energy resolution of the
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TPS achieves E/δE ~ 34 for protons at energy E= 3.36MeV (see
section I of the Supplementary information for details), where δE
is the energy range covered by the incident beam spot on the
detector. In Fig. 2a, tracks recorded on CR39 film are displayed
for ions passing through the system with/without target. When
the plasma target is inserted, only protons are observed in the
TPS. The deflection distances of protons without/with target
are converted to energies in Fig. 2b and c, respectively. The
energy distribution of the incident, unperturbed protons without
target centers at 3.36MeV, and the full width at half maximum
(FWHM) is about 0.10 MeV. After passing through the plasma
target, the central energy is downshifted to 2.98 MeV and the
FWHM increased to about 0.25MeV.

Discussion
The energy loss of intense ion beam in ionized matter is composed
of two terms as dE/dx= (dE/dx)collision+ (dE/dx)collective. The first
term (dE/dx)collision describes the collisional stopping induced by
binary interaction of the individual projectiles with the individual
particles in the plasma. The second term (dE/dx)collective describes
the collective stopping induced by the beam-driven electric fields.
(dE/dx)collision consists of contributions from free electrons and
plasma ions. The ionic contributions for partially ionized plasma
include two parts, bound electrons and nuclei. In the current
regime, where the protons are much faster than the thermal
electrons, the contribution of the nuclei to (dE/dx)collision can
be neglected75–77. Here in this article the nuclear stopping is
excluded.

In Fig. 3, the measured energy loss is compared to theoretical
models, e.g., Bethe–Bloch model, Li–Petrasso (LP) theory, and
SSM by Deutsch. These theories are based on binary collisions
with free electrons, bound electrons, and/or plasmons. They all
underestimate the measured stopping power by as much as one
order of magnitude, even when considering an error of about 15%

from the uncertainty of plasma electron density. We attribute this
unusual high degree of stopping to collective electromagnetic
effects induced by high-current ion beams.

In order to understand this enhanced stopping, both collective
electromagnetic effects and close particle–particle interactions
need to be taken into account. The most appropriate tool to
simulate the conditions of the experiment is the particle-in-cell
method (PIC), which in recent years has established itself as a
state-of-the-art method for solving problems of kinetic plasma
physics54,78,79.

We used the recently developed PIC code LAPINS79,80, which
is able to simulate intense beam-plasma interaction in a self-
consistent way, which contains both close collisions and collective
electromagnetic fields (see details in “Methods”). The simulation
assumes, the incident proton beam to have Gaussian distribution
in space and time, with a beam duration of 1 ps and a transverse
extension of 1 mm. The energy spectrum is also assumed to be
Gaussian, with the peak of the energy distribution at 3.36MeV
and FWHM of 0.10MeV. The measured ionized target para-
meters were used as simulation input. The simulation was carried
out in Z–Y Cartesian geometry with beam propagating along the
Z direction. The size of the simulation box was 1.2 mm × 2.5 mm,
with a grid size of 0.75 μm× 25 μm.

Given the incident proton beam with density of 8 × 1016 cm−3,
which corresponds to high-current case of 3 × 107 A/cm2, Fig. 4a
shows the longitudinal electric field Ez induced by the beam-
driven return current after a propagation distance of about
0.3 mm. A strong decelerating field approaching 109 V/m is
generated, and contributes to the proton stopping. The proton
energy spectrum after passing through 1 mm of plasma is shown
in Fig. 4c. The energy spread is significantly broadened compared
to the initial spread. We attribute this to a decreasing field, the
protons are imbedded in. Protons with higher energies are located
at the front end of bunch and therefore experience a smaller
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decelerating electric field than those with lower energies that
come later. The spatial size of this decelerating field is comparable
to the size of the proton bunch. This is different from the plasma
wakefield case81,82, where the spatial structure of the electric field
is determined by the plasma density. Here the plasma wakefield

wavelength is much smaller than the beam length, therefore the
wakefield-induced collective acceleration and deceleration cancel
out. The central energy of proton spectrum is downshifted by
0.36 MeV after passing through the plasma. As shown in Fig. 3,
this energy shift (blue triangle) agrees with experimental data in
magnitude. We carried out additional simulations for different
beam densities at 8 × 1011 cm−3 and 8 × 1015 cm−3, which are
defined as low- and intermediate-current cases, respectively. For
the low-current case, the beam-induced longitudinal electric field
Ez after propagating for 0.3 mm in the plasma is shown in Fig. 4b.
No collective decelerating field is excited under such conditions.
After passing through the plasma, the energy spectrum is
downshifted by only 0.03 MeV as shown in Fig. 4c. This pre-
diction agrees well with those calculated by the different binary
collision theories, as shown in Fig. 3, which indicates the domi-
nant role of collisional stopping in low-current cases. As for the
intermediate case, the stopping due to the collective effects is
comparable to that caused by binary collisions, giving rise to an
energy loss of 0.06 MeV as shown in Fig. 4c.

In all, the energy loss of laser-accelerated intense proton beam in
dense ionized matter consists of (dE/dx)collision and (dE/dx)collective.
Bethe–Bloch, LP, SSM models, and PIC simulation for low-current
case give similar predictions for (dE/dx)collision, which is one order
of magnitude lower than the experimental data. PIC simulation for
high-current cases shows that when sending a very dense ion
bunch into the plasma, strong electric fields can be induced, and
the ion bunch is imbedded in the deceleration field. This leads to
a significant enhancement of the energy loss, which fairly well
explains our observation.

In summary, the laser-accelerated intense proton beam stop-
ping in a dense ionized matter has been measured. Benefiting from
the fact that we have a quasi-monoenergetic proton beam and
long-living well-characterized dense ionized target, accurate
stopping power data were obtained. The measured stopping power
exceeds the classical theory predictions in binary collision scheme
by about one order of magnitude. The phenomenon can be very
well explained by our PIC simulation combined with a Monte
Carlo binary collision model and a reduced model taking account
of the collective electromagnetic effects. The stopping power is
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dramatically enhanced due to the return-current-induced decel-
erating electric field approaching 1 GV/m. We have demonstrated
the existence of collective effects, for high-density beam, leading to
enhanced stopping. This will be important for the optimum design
of ion driven inertial confinement fusion and fast ignition
scenarios.

Methods
The collisional model in the current PIC code is based on Monte Carlo binary
collisions, which has the advantage of calculating the beam stopping in a natural
manner. The model includes binary collisions among electron–electron,
electron–ion, and ion–ion, taking into account contributions from both free and
bound electrons. Compared with other existing models, physical quantities, such as
angular scattering, momentum transferring, and temperature variation, can be
taken into account quite readily in the approach.

In the calculations, three steps are made iteratively: (i) pair of particles are
selected randomly in the cell, i.e., either electron–electron, electron–ion, or ion–ion
pairs; (ii) for these pair of particles, the binary collisions are associated with
changes in the velocity of the particles within the time interval δt, which are

calculated; (iii) and then the velocity of each particle is replaced by the newly
calculated one.

In order to contain both bound and free electrons’ contribution into the binary
collision model, we here take the collision frequency between ions and electrons, in
the above (ii) step, as,

νi�e ¼
8

ffiffiffiffiffi

2π
p

e4Z2
bZni

3m2
eβ

3 ½ln ðΛf Þ þ
A� Z
Z

ln ðΛbÞ�; ð1Þ

where

ln ðΛbÞ � ln ½2γ
2meβ

2

�IAðZÞ
� � β2 � CK=A� δ=2; ð2Þ

and

ln ðΛf Þ � ln ðλD=bÞ: ð3Þ
A is the atomic number of stopping medium, Z is the ionization degree of

background plasmas, ni is the nucleus density of stopping medium, me is the
electron mass, γ is the relativistic factor of the projected ions, β is the velocity of
projected ions, �IA is the average ionization potential, and Zb is the effective charge
state of injected ion beams, which equals ‘1’ for the case of protons in our present
studies. In Eq. (1), the latter two terms are the shell correction term and the density
effect correction term, respectively. These two terms are based on Fano’s original
work83, to which the definitions of CK/A and δ/2 can be referred. The Debye length,

λD, is a dynamic value changing as λD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTe=4πneÞð1þ β2=v2th Þ
q

, where Te and

vth are the temperature and thermal velocity of background electrons. Parameter b
is the distance of closest approach between the two charges. Especially, (A− Z)/Z
defines the ratio of bound electrons’ contributions. For fully ionized plasmas, Z→

A, the collision frequency between ions and electrons converges to

νi�e �
8

ffiffiffiffiffi

2π
p

Z2
be

4Zni
3m2

eβ
3 ln ðΛf Þ: ð4Þ

For neutral atoms, Z→ 0, in contrast, the frequency is

νi�e �
8

ffiffiffiffiffi

2π
p

Z2
be

4Ani
3m2

eβ
3 ln ðΛbÞ: ð5Þ

At the low-temperature limit, when all electrons are bound at the nucleus, the
calculated stopping powers converge to the NIST ones with the average ionization
degree approaching zero as the stopping powers of cold materials can be well
calculated by Bethe–Bloch formula. With the increase of temperature, more and
more bound electrons are ionized, giving rise to an increased stopping power to
cold matter. When the temperature is further increased, with ionizations reaching
the maximum, lowered stopping power is observed, which is due to the suppression
of collision frequency between projected proton beam and hot plasmas in the
target.

Simulation of large scale plasmas often results in an intractable burden on com-
puter power. Therefore, instead of solving the full Maxwell’s equations, we combine
the PIC method with a reduced model79. To take into account collective electro-
magnetic effects, the background electron inertia is neglected, and instead the back-
ground return current is evaluated by the Ampere’s law Je= (1/2π)∇ ×B− (1/2π)∂E/
∂t− Jb− Ji, where B is the magnetic field, E is the electric field, Jb is the injected
beam current, and Ji is the background ion current. Applying the continuity equation
∇ ⋅ J+ ∂ρ/∂t= 0 with the total current J= Jb+ Ji+ Je, where ρ is the charge density,
the Poisson equation ∇ ⋅ E= 2πρ is rigorously satisfied. The electric fields are then
obtained from Ohm’s law, E= ηJe− ve ×B, where ve is the background electron
velocity, and η is the resistivity. Taking advantage of the Monte Carlo collision model,
resistivity η is obtained by averaging over all binary collisions at each time step
for each simulation cell. Finally, Faraday’s law is used to obtain the magnetic fields
∂B/∂t=−∇ × E. This field solver, which couples Ampere’s law, Faraday’s law, and
Ohm’s law, can completely remove the numerical heating and reduces significantly
the numerical expense. With these advantageous features a unique tool is at hand,
which can self-consistently model transport and energy deposition of intense charged
particles in dense ionized matter.

Data availability
The datasets generated and analyzed during the current study are available from the
corresponding authors upon reasonable request. The simulation details are available
from the corresponding author on reasonable request.
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