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Abstract: Cannabinoid receptor 2 (CB2) is of interest as a much-needed target for the treatment or pre-
vention of several neurogenerative diseases. However, CB2 agonists, particularly phytocannabinoids,
have been ascribed antimicrobial properties and are associated with the induction of microbiome
compositional fluxes. When developing novel CB2 therapeutics, CB2 engagement and antimicrobial
functions should both be considered. This review summarizes those cannabinoids and cannabis-
informed molecules and preparations (CIMPs) that show promise as microbicidal agents, with a
particular focus on the most recent developments. CIMP–microbe interactions and anti-microbial
mechanisms are discussed, while the major knowledge gaps and barriers to translation are presented.
Further research into CIMPs may proffer novel direct or adjunctive strategies to augment the cur-
rently available antimicrobial armory. The clinical promise of CIMPs as antimicrobials, however,
remains unrealized. Nevertheless, the microbicidal effects ascribed to several CB2 receptor-agonists
should be considered when designing therapeutic approaches for neurocognitive and other disorders,
particularly in cases where such regimens are to be long-term. To this end, the potential development
of CB2 agonists lacking antimicrobial properties is also discussed.

Keywords: antibiotic resistance; cannabis; cannabinoids; CB2 receptors; microbial infection;
novel antimicrobials

1. Introduction

In the brain, CB2 is expressed by microglia, astrocytes and neurons, while CB2-agonism
may induce cell-specific events [1]. CB2-engaging molecules, including cannabinoids, have
received considerable attention as potential therapeutic and/or preventive agents for neu-
ropathic pain, neuroinflammation, variant dementias, and other neuropathies [1–4]. As re-
viewed elsewhere, CB2 manipulation has shown preclinical promise in treating Alzheimer’s
disease (e.g., reduced Tao phosphorylation; protection against Aβ-induced injury and sup-
pressed microglia activation), Parkinson’s disease (e.g., prevention of neurodegradation;
reduced neuroinflammation), Huntington’s disease (protection of striatal neurons; sup-
pression of CNS inflammation) and other neurodegenerative disorders [3]. Cannabis and
cannabinoids have been reported to provide motor symptom relief and to provide respite
from behavioral and psychological dementia symptoms [2]. However, multiple phyto-
cannabinoids and other cannabis-related molecules, many of which are CB2 agonists, have
been reported to act as potent antimicrobial agents which may lead to unintended health
consequences, particularly during chronic medicinal treatments. As these antimicrobial
agents are widely varied, we use the phrase cannabis-informed molecules and prepara-
tions, or CIMPs, to include cannabis, phytocannabinoids, cannabis-informed molecules
and cannabis-informed preparations.
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With the global growth in the number of jurisdictions where recreational and/or
medicinal cannabis is decriminalized, an accompanying increase in cannabis consumption
may be considered likely. While any relationships between cannabis use and altered risk
to infectious diseases remain to be more definitively elucidated, there has been a recent
resurgence of interest in the potential of cannabis and cannabis-derived compounds as
novel antimicrobial agents. This anti-microbial potential needs to be considered carefully
when developing medicinal CB2-engaging CIMPs for other purposes, such as protection
against neurodegeneration. The recent upturn in attention in CIMPS as antimicrobials
is largely due to the major contemporary crisis of the reducing efficacy of the available
antimicrobial armory against important bacterial pathogens, including, but by no means
limited to, Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneu-
moniae, Acinetobacter baumannii and Pseudomonas aeruginosa. The importance of this public
health emergency is best accentuated by the recent estimate of 4.95 million global deaths
associated with bacterial antimicrobial resistance in 2019 alone [5].

Ongoing research on CIMPs as antimicrobial agents has been largely predicated by,
primarily, Eastern European literature from the mid-twentieth century [6–10]. There have
been a number of recent reviews published that highlight the potential of CIMPs as novel
anti-microbial agents [8,11–17]. With this recent revitalization of the field, the purpose of
the present article, then, is (a) to update and augment the rapidly expanding literature,
with a particular focus on the most recent developments; (b) to compare variant CIMP
antimicrobial activities, where quantified; (c) to address specific mechanisms of CIMP–
microbe interactions in greater depth; (d) to highlight the many major knowledge gaps
alongside barriers to translation; (e) to discuss the potent antimicrobial activities of some
CB2 receptor agonists which should be considered when designing therapeutic treatments
for neurocognitive disorders; and, particularly, (f) that non-microbicidal CB2 agonists
could be preferentially designed, engineered and utilized for long-term anti-neuropathic
purposes, where appropriate.

2. The Antimicrobial Properties of Cannabis and Cannabis-Derived Compounds
2.1. Infectious Diseases in Cannabis Users

While tobacco smoking has been established as a risk factor for a plethora of infectious
diseases [18], including periodontitis, otitis media, tuberculosis, pneumonia, gonorrhea and
meningitis, related epidemiological studies on the potential association between cannabis
consumption and human microbial illnesses are surprisingly scarce.

The limited data available, however, suggest that cannabis consumption may be
associated with alterations to mucosal microbial profiles [19]; the development of a diverse
non-Lactobacillus-predominant vaginal microbiota [20]; an altered oral microbiome with
an enhanced Streptococcus and Actinomyces and depressed Neisseria content [21]; risk of
sexually transmitted disease in men [22]; seropositivity for hepatitis C virus [23]; and
increased risk of fungal infections [24]. Moreover, Johnson et al. have recently reported
that environmental exposure to cannabis smoke in children increases the likelihood of viral
respiratory diseases [25]. Therefore, there is a clear need for a greater understanding of any
potential relationships between cannabis use and microbial-induced diseases.

What is becoming more apparent, however, is that CIMPs seem to exert often potent
antibiotic-like activities against a large number of highly varied microbes. The major Cannabis
sativa-derived cannabinoids, particularly cannabidiol (CBD), ∆9-tetrahydrocannabinol (THC),
and cannabinol (CBN), have received the most attention, although over 120 phytocannabi-
noids are known, falling into 11 major structural groupings [14]. Contemporary publi-
cations addressing CIMPs as antimicrobials are summarized in Tables 1–5. Please note
that studies quantifying the anti-microbial activities of cannabis-informed molecules from
218-2022 are summarized. Negative data are not presented. Please see the original pub-
lications for this information. As is apparent from Tables 1–3, most recent research has
focused on the antibacterial properties of cannabis-related molecules, with relatively little
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attention paid to potential anti-mycotic (Table 4) and anti-viral (Table 5) agents. That said,
the potential anti-SARS-CoV-2 activities of CIMPs are intriguing if, perhaps, contentious.

Table 1. Efficacy of cannabis-derived molecules and preparations against Gram-negative bacteria.

Compound Source Target Strain(s) Efficacy Reference

p-
coumaroyltyramine

Roots of C. sativa,
high CBD variety Escherichia coli ATCC 35218 0.8 µg/mL * Elhendawy et al.,

2019 [26]

Water extract C. sativa, Futura 75 Escherichia coli ATCC 10536 7.1 mg/mL ** Ferrante et al.,
2019 [27]

Hemp stem
Ag-nanoparticles C. sativa, USO-31 Escherichia coli UTI 89 12.5 µg/mL **

25 µg/mL *** Singh et al., 2018 [28]

CBD Commercial Escherichia coli ATCC 13762 29 µM * Russo et al., 2021 [29]

Cannabidivarin
(CBDV) Commercial Escherichia coli ATCC 13762 35 µM * Russo et al., 2021 [29]

Essential oils C. sativa Futura 75 Helicobacter pylori 14 strains, variant Ab
sensitivity patterns

8–64 µg/mL **
8–64 µg/mL ***

Zengin et al.,
2018 [30]

Cannabidiol (CBD) Commercial Legionella pneumophila MMX 7515 1 µg/mL ** Blaskovich et al.,
2021 [11]

CBD Commercial Moraxella catarrhalis MMX 3782 1 µg/mL ** Blaskovich et al.,
2021 [11]

CBD Commercial Moraxella catarrhalis ATCC 25238 164 µg/mL ** Abichabki et al.,
2022 [31]

CBD Commercial Neisseria gonorrhoeae ATCC 49226 1 µg/mL ** Blaskovich et al.,
2021 [11]

CBD Commercial Neisseria meningitidis ATCC 13090 0.25 µg/mL ** Blaskovich et al.,
2021 [11]

CBD Commercial Neisseria meningitidis ATCC 13077 128 µg/mL ** Abichabki et al.,
2022 [31]

CBD Commercial Porphyromonas
gingivalis ATCC 33277 5 µg/mL * Gu et al., 2019 [32]

Water extract C. sativa, Futura 75 Pseudomonas
aeruginosa ATCC 15442 7.1 mg/mL ** Ferrante et, al

2019 [27]

Hemp stem
Ag-nanoparticles C. sativa, USO-31 Pseudomonas

aeruginosa PAO1 6.25 µg/mL **
12.5 µg/mL *** Singh et al., 2018 [28]

Cannabinol oil
extract Commercial Pseudomonas

aeruginosa ATCC 9027 2% ** Di Onofrio et al.,
2019 [33]

Essential oils

C. sativa (Futura 75,
Carmagnola Lemon,

Gran Sasso Kush,
Carmagnola,

Kompolti)

Pseudomonas
fluorescens P34 0.3–2.5 µL/mL ** Palmieri et al.,

2021 [34]

* IC50; ** MIC (Minimum inhibitory concentration); *** MBC (Minimum bactericidal concentration).

Table 2. Efficacy of cannabis-derived molecules and preparations against Staphylococcus aureus.

Compound Source Strain(s) Antibiotic Sensitivity Efficacy Reference

Hexane extracts C. sativa, Fibrante 19 clinical strains All MRSA 4.9–78.1 µg/mL *** Muscara et al., 2021 [35]

Hexane extracts C. sativa, Fibrante ATCC 6538 Methicillin-sensitive 4.9 µg/mL **
4.9–19.5 *** Muscara et al., 2021 [35]

Hexane extracts C. sativa, C-309 19 clinical strains All MRSA 39.1–78.1µg/mL *** Muscara et al., 2021 [36]
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Table 2. Cont.

Compound Source Strain(s) Antibiotic Sensitivity Efficacy Reference

Hexane extracts C. sativa, C-309 ATCC 6538 Methicillin- sensitive 39.1 µg/mL **
39.1–78.1µg/mL *** Muscara et al., 2021 [36]

CBD Purified from Cannabis
sativa, fiber types USA300 MRSA 1 µg/mL ** Martinenghi et al.,

2020 [37]

CBD Purified from Cannabis
sativa, fiber types ATCC 25923 Methicillin- sensitive 1 µg/mL ** Martinenghi et al.,

2020 [37]

Cannabidiolic acid
(CBDA)

Purified from Cannabis
sativa, fiber types USA300 MRSA 4 µg/mL ** Martinenghi et al.,

2020 [37]

CBDA Purified from Cannabis
sativa, fiber types ATCC 25923 Methicillin- sensitive 2 µg/mL ** Martinenghi et al.,

2020 [37]

Essential oil C. sativa, Futura 75 STA 32, St 47, St 39 1.25–5 µL/mL **
1.25–5 µL/mL ***

Pellegrini et al.,
2020 [38]

Essential oils

C. sativa (Futura 75,
Carmagnola Lemon,

Gran Sasso Kush,
Carmagnola, Kompolti)

STA 32, St 47 0.156–20 µL/mL ** Palmieri et al., 2021 [34]

Water extract C. sativa L., Futura 75 ATCC 6538s Disinfectant testing
strain 3.6 mg/mL ** Ferrante et al. 2019 [27]

Essential oils C. sativa L., Futura 75 ATCC 29213, 101TV, 104,
105

Variant Ab sensitivity
patterns

8 mg/mL **
16 mg/mL ***

16–24 mg/mL ****
Zengin et al., 2018 [30]

Oxygenated derivatives
of ∆9-THC and its

isomer ∆8-THC
- Not presented Not noted 2.5–5 µg/mL * Galal Osman et al.,

2018 [39]

Oxygenated derivatives
of ∆9-THC and its

isomer ∆8-THC
- Not presented MRSA 2.5–10 µg/mL ** Galal Osman et al.,

2018 [39]

CBD Commercial ATCC 25923, ATCC
43300, NRS-1, VRS1

MMSA, MRSA, MRSA
(vancomycin

intermediate) and
VRSA, respectively

1–4 µg/mL ** Blaskovich et al.,
2021 [11]

Cannabigerol (CBG) Lab synthesized USA300 MRSA 4 µg/mL **** Farha et al., 2020 [12]

Various essential oils Multiple sources ATCC 6538, 18As, 386 Ciprofloxacin sensitive 2–32 µg/mL ** Iseppi et al., 2019 [40]

Various terpenes Commercial ATCC 6538, 18As, 386 Ciprofloxacin sensitive 4–32 µg/mL ** Iseppi et al., 2019 [40]

CBD Commercial ATCC 6538, 18As, 386 Ciprofloxacin sensitive 8–32 µg/mL ** Iseppi et al., 2019 [40]

CBD Commercial MRSA USA300 MRSA 4 µg/mL ** Wassman et al.,
2020 [41]

CBD Commercial ATCC 6538 Ciprofloxacin sensitive 1.8 µM * Russo et al., 2021 [29]

CBDV Commercial ATCC 6538 Ciprofloxacin sensitive 30.1 µM * Russo et al., 2021 [29]

CBD Commercial

ATCC 29213, ATCC
43300, N315, ATCC

700698, ATCC 700699,
ATCC BAA-976, ATCC

BAA-977

Variant Ab
susceptibility patterns 4 µg/mL** Abichabki et al.,

2022 [31]

* IC50; ** MIC (minimum inhibitory concentration); *** MBC (minimum bactericidal concentration); **** MBEC
(minimum biofilm eradication concentration).

Table 3. Efficacy of cannabis-derived molecules and preparations against other Gram-positive
bacteria.

Compound Source Target Strain(s) Efficacy Reference

Essential oils Various sources Bacillus isolates n = 12, including B.
cereus 0.5–32 µg/mL ** Iseppi et al., 2019 [40]

Various terpenes Commercial Bacillus isolates n = 12, including B.
cereus 1–32 µg/mL ** Iseppi et al., 2019 [40]

CBD Commercial Bacillus isolates n = 12, including B.
cereus 2–16 µg/mL ** Iseppi et al., 2019 [40]

Essential oils

C. sativa (Futura 75,
Carmagnola Lemon,

Gran Sasso Kush,
Carmagnola,

Kompolti)

Brochothrix
thermosphacta B1 0.31–20 µg/mL ** Palmieri et al., 2021 [34]
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Table 3. Cont.

Compound Source Target Strain(s) Efficacy Reference

CBD Commercial Cutibacterium acnes ATCC 6919 1–2 µg/mL ** Blaskovich et al., 2021 [11]
CBD Commercial Clostridioides difficile M7404 2–4 µg/mL ** Blaskovich et al., 2021 [11]

CBD Commercial Enterococcus
casseliflavus ATCC 12361 4 µg/mL ** Abichabki et al., 2022 [31]

CBD Commercial Enterococcus faecium
ATCC 35667, ATCC
700221, ATCC 19434,

MMX 485
0.5–1 µg/mL ** Blaskovich et al., 2021 [11]

Essential oils Various sources Enterococcus faecium V5, EQ19 1–32 µg/mL ** Iseppi et al., 2019 [40]

Various terpenes Commercial Enterococcus faecium V5, EQ19 1–16 µg/mL ** Iseppi et al., 2019 [40]

CBD Commercial Enterococcus faecium V5, EQ19 1–4 µg/mL ** Iseppi et al., 2019 [40]

Essential oils

C. sativa (Futura 75,
Carmagnola Lemon,

Gran Sasso Kush,
Carmagnola,

Kompolti)

Enterococcus faecium ATCC 19434 1.25->20 µg/mL ** Palmieri et al., 2021 [34]

CBD Commercial Enterococcus faecalis
NCTC 7171, ATCC
51559,ATCC 29212,

ATCC 51299
2–4 µg/mL ** Abichabki et al., 2022 [31]

CBD Commercial Enterococcus faecalis ATCC 29212, clinical
isolate, MMX 486 1–4 µg/mL ** Blaskovich et al., 2021 [11]

CBD Commercial Enterococcus faecalis 13-327129 8 µg/ml Wassman et al., 2020 [41]

Essential oils Various sources Enterococcus faecalis ATCC 29212, V3, V4, v6 0.5–32 µg/mL ** Iseppi et al., 2019 [40]

Various terpenes Commercial Enterococcus faecalis ATCC 29212, V3, V4, v6 0.5–16 µg/mL ** Iseppi et al., 2019 [40]

CBD Commercial Enterococcus faecalis ATCC 29212, V3, V4, v6 1–4 µg/mL ** Iseppi et al., 2019 [40]

CBD Commercial Enterococcus
gallinarum ATCC 12359 4 µg/mL ** Abichabki et al., 2022 [31]

Essential oils Various sources Enterococcus hirae ATCC 10541 2–32 µg/mL ** Iseppi et al., 2019 [40]

Various terpenes Commercial Enterococcus hirae ATCC 10541 1–8 µg/mL ** Iseppi et al., 2019 [40]

CBD Commercial Enterococcus hirae ATCC 10541 2 µg/mL ** Iseppi et al., 2019 [40]

CBD Commercial Filifactor alocis ATCC 35896 1 µg/mL * Gu et al., 2019 [32]

Essential oil-derived
α-pinene and

myrcene
C. sativa, Futura 75 Listeria monocytogenes 11 clinical isolates ≥1024 µg/mL *** Marini et al. 2018 [42]

CBD Commercial Listeria monocytogenes EGD 4 µg/ml Wassman et al., 2020 [41]

Essential oils

C. sativa (Futura 75,
Carmagnola Lemon,

Gran Sasso Kush,
Carmagnola,

Kompolti)

Listeria monocytogenes ATCC 7644, ATCC
19114, LM4 0.6->20 µL/mL ** Palmieri et al., 2021 [34]

Essential oils Various sources Listeria monocytogenes
NCTC 10888, ATCC

13932, ATCC 5008, 70,
139

2–32 µg/mL ** Iseppi et al., 2019 [40]

Various terpenes Commercial Listeria monocytogenes
NCTC 10888, ATCC

13932, ATCC 5008, 70,
139

0.5–4 µg/mL ** Iseppi et al., 2019 [40]

CBD Commercial Listeria monocytogenes
NCTC 10888, ATCC

13932, ATCC 5008, 70,
139

1–4 µg/mL ** Iseppi et al., 2019 [40]

Essential oil C. sativa L, Futura 75 Listeria monocytogenes ATCC 19114, LM 4,
ATCC 7644

2.5–5 µL/mL **
2.5–5 µL/mL *** Pellegrini et al., 2020 [38]

CBD Commercial Micrococcus luteus CCT 2688 4 µg/mL ** Abichabki et al., 2022 [31]

Hexane extract C. sativa (unspecified
hemp variety) seeds

Propionibacterium
acnes KCTC strain 20% extract ** Jin et al., 2018 [43]

CBD Commercial Rhodococcus equi ATCC 6939 4 µg/mL ** Abichabki et al., 2022 [31]

CBD C. sativa extraction Salmonella newington UC1698 0.125 µg/mL ** Gildea et al., 2022 [44]

CBD C. sativa extraction Salmonella
typhimurium MS1868 0.125 µg/mL ** Gildea et al., 2022 [44]

CBD Commercial Staphylococcus
agalactiae ATCC 13813 4 µg/mL ** Abichabki et al., 2022 [31]
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Table 3. Cont.

Compound Source Target Strain(s) Efficacy Reference

CBD Commercial Staphylococcus
epidermidis 933010 3F-16 b4 4 µg/ml Wassman et al., 2020 [41]

CBDA
Purified from

Cannabis sativa, fiber
types

Staphylococcus
epidermidis CA#71, ATCC 51625 4 µg/mL ** Martinenghi et al., 2020 [37]

CBD
Purified from

Cannabis sativa, fiber
types

Staphylococcus
epidermidis CA#71, ATCC 51625 2 µg/mL ** Martinenghi et al., 2020 [37]

CBD Commercial Staphylococcus
epidermidis ATCC 12228, NRS-60 1–8 µg/mL ** Blaskovich et al., 2021 [11]

Essential oils Various sources Staphylococcus
epidermidis 18Bs 1–16 µg/mL ** Iseppi et al., 2019 [40]

Various terpenes Commercial Staphylococcus
epidermidis 18Bs 8–32 µg/mL ** Iseppi et al., 2019 [40]

CBD Commercial Staphylococcus
epidermidis 18Bs 16 µg/mL ** Iseppi et al., 2019 [40]

CBD Commercial Staphylococcus
epidermidis ATCC 14990 4 µg/mL ** Abichabki et al., 2022 [31]

CBD Commercial Staphylococcus
lugdunensis ATCC 43809 4 µg/mL ** Abichabki et al., 2022 [31]

CBG Commercial Staphylococcus mutans ATCC 700610 2.5 µg/mL ** Aqawi et al., 2021 [45]

CBD Commercial Streptococcus
pneumoniae

ATCC 33400, ATCC
700677 1–4 µg/mL ** Blaskovich et al., 2021 [11]

CBD Commercial Streptococcus
pneumoniae ATCC 49619 64 µg/mL ** Abichabki et al., 2022 [31]

CBD Commercial Staphylococcus
pyogenes ATCC 12344 32 µg/mL ** Abichabki et al., 2022 [31]

CBG Commercial Streptococcus sanguis 10556 1 µg/mL * Aqawi et al., 2021 [45]

CBD Commercial Staphylococcus
saprophyticus ATCC 53050 4 µg/mL ** Abichabki et al., 2022 [31]

CBG Commercial Streptococcus sobrinus ATCC 27351 5 µg/mL ** Aqawi et al., 2021 [45]

CBG Commercial Streptococcus salivarius ATCC 25975 5 µg/mL ** Aqawi et al., 2021 [45]

* IC50; ** MIC (minimum inhibitory concentration); *** MBC (minimum bactericidal concentration).

Table 4. Anti-mycotic efficacy of cannabis-derived molecules and preparations.

Compound Source Target Strain Efficacy Reference

Ergost-5-en-3-ol C. sativa (root) Cryptococcus
neoformans ATCC 90113 13.7 µg/mL * Elhendawy et al., 2019 [26]

Oxygenated
derivatives of

∆9-THC and its
isomer ∆8-THC

- Cryptococcus
neoformans Not noted 2.5–20 µg/mL * Galal Osman et al., 2018 [39]

CBD Commercial Candida albicans SC5314 100 µg/mL ****** Feldman et al., 2019 [46]

Water extract C. sativa, Futura 75 Candida albicans YEPGA 6183 1.4 mg/mL ** Ferrante et al., 2019 [27]

Water extract C. sativa, Futura 75 Trichophyton
interdigitale CCC 202–2000 1000 µg/mL ** Orlando et al., 2020 [47]

Water extract C. sativa, Futura 75 Trichophyton
rubrum CCC 134–2000 500 µg/mL ** Orlando et al., 2020 [47]

* IC50; ** MIC (minimum inhibitory concentration); ****** MBIC90 (minimum biofilm inhibition concentration,
90%).
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Table 5. Anti-viral efficacy of cannabis-derived molecules and preparations.

Compound Source Target Variant Microbe Efficacy Reference

∆9-
tetrahydrocannabinol

(THC)

Lab
synthesized SARS-CoV-2 βCoV/KOR/KCDC03/2020 ssRNA virus 10.25 µM * Raj et al., 2021 [48]

CBD Lab
synthesized SARS-CoV-2 βCoV/KOR/KCDC03/2020 ssRNA virus 7.91 µM * Raj et al., 2021 [48]

Cannabigerolic acid
(CBGA) Commercial SARS-CoV-2 WA1; B.1.1.7; B.1.351 ssRNA virus 26–37 µg/mL * Van Breemen et al.,

2022 [49]

CBDA Commercial SARS-CoV-2 WA1; B.1.1.7; B.1.351 ssRNA virus 11–24 µg/mL * Van Breemen et al.,
2022 [49]

CBD Commercial SARS-CoV-2 Not apparent ssRNA virus 1.27 µM ***** Nguyen et al., 2021
[50]

7-OH-CBD Commercial SARS-CoV-2 Not apparent ssRNA virus 1.27 µM ***** Nguyen et al.,
2021 [50]

CBD Commercial SARS-CoV-2 WA1/2020 ssRNA virus 1.2 µM ***** Nguyen et al.,
2022 [51]

7-OH-CBD Commercial SARS-CoV-2 WA1/2020 ssRNA virus 2.6 µM ***** Nguyen et al.,
2022 [51]

* IC50; ***** EC50.

2.2. Antibacterial Properties of Cannabis and Cannabis-Derived Compounds

The most recent studies on the antimicrobial properties of CIMPs, where minimal
inhibitory concentrations or related measures have been determined, are summarized in
Tables 1–5. There is a growing body of evidence that such formulations have impressive
bactericidal activities against some important, therapeutically problematic Gram-negative
pathogens, such as E. coli and P. aeruginosa (Table 1), methicillin-resistant S. aureus strains
(MRSA; Table 2) and other Gram-positive bacteria (Table 3). A summation of the anti-S.
aureus-specific properties of CIMPs has recently been published [52].

In addition to the data presented in Tables 1–3, acid-fast bacteria have also been
considered while there are multiple other recent studies that report anti-microbial activities
associated with CIMPS, but where MICs were not presented. The minimum inhibitory
concentrations of CBD for Mycobacterium tuberculosis H37Rv ATCC 27294 and M. tuberculosis
CF86 have been reported as 12.5 and 25 mg/mL, respectively [31]. Zheljazkov et al. have
reported that essential oils from Cannabis sativa L. cv. Novosadska exhibit antimicrobial
activity against S. aureus CCM 4223, Salmonella enterica CCM 3807, Yersinia enterocolitica
CCM 5671 and P. aeruginosa CCM 1959 [53]. Pasquali et al. have reported that multiple-
resistant and antibiotic-sensitive strains of Salmonella Typhimurium (ST208, ST63) and E.
coli (ATCC 25922, EC135), but not Listeria monocytogenes, are susceptible to killing by CBD
and essential oils from C. sativa L. Futura 75 [54]. Gildea et al. have reported that CBD is
active against Salmonella newington as well as S. Typhimurium [44]. The phytocannabinoid,
cannabichromenic acid (CBCA), has been reported to exert potent antibacterial activity
against clinical strains of Enterobacter faecalis and both methicillin-resistant and sensitive
strains of S. aureus. This occurs in a manner that is independent of bacterial cell density
and occurs more rapidly than the action of the critical antibiotic, vancomycin [55].

Briefly, it should be noted that there are non-C. sativa plants among the Cannabaceae
family that are, or have been, used medicinally around the world but have received only
minor attention from the scientific community [56]. For example, extracts of flower heads of
Trema orientalis, which is widely distributed in tropical regions of Asia, have been reported
to exhibit antibacterial activities against methicillin-resistant S. aureus (ATCC 43300), P.
aeruginosa (ATCC 27853), and Acinetobacter baumannii (ATCC 19606) with MICs of 64–125
µg/mL, 31–64 µg/mL and 31–64 µg/mL, respectively [56]. Such extracts were shown to
contain THC, CBN and, to a lesser extent, CBD. While there is a growing number of studies
on cannabis-informed antimicrobials, the field can still be considered to be in its infancy,
albeit one with renewed recent interest.

CBD has been shown to exhibit anti-biofilm efficacy against S. aureus ATCC 25923,
a methicillin-sensitive (MSSA) strain, and ATCC 43300, an MRSA strain, with minimum
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biofilm eradication concentrations of 1–2 µg/mL and 2–4 µg/mL, respectively [11]. Farha
et al. have shown that multiple cannabinoids employed at 2 µg/mL are potent inhibitors of
S. aureus biofilm formation, with cannabigerol (CBG) at 4 µg/mL seemingly able to disperse
preformed biofilms and rapidly kill persister cells [12]. CBD and CBG have also been shown
to prevent biofilm formation by the related, cariogenic bacterium, Staphylococcus mutans
UA159 [57,58].

In a model of contact lens infection, Di Onofrio et al. reported that CBD may have
functionality as an adjunctive agent for the inhibition of P. aeruginosa biofilm formation [33],
while essential oils from hemp have been reported to reduce L. monocytogenes biofilm-
formation capability [42]. Aqawi et al. [59] reported that cannabigerol (CBG) slowed
planktonic growth and inhibited Vibrio harveyi quorum sensing, in a manner not rescued
using exogenous autoinducers, and that CBG also reduced biofilm formation and bacterial
motility.

Moreover, Silvestri et al. have shown that CBD administration, with or without
adjunctive fish oil, alters the fecal microbiota in a dextran sulphate sodium-induced murine
colitis model [60]. Similarly, Skinner et al. have determined that a CBD-rich hemp extract,
delivered in the diet of normal black mice, induced microbial fluxes in the gut, including
alterations in the abundance of Akkermansia muciniphila, an intestinal probiotic species [61].
Lastly, Newman et al. have previously shown that cannabis can exert a profound influence
on mucosal microbial communities by establishing that cannabis-related microbial fluxes
occur at common sites of head and neck squamous cell carcinoma, specifically the tongue
and oral pharynx [19].

Clearly, there is a need for further research into the therapeutic potential of cannabis
and CIMPs against complex microbial communities. In the meantime, the reported antimi-
crobial activities of phytocannabinoids should be considered when formulating neurologi-
cal therapies with related CB2-engaging agents, especially when intended for long-term use.

2.3. Anti-Fungal Activities of Cannabis, Cannabis-Derived Compounds

Earlier work suggested that cannabis extracts have anti-mycotic potential, e.g., [62,63].
Contemporary studies of the anti-fungal properties of cannabis-related molecules, however,
are limited in number. Those in which MIC, or equivalent quantitative indices, have been
reported are summarized in Table 4. Due to the likely increase the use of cannabis and
cannabis-informed therapeutics, which include CB2 agonists, it is important to further our
understanding of how cannabis interacts with fungi.

The potential for treatment of Candida albicans infections is of particular interest,
with CBD exhibiting anti-planktonic and anti-biofilm activities against this particular
yeast [27,46]. Feldman et al. have reported that CBD not only inhibits biofilm formation
by C. albicans SC5314 but can disperse extant biofilms [46]. Of late, low efficacy anti-
Cryptococcus neoformans ATCC 90113 activity of ergost-5-en-3-ol from cannabis roots from a
high CBD variety has also been reported [26]. Hemp extracts have likewise been reported
to exhibit anti-fungal activity against the tinea pedis pathogens, Trichophyton interdigitale
and Trichophyton rubrum [47].

On the other hand, Tazi et al. found that cannabis smoke condensate (CSC), produced
from commercial cigarettes made from an unspecified C. sativa variety, was able to en-
hance C. albicans ATCC SC5314 biofilm mass and to increase hyphal length, both likely to
contribute to C. albicans pathogenesis [64].

It is hoped that, as with the recent renaissance in the identification of cannabis-
informed anti-bacterial agents, further insight into prospective anti-mycotic activities
might be gained in the coming years.

2.4. Anti-Viral Activities of Cannabis, Cannabis-Derived Compounds

McDew-White et al. have noted that the long-term, low dose administration of THC
inhibits proinflammatory gene expression and alters infection-related miRNA profiles
in the gingiva, as well as the relative salivary abundance of several groups of bacteria,
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in chronically SIV-infected macaques, relative to non-THC treated animals [65]. These
THC-mediated events are at least partly CB2-related and protective against SIV-enhanced
periodontal disease. DeMarino et al. have reported that CBD reduces extracellular vesicle
release from HIV-infected monocytic cells and their viral cargo [66]. Otherwise, recent
studies of the anti-viral properties of CIMPs are limited in number and are SARS-CoV-2
centric, as summarized in Table 5.

There is evidence, albeit limited, that cannabidiol (CBD) may have potential as an anti-
SARS-CoV-2 agent [48,67–71] presented concomitantly with important warnings against
prescription of cannabinoid products for COVID-related symptoms at present [50,72]. For
example, CBD has been suggested to be an efficient inhibitor of SARS-CoV-2 (strain 229E)
replication in human lung fibroblasts (MRC-5) through enhancement of antiviral terpene
efficacy [68]. Both THC and CBD have been reported to interact with the Mpro protein
of SARS-CoV-2 and to exhibit anti- SARS-CoV-2 activities with an IC50 of 10.25 µM and
7.91 µM, respectively [48]. Moreover, Esposito et al. [69] have hypothesized that CBD may
have some adjunctive anti-COVID efficacy, as CBD administration can down-regulate the
expression of SARS-CoV2 receptors (ACE2, transmembrane proteinase 2 [TMPRSS2]) in 3D
human epithelial tissue models, as initially reported by Wang et al. [70].

Van Breemen et al. report that CBDA and CBGA interact with the SARS-CoV-2 spike
protein S1 subunit (Kd = 5.6 ± 2.2 µM and 19.8 ± 2.7 µM, respectively) and prevent the
entry of several live viral variants into human epithelial cells (see Table 5) [49]. The authors
conclude that a combination of CBDA and CBGA may represent a greater adjunctive
challenge to SARS-CoV-2 spread. Recent reviews of the cannabis-related, SARS-CoV-2-
specific literature, which accentuate the need for further research including clinical trials,
are available [15,73,74].

Thus, while the development of cannabis-informed therapeutic strategies to treat viral
infections are theoretically possible, this is a generally underdeveloped research area.

2.5. Antimicrobials as Therapeutics for Neurological Disorders

It must be recognized that a potential microbial etiology for neurodegenerative dis-
eases has been postulated for some time, with the oral and gut microbiota particularly
implicated, as reviewed extensively elsewhere [75–84]. This has fostered the possibility of
the development of suitable bacteria-targeted therapeutic strategies, some of which show
promise in animal models [80,81,84–86]. It remains to be clarified if it is a general dysbiosis,
specific bacteria and their virulence factors, or both that may be most important in the
development of Parkinson’s disease, Alzheimer’s disease and other neuropathologies. In
addition to direct mechanisms, etiological roles for bacterial-induced inflammation and an
irregular microbial metabolome have also been posited [75,76,78–80]. Therefore, the unin-
tended consequences of CB2-agonists with antimicrobial properties may be hard to predict.
On the one hand, chronic administration of an anti-bacterial agent could induce a systemic
dysbiosis or promote the emergence of neurodegenerative disease-associated species, such
as phytocannabinoid-resistant Treponema denticola or other spirochetes [32,87,88], that could
promote disease. On the other, the suppression of specific neurodegenerative disease-
associated bacteria by CB2 agonists, such as the phytocannabinoid-responsive pathogens
Porphyromonas gingivalis or Helicobacter pylori [32,82,83,87,89,90], may represent a relevant,
novel therapeutic approach. In any case, antimicrobial properties (e.g., Tables 1–5) should
be considered during the selection and development of potential neuroprotective CB2-
engaging biomolecules.

3. Translational Considerations for the Development of Cannabis-Informed
Antimicrobials
3.1. In Vivo and Ex Vivo Verification of Antimicrobial Activities

One of the more promising translational opportunities for phytocannabinoids, in the
context of infectious diseases, may be the incorporation of phytocannabinoids into oral
rinses. Vasudevan and Stahl have noted the efficient killing of aerobic plaque bacteria
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by CBD- and CBG-infused (1% by weight) mouthwashes [91]. Interestingly, the prepa-
rations were alcohol-free and exhibited similar efficacy to 0.2% chlorhexidine. The same
research group has suggested that the incorporation of CBD into dental polish can assist
in plaque removal [92]. On the other hand, also in the oral context, Gu et al. have shown
that cannabinoids, including CBD, exhibit differential activities against common bacterial
components of dental plaque. For example, Treponema denticola appears phytocannabinoid-
resistant while Filifactor alocis is sensitive. The authors have suggested that, should such a
phenomenon occur in vivo, phytocannabinoids may help promote the oral dysbiosis that is
the hallmark of periodontitis [32], a condition seemingly enhanced in cannabis smokers, as
reviewed recently [87].

CBD, depending on the formulation of the delivery vehicle, has been shown to be
efficient at killing S. aureus on porcine skin, suggesting topical delivery systems may
be a useful approach [11]. In vivo verification of the antimicrobial activities of CIMPs,
however, is another area much in need of research attention. One particularly important
obstacle to their in vivo utility may be the potential for serum binding and inactivation of
phytocannabinoids, as reported for CBD, which would clearly limit systemic applications [8,
11]. However, Farha et al. have shown that a single CBG bolus, delivered i.p., exhibited
efficient antibacterial activity in a murine model of S. aureus infection, in which the splenic
bacterial burden was monitored [12]. The comprehensive study of the anti-microbial
properties of CBG by Farha et al. did note that this cannabinoid induced erythrocyte lysis,
albeit at 16-fold the MIC, raising another concern about systemic use [12]. However, such
toxicological complications have been rarely noted in the extant literature.

Addiction-related factors as well physiological issues, particularly developmental,
arising from exocannabinoid engagement of endocannabinoid receptors, must also be
considered, as has been discussed by Farha et al. [12]. The potential for immune sup-
pression [32] is another possible area of concern. However, it must be noted that most
antibacterial regimens are intended to be of acute, rather than chronic, duration. This
review of the literature reinforces that multiple aspects of the use of CIMPs remain to be
elucidated in detail.

3.2. Optimization of the Anti-Microbial Potential of Cannabis-Derived Compounds

There are a number of factors related to the optimization or, for that matter, nega-
tion of cannabis-based anti-microbial activities to be considered. Upon extracting and
characterizing C. sativa essential oils, Palmieri et al. established a wide range of essential
oil components identified from different cultivars and with differing extraction methods,
coincident with a range in antimicrobial capacities [34]. Of 5 varieties tested the highest
antimicrobial performance was observed for C. sativa GSK [34]. This, and other studies,
suggest that antimicrobial components found in cannabis plants can be optimized horticul-
turally, as well as technologically. It can be imagined that non- or minimally-psychotropic
molecules or compounds, as summarized and differentiated by Klahn [14], could be priori-
tized over psychotropic agents for both cognitive and antimicrobial applications.

In a search for novel compounds with antimicrobial activities in cannabis plant roots,
an understudied area, Elhendawy et al. reported that p-coumaroyltyramine demonstrates
potent activity against E. coli [26]. Interestingly, p-coumaroyltyramine has previously
been isolated from Glycosmis pentaphylla (orangeberry; gin berry) and shown to have
photo-activated antimicrobial activity against the Gram-positive bacteria, S. aureus and
Bacillus subtilis [93]. Capsicum annuum infection with the black rot bacterium, Xanthomonas
campestris, has been reported to result in p-coumaroyltyramine accumulation [94]. Simi-
larly, this compound is upregulated upon Pseudomonas syringae infection of tomato plants
(Solanum lycopersicum) with the authors suggesting that p-coumaroyltyramine could be
involved in the antibacterial defenses of plants [95]. This hypothesis is supported by data
showing that the classical TLR4 agonist, LPS from Gram negative bacteria, altered the
kinetics of p-coumaroyltyramine induction upon subsequent infection with Xanthamonas
spp., again in C. annuum [96]. Of three C. sativa varieties tested, p-coumaroyltyramine
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content was greatest in a high CBD variety [26], further emphasizing the potential for the
development and cultivation of varieties with specific desired antimicrobial properties.
Jin and Lee examined hexane extracts of hemp seeds and showed anti-Propionibacterium
acnes efficacy aligned with a suppressed innate response to infection in human HaCaT
keratinocytic cells [43]. Thus, while the leaves and flowers have received the most attention,
investigation of other parts of the cannabis plant may also prove useful.

Technologies that will improve traditional extraction yields are under development [8]
but beyond the scope of the present review. Further, there is the potential to optimize
CIMPs by improving delivery systems or via the development of stable, chemically altered,
synthetic or mimetic molecules, akin to the antiemetic THC analogue, Nabilone. For
example, Blaskovich et al. have reported that differing CBD formulations (silicones, mineral
oil jelly; diethylene glycol monoethyl ether and polyethylene glycol) exhibit wide variations
in anti-S. aureus efficacy in a cutaneous infection system [11].

The use of cannabinoids as antimicrobial adjuncts, rather than as standalone therapeu-
tics, has also been considered. For example, the combination of polymyxin B and CBG is
efficient at killing E. coli [12], and CBD seems to enhance the efficacy of polymyxin B against
multiple strains of A. baumanni, K. pneumoniae and P. aeruginosa [31,97]. The independent
and combined efficacy of CBD and bacitracin against S. aureus and L. monocytogenes is
presented in Figure 1, as extracted from Wassman et al. [41]. Antezana et al. noted that
silver nanoparticles loaded collagen hydrogels enhanced with C. sativa oil extract exhibited
prolonged (7 day) and efficacious anti-microbial activity against both Gram-positive (S. au-
reus ATCC 29213) and Gram-negative (P. aeruginosa ATCC 27853) bacteria, with the cannabis
oil substantially decreasing epithelial cell cytotoxicity [98]. Kosgodage et al. have reported
that CBD enhanced the bactericidal action of selected antibiotics against Gram-negative
bacteria [99]. Thus, the use of CIMPs to augment available therapeutics is another avenue
by which their utility may be improved.
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Figure 1. CBD enhances antibacterial efficacy of bacitracin against Gram-positive bacteria.
Growth curves of cannabidiol (CBD) in combination with bacitracin (BAC). The bacterial density of
(A) Methicillin-resistant Staphylococcus aureus USA300 FPR 3757 and (B) Listeria monocytogenes EGD
was monitored over 24 h. Other investigators have reported that CBD alone is active against certain S.
aureus and L. monocytogenes strains, as summarized in Table 2. BCA: Background corrected absorption.
Full details provided in the primary manuscript. (Figure 1 is reproduced from Wassman et al. [41],
which was published under the Creative Commons Attribution 4.0 (CC BY 4.0) International License.).

Critically, optimization and negation—as may be attractive for neuroprotective
applications—of cannabis-based anti-microbial agents is likely to be greatly facilitated
by an improvement in our knowledge of their mechanisms of action, and consideration of
the characteristics of the target microbe [11], not least at the ultrastructural level.
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3.3. Anti-Microbial Mechanisms

Efficacious cannabinoid receptor agonism accompanied by minimal antimicrobial
activity would be attractive properties of CB2-directed neuroprotective mediators. Con-
versely, minimal CB2-engagement and maximal antimicrobial efficiency would be attractive
properties for novel CIMP-based agents to be used for the treatment of infectious diseases.
The anti-microbial mechanisms of CIMPs, then, need to be better understood.

Anti-bacterial mechanisms are, perhaps, best studied in S. aureus. Protein, DNA, RNA
and peptidoglycan production are all suggested to be shut down by CBD, as determined
in radiolabeled macromolecular synthesis assays [11]. Lipid synthesis was curtailed at
sub-MIC concentrations of CBD with rapid membrane polarization apparent, as visualized
by SYTOX™ Green dye uptake by coccoidal (S. aureus) and rod-shaped (B. subtilis) Gram-
positive bacteria [11], as presented in Figure 2.
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S. aureus ATCC 29213. (Figure 2 is reproduced from Blaskovich et al. [11], which was published under
the Creative Commons Attribution 4.0 (CC BY 4.0) International License).

The mechanism(s) of action of CBG against the caries-associated pathogen, S. mutans,
has been associated with membrane hyperpolarization and decreased membrane fluidity,
septal invagination and altered metabolic activity in strain ATCC 700610 [45]. Wassman
et al. reported altered septum formation and suppression of the gene activity of the key cell
division regulator, ezrA, in CBD and bacitracin-treated S. aureus (USA300 FPR3757) [41].
Similarly, Farha et al. observed that CBG appears to target the cytoplasmic membrane of S.
aureus [12]. Aqawi et al. noted that CBD inhibition of S. mutans growth is accompanied
by the suppression of genes involved in extracellular polysaccharide synthesis (gftB, gftC,
gftD, ftf ), quorum sensing (luxS, ComD, ComE), biofilm formation, including gbpA, gpbB,
spaP, vicR, wapA, and brpA, acid tolerance (relA, atbB) and stress responses (sod, nox, groEL,
dnaK). Importantly, the authors also report that bacterial cell division is not requisite for
CBG efficacy [57]. Interestingly, Marini et al. observed the influence of essential oils from
hemp on L. monocytogenes virulence traits. They noted significantly suppressed prfA, flaA,
motA and motB gene activity, accompanied by fewer flagella and reduced motility; and
reduced epithelial cell entry capacity in the majority (7/8) of the invasive strains tested,
compared to control bacteria [42].
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Feldman et al. have reported that CBD not only inhibits biofilm formation by C.
albicans SC5314 but can also disperse extant biofilms. The mechanism of action may be both
multifactorial and different to established anti-fungal agents. CBD perhaps acts through
the downregulation of exopolysaccharide synthesis, induction of mitochondrial membrane
hyperpolarization, altering plasma membrane permeability, modifying the fungal cell wall
chitin content and promoting yeast- over hyphal-associated gene expression [46].

As for potential mechanisms of action of cannabinoids as anti-viral agents, the most
recent evidence comes from the SARS-CoV-2 pandemic. CB1 and CB2, at least at the mRNA
level, are upregulated in circulating immune cells in individuals with moderate to severe
disease [100]. One report found that several cannabinoids, including tetrahydrocannabi-
varin (THCV), THC, CBG, and CBN, are computationally predicted to interact with mRNAs
encoding proteins assumed to be involved in SARS-CoV-2 replication, translation, assembly
and release (ORF1ab, surface glycoprotein, envelope protein, nucleocapsid phosphopro-
tein) [101], although effective inhibition of such a broad range of translational events has
yet to be confirmed in vitro or in vivo. Altyar et al. screened, in silico, 45 cannabinoids for
their potential to interact with key SARS-CoV-2 enzymes, noting that cannabichromanon
(CBCN) was best suited as a potential inhibitor of MPro and Plpro [102]. As noted earlier,
Breemen et al. reported that CBGA, CBDA and tetrahydrocannabinolic acid (THCA) inter-
act with the SARS-CoV-2 S1 spike protein subunit [49]. Nguyen et al. have evidenced that
CBD and 7-OH-CBD, but not others in a bank of cannabinoids tested (CBG, CBC, CBDA,
CBDV, THC), inhibit SARS-CoV-2 replication in epithelial cells in a manner associated
with inhibition of viral genes, including almost complete shutdown of the activity of those
encoding the spike protein and nucleocapsid, reversion of viral influence on host genes
and upregulation of the IFN anti-viral axis [50]. Intriguingly, the authors also report that
CBD consumption by humans correlates with a highly significant reduction in SARS-CoV-2
relative to control subjects [50]. Most recently, Fernandes et al. have reported that CBD
enhances the anti-viral response of SARS-CoV-2-infected epithelial cells, but not uninfected
cells, as determined by activation of interferon and 2′-5′-oligoadenylate synthetase (OAS)
genes [103].

Clearly, structure-function analyses will be key in the development of cannabis-
educated antimicrobial and non-antimicrobial therapeutics. To this end, Karas et al. [8] have
reviewed the available evidence on cannabinoids variants highlighting the key molecular
features known to control anti-Gram-positive activities, as summarized in Figure 3. Ele-
ments proffering effective CB2 agonism in CIMPS require further elucidation, as discussed
below, while, and at the same time, there is need to better understand CIMP-mediated
bactericidal and bacteriostatic mechanisms of action.
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4. Translational Considerations for the Development of Non-Antimicrobial
CB2-Engaging CIMPs

Above, we have commented on attempts to design CIMPs with improved antimicro-
bial potencies for the control of infectious diseases. However, with respect to the use of
CB2 agonists as therapeutics for variant neuropathologies, the opposite approach would
seem appropriate. This is highlighted by the growing evidence suggesting an association
between the flux in the gut microbiome and neurological disorders such as Alzheimer’s and
Parkinson’s diseases, with contemporary reviews available [79,104,105]. Osman et al. have
shown that photooxygenation of some cannabinoids resulted in multiple derivates, some
with enhanced CB2 binding affinity, some with altered antimicrobial profiles [39]. Clearly
the combination of both—higher receptor affinity with lower microbiocidal activity—may
be of the most interest for neurological translation. Another recent report states that while
CBCA itself is more efficient than vancomycin in killing against E. coli and S. aureus, several
derivative synthetics (cannabichromene methyl ester trifluoroacetate [CBCTFA], cannabicy-
clol methyl ester [CBLM], cannabichromene methyl ester [CBCM], cannabidivarin methyl
ester [CBDVM]) are not [55]. Equally, Karas et al. elucidate multiple cannabinoid variants
in which antimicrobial activities are reduced or abolished [8]. Establishment of their inter-
actions with CB2, then, will be enlightening. Figure 3 presents the structural alterations
known to reduce or abolish cannabinoid activity against Gram-positive bacteria, using
THC as the model molecule.

Meantime, negative data from existent CIMP–microbe interaction studies are likely to
be particularly enlightening. It is the nature of modern science, however, that such data
are not prioritized for publication although insights are available. As for bacteria, certain
cannabis-derived CB2-agonists are inactive or poorly active against individual strains of
Acinetobacter baumannii, Serratia marcescens, Stenotrophomonas maltophila, Burkholderia cepacia,
Proteus mirabilis and Shigella dysenteriae, all Gram-negatives [11]. Similarly, Klahn has
summarized the great variation in antimicrobial activities of a wide bank of understudied
phytocannabinoids and derivatives against a panel of bacteria and fungi. Several of the
identified compounds show promise as having low to no antimicrobial activity [14]. It
is hoped that this review article may spark further such interest in the identification or
development of microbiologically neutral CB2 agonists.

5. Emergence of Microbial Resistance to Cannabis and Cannabis-Derived Compounds

The emergence of multiple resistance traits is the cause of the critical reduction in the ef-
ficacy of available antibiotics. The use of non-medicinal cannabis and medical CB2 agonists,
including phytocannabinoids, to treat neurological and other disorders has the potential
to assist in the development of CIMP-resistant microbes. Interestingly, however, several
studies have suggested that there is a low predisposition for emergent bacterial resistance
to CIMPs among those bacteria examined. These include S. aureus, as assessed by innate
resistance frequency and multi-passaging, with similar data generated in Cutibacterium
acnes [11]. Farha et al. similarly noted that no spontaneous resistant mutants of S. aureus
emerged after multiple passages at supra-MIC cannabinoid (CBG) concentrations [12]. It
is important to note that, while resistance can always develop through multiple mecha-
nisms, it appears that bacterial biotransformation of a key antimicrobial cannabinoid, CBD,
may be infrequent [106]. Additionally, CBD has been reported to suppress the release of
membrane vesicles from several bacterial species, a phenomenon associated with resistance
transfer [99]. Further, in the most extensive related study to date, physiological alteration
of CBD was found to be a rare feature among a panel of microbes, primarily fungi (Mucor
ramannianus, Beauveria bassiana and Absidia glauca) [106]. Again, the potential for resis-
tance to phytocannabinoids and other cannabis-derived chemicals, needs to be further
investigated. Studies of resistance mechanisms in naturally resistant microbes, such as
Treponema denticola, would appear reasonable, alongside attempts to induce resistance in
sensitive microorganisms. Interestingly, Wassman and colleagues have recently suggested
that, while other CBD resistance traits were noted, mutations in genes encoding an S.
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aureus efflux pump, farE (a CBD-induced gene), and/or its regulator, farR, are present
in all CBD-resistant strains examined. While recreation of specific farER system mutants
did not bestow CBD resistance, it did confer reduced susceptibility to bacitracin/CBD
combinations [107].

6. Discussion

In addition to contemporary summations of the immunoregulatory [13] and antimi-
crobial properties of cannabinoids [8,14,15], including an excellent overview of the older
literature describing MICs of cannabinoids [14], others addressing emerging extraction
technologies [8], cannabinoid structures and their relation to activity [14], cannabinoid
abundances [14], their role in variant diseases [108] and psychotropic activities [14], as well
as CB2 receptors themselves, are also available. The summary of evidence suggesting that
CBG may represent a lead antimicrobial cannabinoid is illuminating [12]. Further, there is
a pressing interest in the potential of cannabinoids, such as CBD, to inhibit SARS-CoV-2 cel-
lular entry and replication through varying mechanisms [48,49,101]. This review augments
these prior articles by focusing on the most recent literature on cannabis-related antimi-
crobials, primarily summarized in Tables 1–5, and providing a synopsis of the knowledge
gaps that act as a barrier to the acceptance and utility of cannabinoid-based antimicrobial
therapeutics.

While the potential of cannabis to represent a source of novel antimicrobials is clear,
such key knowledge gaps include (i) the cellular and molecular characteristics of sensitive
versus resistant bacteria; (ii) efficient delivery vehicles, particularly for systemic applica-
tions; (iii) a more complete understanding of antimicrobial mechanisms; (iv) screening
of understudied minor C. sativa-derived components; (v) the development of improved
efficiency synthetics and mimetics; (vi) the use of phytocannabinoids, and other cannabis-
derived compounds, as adjuncts to established antibiotics; and (vii) the potential for
unwanted side-effects, including immune suppression and the consequences of endo- and
phytocannabinoid interactions. However, with the resurgence in interest in CB2 agonists
and CIMPs, in general, as antimicrobials, much research progress can be expected in the
coming years. It must be hoped that clinical applications can soon be developed and
tested in order to answer more definitively if the multitudinous antimicrobial properties
ascribed to CIMPs are truly translatable. In the meantime, with no accepted clinical uses for
phytocannabinoids or other cannabis-related entities in the context of infectious diseases,
the antimicrobial promise of CIMPS remains as yet unrealized potential.

From a neuroprotective viewpoint, molecules that engage the CB2 receptor show
promise as therapeutic agents for neuroinflammatory and neurodegenerative diseases—the
focus of this Special Issue. However, some CIMPs have been reported to act as potent
antimicrobial agents. The microbicidal properties ascribed to several CB2 receptors should
be considered when designing therapeutic approaches for neurocognitive disorders, par-
ticularly in the case of long-term strategies. Finally, identification and development of
neuroactive agents that are efficient CB2 agonists, but non-antimicrobial may represent an
attractive strategy.
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