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The increasing prevalence of metabolic syndrome has become a serious public health
problem. Certain bacteria-derived metabolites play a key role in maintaining human health
by regulating the host metabolism. Recent evidence shows that indole-3-propionic acid
content can be used to predict the occurrence and development of metabolic diseases.
Supplementing indole-3-propionic acid can effectively improve metabolic disorders and is
considered a promising metabolite. Therefore, this article systematically reviews the latest
research on indole-3-propionic acid and elaborates its source of metabolism and its
association with metabolic diseases. Indole-3-propionic acid can improve blood glucose
and increase insulin sensitivity, inhibit liver lipid synthesis and inflammatory factors, correct
intestinal microbial disorders, maintain the intestinal barrier, and suppress the intestinal
immune response. The study of the mechanism of the metabolic benefits of indole-3-
propionic acid is expected to be a potential compound for treating metabolic syndrome.

Keywords: metabolic syndrome, indole-3-propanoic acid, obesity, type 2 diabetes, non-alcoholic fatty liver disease,
cardiovascular diseases
INTRODUCTION

Metabolic syndrome is defined as a group of interrelated comprehensive diseases characterized by
visceral obesity, hypertension, hyperlipidemia, atherosclerosis, and insulin resistance. Metabolic
syndrome, including overweight/obesity, type 2 diabetes (T2D) (1, 2), non-alcoholic fatty liver
disease (NAFLD) (3), and cardiovascular disease (CVD) (4) has become a severe public health
problem (5). Accumulating evidence has linked intestinal microbe imbalance or compositional
changes with the pathogenesis of metabolic diseases (6). Intestinal microbes produce functional
metabolites that regulate intestinal endocrine function and neural signals, regulate energy
metabolism, and affect host immune mechanisms and homeostasis (7). Functional metabolites
serve as potential markers of disease and transfer to distant organs through the intestinal barrier–
peripheral circulation, affecting the metabolic phenotype of the host (8–10). Therefore, the link
between functional metabolites and metabolic diseases has received increasing attention.
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Indole-3-propanoic acid (IPA) is a tryptophan (Trp) metabolite
produced by intestinal bacteria that is closely associated with diet.
IPA has received increasing attention in recent years because of its
close correlation with metabolic diseases. Recent studies have found
that IPA content can predict the occurrence of obesity (11), T2D
(12), NAFLD (13), and CVD (14).

In recent years, supplementation with IPA has been shown to
improve blood glucose, increase insulin sensitivity (15), inhibit
liver lipid synthesis and inflammatory factors (16), correct
intestinal microbial disorders (17), maintain the intestinal
barrier, and suppress the intestinal immune response (18).
Here, we systematically reviewed the latest research on IPA, its
association with metabolic diseases, and its role in metabolic
disorders, and discuss its future research directions.
IPA IS THE METABOLITE OF Trp IN
THE INTESTINE

IPA is a metabolite produced by the microflora of dietary Trp
that accumulates in the host serum and exhibits high individual
Frontiers in Endocrinology | www.frontiersin.org 2
differences (19). Under physiological conditions, serum IPA
concentrations range from 1 to 10 µM in humans (20, 21)

Trp is an essential amino acid from the host diet for use in
protein synthesis (22). Trp is primarily metabolized through the
5-HT (23), canine uric acid (24), and intestinal microbial
pathways. Indole-3-pyruvic acid (IPyA) is converted from Trp
in the presence of an aromatic amino acid aminotransferase.
IPyA is a precursor of indolelactic acid (ILA), and phenyllactate
dehydrogenase is involved in this reduction reaction. Bacterial
species containing phenyllactate dehydratase (fldBC) and its
activator acyl-CoA ligase convert ILA to indoleacrylic acid (IA)
through dehydration. IA can be further converted into IPA by
acyl coenzyme A dehydrogenase, which is the final product of the
reductive metabolism of Trp (Figure 1) (24–26). The most
abundant metabolite of Trp in the intestine is indole, followed
by indole-3-acetic acid and IPA (27, 28).

The metabolism of IPA in the body is affected by enzyme
activity and intestinal microbes. Liquid chromatography–mass
spectrometry (LC-MS) analysis was used to compare the plasma
samples of sterile and conventional mice. The production of IPA
was found to be entirely dependent on intestinal microbes.
FIGURE 1 | IPA is the metabolite of Trp in the intestine.
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Colonization with Clostridium sporogenes and Clostridium
botulinum can promote the concentration of IPA in the
plasma (29, 30). Recently, the study found that, among 36
bacterial isolates cultured in Trp-containing medium, 4
(Peptostreptococcus anaerobius CC14N and 3 Clostridium
cadaveris strains) were capable of producing IPA.
Simultaneously, the presence of FLDC, a homologous cluster
of the fldBC gene cluster, was found to be a reliable marker for
IPA-producing bacteria (25). Other bacteria, such as
Lechevalieria aerocolonigenes, can synthesize IPA through Trp
deamination catalyzed by amino acid oxidase (31). Therefore,
IPA is an important indicator of microbial metabolism.

In a study on the metabolic benefits of Trp, the Trp diet led to
a decrease in mouse body weight (32); however, the mechanism
was not elucidated. In another study, it was found that a diet
supplemented with neomycin and Trp led to an increase in rat
body weight, which was related to the significant change in the
concentration of Trp-derived bacterial metabolites in the feces
and blood. Further studies showed that the change in body
weight increase was most relevant to the change in the
concentration of the Trp metabolite IPA. The body weight
gain in rats treated with IPA alone was two times lower than
that in rats treated with the vehicle, suggesting that IPA might be
an effector metabolite between a Trp-rich diet and lower body
weight gain (33). Therefore, for the Trp-IPA metabolic pathway,
the development of related probiotics, and the promotion of the
production of IPA, we need to pay attention to the study of
probiotics in the treatment of metabolic syndrome in the future.
IPA CONCENTRATIONS AFFECTED BY
DIETARY INTERVENTION

Diet significantly impacts NAFLD, T2D, obesity, CVD, and
metabolic disorders (34, 35). Therefore, we explored the
relationship between IPA and diet. IPA was the metabolite
most significantly and consistently related to both total
carbohydrate and fiber intake (r = 0.28, p = 9.1 × 10−5 and r =
0.23, s = 0.001, respectively), including whole grain wheat, rye,
and whole grain rye intake (12). In another study, 117
overweight adults were randomly divided into two groups.
Based on the same diet, they were supplied with fried meat or
not. The study found that the participants who consumed fried
meat had higher lipopolysaccharide (LPS), tumor necrosis
factor-a (TNF-a), interleukin-1b (IL-1b), and IL-10 levels (p <
0.05). Fried meat intake lowered microbial community richness
and decreased Lachnospiraceae and Flavonifractor abundances
while increasing Dialister, Dorea, and Veillonella abundances [p
false discovery rate (FDR) < 0.05], which caused a significant
decrease in the fecal metabolite IPA content (36).

In a diet study, 10 healthy participants were randomly fed a
Western or Mediterranean diet for 4 days, and feces were
collected for 16s RNA and metabolomics after 4 days. Different
diets altered the intestinal flora structure. Simultaneously, IPA
content in feces was significantly increased with the
Mediterranean diet but decreased in the Western diet (37).
Frontiers in Endocrinology | www.frontiersin.org 3
This suggests that diet can affect the composition of intestinal
microorganisms within a short time (38); however, the long-term
effect and stability of the microbial structure are not apparent.
Promoting the increase in IPA content may be an effective way to
improve the metabolic benefits of the Mediterranean diet.

In the correlation experiment between 11 types of Trp
metabolism levels and T2D events in the circulation of 9,180
participants from five cohorts, it was found that intake of fiber-
rich foods, rather than protein/Trp-rich foods, and peripheral
IPA content were positively correlated. Further research found
that higher milk and fiber intake can improve the metabolism of
Trp in the circulation of patients with T2D, but only in
individuals with non-persistent genetic lactase (39). This
suggests that diet can interfere with host–microbe interactions
and affect the metabolism of Trp-IPA in the host. The effect of
the metabolic benefits of a healthy diet is partly due to the
promotion of IPA production in circulation.
ROLE OF IPA IN METABOLIC DISEASES

We mainly discuss the relationship between IPA and various
metabolic diseases, including obesity, T2D, NAFLD, and CVD,
and focus on the potential connection between IPA and illness.

IPA as a Potential Biomarker of Obesity
and its Association With Inflammation
Obesity is a complex pathophysiological disease and one of the
causes of metabolic syndrome, which is characterized by
chronic low-grade inflammation. In 85 obese adults (average
BMI = 40.48) and 42 non-obese control individuals (average
BMI = 24.03), the serum IPA content was significantly lower in
obese patients and was compared with BMI, serum high-
sensitivity C-reactive protein (hsCRP), and high-sensitive
interleukin 6 (hsIL-6), and the hsCRP and hsIL-6 levels were
negatively correlated (40). This suggests that the indole
metabolic pathway of Trp is affected in obese patients, which
may be related to obesity-related systemic inflammation.
However, in obese patients who underwent Roux-en-Y gastric
bypass surgery (RYGB) operation, the level of IPA in the blood
increased substantially 3 months post-surgery compared with 1
week post-surgery (40). This suggests that IPA content can be
used as a marker for obesity. In future research, it will be
necessary to perform correlation analyses between IPA and
obesity-related complications to provide new diagnostic
methods for invasive diagnosis of diseases and to predict
obesity-related complications.

IPA as a Potential Biomarker for
Predicting the Risk of T2D
Current studies have found that IPA content is closely related to
T2D and can predict the risk of T2D, distinguish different stages
of T2D, and decrease with the improvement of T2D. IPA can be
used as a biomarker of disease progression. When studying the
brain–gut–microbiota characteristics of women with obesity and
food addiction, a negative correlation was found between IPA in
March 2022 | Volume 13 | Article 841703
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serum and food addiction (41). Bariatric surgery, such as RYGB,
can improve T2D, obesity, NAFLD, and other metabolic diseases
(42). In clinical studies, IPA content in the peripheral blood of
obese patients with T2D was significantly lower than that in
healthy participants. The IPA content in blood samples of these
patients 3 months post-RYGB surgery was significantly higher
than that in blood samples 1 week post-surgery (11).”XenoScan,”
a metabolomics platform established by the University of
California, Davis, used LC-MS to characterize a series of
intestinal microflora metabolites and found that several
metabolites, including IPA, could distinguish early T2D rats
from rats 3 months after the onset of diabetes (43).

In a clinical trial, researchers used a non-targeted
metabolomics approach to investigate whether serum
metabolite profiles can predict the incidence of T2D in patients
with impaired glucose tolerance. During the 15-year follow-up,
patients with glucose tolerance who developed (n = 96) or did
not develop (n = 104) T2D had lower and higher serum IPA
levels, respectively. This suggests that higher serum IPA levels
lead to a low risk of T2D (12). In a clinical study with a 7-year
follow-up, it was verified that higher serum IPA levels were
negatively correlated with the occurrence of T2D (OR [CI]: 0.86
[0.73–0.99], p = 0.04), directly correlated with insulin secretion
(b = 0.10, p = 0.06), and negatively correlated with hsCRP when
blood samples were collected (r = −0.22, p = 0.0001), and during
follow-up visits (b = −0.19, p = 0.001). This suggests that IPA
might be mediated by low-grade inflammation or enhance
insulin sensitivity by protecting b-cell function to reduce the
risk of T2D (21)

IPA Reduces Lipotoxicity to Inhibit the
Development of NAFLD
NAFLD manifests as liver fat accumulation, and the disease
progresses to non-alcoholic steatohepatitis (NASH) or even
hepatocellular carcinoma (HCC). Globally, the prevalence of
NAFLD-related HCC may increase with an obesity
epidemic (44).

IPA in the intestinal tract is absorbed by the intestinal
epithelial cells and diffuses into the blood, which enters
multiple target organs such as the liver after passing through
the peripheral and portal circulation (30). This suggests that the
liver may be a target organ for IPA biology. In 233 patients who
underwent bariatric surgery and detailed liver histological
examinations, the circulating IPA in patients with liver fibrosis
was lower than that in those without fibrosis. Circulating IPA
levels are also associated with the liver richness in genes that
regulate hepatic stellate cell activation and liver fibrosis signaling.
In vitro experiments have verified that IPA reduces the mRNA
expression of fibrosis signaling markers such as COL1A2, aSMA,
and ITGA3 in LX-2 cells (13).

Cholesterol is considered the primary lipotoxic molecule
among liver lipids in NASH development (45–47). Lipotoxicity
promotes the progression of NAFLD to NASH, liver cirrhosis,
and even liver cancer (48, 49). Depletion of IPA was noted in both
hypercholesterolemia-fed HCC mice and in sterile mouse serum
transplanted with hypercholesterolemia-fed HCC mouse feces.
Frontiers in Endocrinology | www.frontiersin.org 4
In vitro experiments showed that IPA could inhibit the
accumulation of triglycerides (TG) in the cholesterol-induced
human normal hepatocyte line LO2 and inhibit the proliferation
of NASH-HCC cell lines (HKCI-2 and HKCI10). Therefore, the
partial reason for cholesterol-induced lipotoxicity is the damage to
tryptophanmetabolism inmicroorganisms and the reduced serum
IPA content, thereby promoting the development of NASH-
HCC (50).

IPA Improves CVD by Lowering Blood
Lipid Levels
CVD is a serious cause of death due to metabolic diseases (51,
52). In a cohort study from an advanced atherosclerosis (n = 100)
and gender- and age-matched control group (n = 20), the level of
IPA in plasma metabolites of the advanced atherosclerosis group
was significantly reduced (0.41 [0.27–0.90] mM vs. 0.22 [0.16–
0.34] mM; p < 0.01). In a study of risk factors for atherosclerosis,
IPA (OR, 0.27; 95% CI, 0.019–0.91; p = 0.02) was negatively
correlated with advanced atherosclerosis (14). In mice
experiments, oral administration of IPA significantly reduced
high-fat diet (HFD)-induced body weight gain and reduced
serum total cholesterol (TC), low-density lipoprotein
cholesterol (LDL-c), and TG levels, showing sufficient anti-
hyperlipidemic effects (16).

IPA and Other Metabolic Diseases
In a 1-year follow-up study of patients with chronic kidney disease
(CKD), the estimated glomerular filtration rate (eGFR) rapidly
decreased by >20% (n = 10) and the control group (n = 10), and
the eGFR decreased by <5%. It was found that IPA was the only
metabolite that dropped significantly in eGFR rapidly decreased
group of plasma. In cross-sectional clinical studies, it can also be
found that the serum IPA content of the normal group was
significantly higher than that of the CKD group (49.8 ± 15.9 vs.
34.7 ± 10.8 ng/ml; p < 0.01) (53). Intervention with IPA can also
inhibit the gene expression of fibrosis and inflammation in
proximal renal tubular cells induced by indophenol sulfate (54).
In previous studies, oxidative stress was found to be associated
with increased kidney damage (55), and IPA as a potent
antioxidant may be an important bioprotective agent for CKD.

In another study, oral IPA supplementation reduced the
systemic inflammation level in radiation-exposed mice,
restored hematopoietic organs, relieved bone marrow
suppression, and improved gastrointestinal function and
epithelial integrity after irradiation, thereby exerting
therapeutic effects on radiation toxicity (56). Supplementation
with mouse probiotic Clostridia resulted in an increase in IPA
production in the intestinal lumen and increased mitochondrial
transcription factor A (Tfam) expression in osteoblasts by
promoting Kdm6b/Jmjd3 histone demethylase, thereby
inhibiting the epigenetic methylation of H3K27me3 at the
Tfam promoter from preventing pathological bone loss in
obese mice induced by a HFD (57). IPA is neuroprotective as a
potent hydroxyl radical scavenger (58). IPA inhibits b-amyloid
fibril formation, a potent neuroprotective agent, and is a
potential drug for the treatment of Alzheimer’s disease (59).
March 2022 | Volume 13 | Article 841703
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IPA also exhibits protective effects against streptozotocin-
induced diabetic peripheral neuropathy in rats and high-
glucose-induced neurotoxicity in neural 2a cells (60).
MECHANISMS OF IPA ACTION ON
METABOLIC DISEASES

As mentioned above, IPA contributes to various metabolic
diseases, and its mechanism is complex. It may be involved in
the physiological and pathological processes of the disease
through different pathways. Therefore, we comprehensively
analyzed the mechanism of IPA in terms of glucose
metabolism, insulin resistance, lipid synthesis, inflammatory
reactions, and the intestinal microenvironment.

IPA Can Improve Blood Glucose and
Increase Insulin Sensitivity
Impaired glucose tolerance and insulin tolerance are also
pathogenic factors in metabolic syndrome. Rats fed a diet rich
in IPA had improved glucose metabolism and significantly
reduced HOMA index of fasting blood glucose, insulin, and
insulin resistance (15).

Cognitive decline is a complication of T2D, and intermittent
fasting (IF) is a dietary intervention used to alleviate the
symptoms of T2D. In research of its mechanism, IF was found
to improve cognition through the microorganism–metabolite–
brain axis. Among the metabolites affected by IF, the
complementary metabolite IPA showed similar results with IF.
In db/db mice, IPA was found to improve cognitive function and
insulin sensitivity, enhance mitochondrial biogenesis, and
protect the ultrastructure of synapses (61). This may be related
to IPA as an antioxidant, preventing neuronal death induced by
amylin and b-amyloids and restoring mitochondrial function
(62, 63).

First, the protective effect of serum IPA in T2D may be
achieved through its efficacy in regulating the secretion of
incretin, particularly glucagon-like peptide (GLP)-1 release by
intestinal endocrine L cells (64). GLP-1 inhibits the occurrence of
T2D by reducing B-cell apoptosis and increasing cell
proliferation and regeneration (65)

Second, as a strong oxidant (62), IPA can protect b cells from
damage related to metabolism and oxidative stress, and possibly
from the accumulation of amyloid (66). These results suggest
that IPA may be a promising candidate for the treatment of
insulin-resistant metabolic disorders, including T2D.

IPA Inhibits Liver Lipid Synthesis and
Inflammatory Factors
IPA intervention can improve NASH model mice induced by a
HFD through intestinal microenvironment homeostasis (17). In
an in vitro experiment, supplementation with oleic acid (OA; 100
mM) resulted in significant accumulation of TG in a human
hepatocarcinoma cell line of HepG2 cells, and IPA treatment
significantly reduced OA-induced TG accumulation in a dose-
dependent manner (10, 25, and 50 µM). Further research showed
Frontiers in Endocrinology | www.frontiersin.org 5
that IPA dose-dependently reduced the transcription of essential
genes involved in fatty acid (Srebp1-c and Fas) and cholesterol
biosynthesis (Srebp2 and Hmgr) in HepG2 cells (16).

In addition to inhibiting lipid synthesis in the liver, IPA
intervention could inhibit the expression levels of pro-
inflammatory cytokines such as TNF-a, IL-1b, and IL-6 in the
liver of NASH rats induced by a HFD. In an in vitro LPS-induced
mouse macrophage model, IPA also inhibited nuclear factor
kappa B) NF-kB signaling, p65 phosphorylation, and the
expression of NF-kB downstream target genes in a dose-
dependent manner (17).

Excess free Fe(3+) and was also found to cause oxidative
damage, which deteriorates NAFLD to NASH. In an in vitro
experiment, FeCl(3+) (0.2 mM) was used to induce the isolated
rat liver microsomes to simulate the oxidative damage model and
then incubated with IPA. It was found that co-incubated IPA
(concentrations of 10, 3, 2, and 1 mM) can prevent the decrease
in cell membrane fluidity caused by Fe(3+). The increase in lipid
peroxidation caused by Fe(3+) was only inhibited after
incubation with the highest concentration (10 mM) of IPA
(67). Moreover, IPA at a concentration of 5 mM was able to
inhibit lipid peroxidation damage in hamster testes caused by
iron ions (68). This suggests that IPA can act as an effective free
radical scavenger to prevent iron-induced oxidative damage to
cell membranes. The antioxidant effect of IPA is concentration
dependent, which also explains the protective effect of high
concentrations of IPA on the periphery of the body.

IPA Can Correct Intestinal
Microbial Disorders
IPA maintains the stability of the intestinal microenvironment.
Its primary mechanism is to correct the disordered intestinal
microflora, repair the intestinal barrier, and inhibit the intestinal
immune response.

The intestinal microbial structure can affect the host’s
absorption of dietary monosaccharides and lipids, promoting
the accumulation of TG in the adipose tissue and liver and
causing metabolic disease (69, 70). An imbalance of intestinal
microbes affects the TLR9- and TLR4-related inflammatory
pathways in the liver (71). In multi-ethnic cohort studies,
intestinal microbial a diversity was generally low in patients
with metabolic diseases (72). In a clinical cohort study of 1,018
middle-aged women from TwinsUK, the relationship between
serum IPA levels and gut microbial genes was evaluated, and a
positive correlation between microbiota alpha diversity and
serum IPA content was found (Shannon diversity: b [Shannon
diversity: beta (95% CI] = 0.19 [0.13; 0.25], p = 6.41 × 10−10) (73).

In an 8-week NAFLD rat model induced by a HFD, IPA (20
mg/kg) was administered to rats for the 8-week experiment. The
16s rRNA method was used to detect rat feces, and principal
coordinate and non-metric multidimensional scale analyses
showed that the intestinal microbes of rats in the IPA
administration group were significantly different from those in
the model group. This suggests that IPA administration can
improve the overall structure of the intestinal microbes in
NAFLD rats. An increase and decrease in the abundance of
March 2022 | Volume 13 | Article 841703
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Firmicutes and Bacteroidetes, respectively, were biomarkers of
obesity (74, 75). Based on this feature, the authors analyzed the
intestinal microbial composition, and an HFD was found to
increase the ratio of Firmicutes to Bacteroidetes, which could be
reversed by IPA treatment. The abundance of the two potential
pathogenic bacteria Bacteroides and Streptococcus (76) was
increased by an HFD and decreased by IPA treatment. It has
also been reported that the abundance of the genus Parasutterella
(77) associated with chronic intestinal inflammation was reduced
by IPA treatment. In addition, the abundance of the two genera
Oscillibacter and Odoribacter, which are important for
maintaining intestinal homeostasis, were reduced in the HFD-
fed group (78) and restored in the IPA group (17). In addition,
IPA supplementation can inhibit the growth of Mycobacterium
tuberculosis by blocking the synthesis of Trp in M. tuberculosis
through the catalytic step of TrpE, thereby exerting an anti-
tubercular effect (79).

IPA Maintains the Intestinal Barrier
Increased intestinal permeability and abnormal intestinal tight
junctions caused by ecological imbalance are frequently observed
in patients with metabolic diseases (80). Intestinal ecological
imbalance leads to an increase in LPS and bile acid production,
which is related to whole-body low-grade inflammation (81).

Treatment of HFD-fed mice with IPA reduced intestinal
permeability (decreased circulating FITC-dextran) and reduced
circulating LPS levels. In vitro, researchers used monolayers of
T84 cells incubated with the pro-inflammatory cytokines
interferon-g (IFN-g) and TNF-a. IPA was found to reduce the
permeability of monolayers through an FITC-dextran
permeability experiment (82).

The ratio of villi to crypts in the ileum of HFD-fed rats was
reduced (83), and the villi height was restored by IPA treatment,
which also promoted the protein expressions of zonula
occludens-1 (ZO-1), occludin, and tight junction proteins in
the rat ileum (17). The end of the afferent neurons of the vagus
nerve is located in the intestinal mucosa, and the increase in LPS
changes the afferent signals of the vagus nerve and reduces the
satiety induced by cholecystokinin, thus promoting appetite and
leading to obesity (84). Thus, IPA can inhibit appetite by
inhibiting LPS levels in the plasma.

The Caco-2/HT29 co-culture model was used to evaluate the
effect of IPA on the intestinal barrier and explore its potential
mechanism. Studies have shown that IPA increases
transepithelial resistance and decreases paracellular
permeability. Simultaneously, IPA enhances the mucus barrier
by increasing the expression of mucins MUC2 and MUC4 and
the goblet cell secretion products TFF3 and RELMb. In addition,
IPA reduces the expression of inflammatory factors in LPS-
induced Caco-2/HT29 cells. These findings provide a new
perspective for the intestinal microbial metabolite of Trp to
improve the intestinal barrier (85). SLC2A5 (GLUT5-encoded)
is the leading fructose absorption transporter in the kidneys,
small intestine, and proximal tubules, and its overexpression
causes metabolic syndrome by increasing fructose intake (86).
Expression of the fructose transporter SLC2A5 mRNA was
Frontiers in Endocrinology | www.frontiersin.org 6
increased in IFN-g-induced intestinal epithelial T84 cells, and
IPA intervention reversed SLC2A5 mRNA expression (11).

IPA Suppresses Intestinal
Immune Response
Impaired intestinal barrier function and increased leakage of
intestinal-derived antigens may lead to visceral lipid deposition
and metabolic dysfunction (87). Serum IPA was reported to be
decreased by approximately 60% in patients with active
inflammatory bowel disease compared with that in healthy
controls. During the recovery period of inflammatory bowel
disease, the level of IPA in the serum gradually recovered (27, 88).

Administration of IPA showed significant induction of IL-10
receptor protein 1 expression in cultured intestinal epithelial cells
T84 (27), based on a close correlation between epithelial IL-10
receptors and the maintenance and recovery of epithelial barrier
function (89), which further supported the role of IPA in the
maintenance of intestinal immunity.

Recent studies have suggested that IPA is an endogenous
ligand for intestinal PXR. IPA induces the transcription of PXR
target genes Mdr1, Cyp3a11, and Ugt1a1 mRNA in vivo (82).
However, IPA alone is a weak human PXR ligand (82).
Inoculated Clostridium sporogenes in germ-free mice
accompanied with L-Trp-supplemented diets promoted the
production of IPA to protect mice from dextran sulfate
sodium-induced colitis through the PXR pathway (82). Studies
have also confirmed that IPA improves intestinal permeability
(FITC-dextran permeability) in a colitis (indomethacin-induced)
mouse model with intestinal barrier defects. Intestinal TNF-a
mRNA expression and p38-MAPK protein phosphorylation
were inhibited, while in PXR-deficient (Nr1i2−/−) mice, the
benefits of IPA were inhibited, suggesting that IPA improved
the intestinal barrier via the PXR pathway (82). Furthermore,
IPA can modulate vascular function by modulating PXR activity,
and IPA exposure reduces the vasodilatory responses of nitric
oxide-mediated muscarinic and protease-activated receptor 2-
stimulated mouse aortic tissue (90).

In another study, IPA was shown to be an agonist of the
aromatic meridian receptor (Ahr) of a commensal bacterial
product (91), and Ahr activation was beneficial to the
maintenance of intestinal homeostasis and the regulation of
immunity (92, 93). Therefore, these studies indicated that
promoting IPA formation by bacteria or the direct administration
of IPA is beneficial for inflammatory bowel disease.
CONCLUSION

The intestinal microflora is a diverse microbial community that
encodes functional genes several orders of magnitude higher
than the human genome and can regulate human health (94).
With the development of metabolomics, intestinal microbial
metabolites play an increasingly important role in regulating
host health and disease; however, the disturbance of metabolites
is related to multiple chronic diseases (95). Therefore, research
on bacteria-derived metabolites offers the possibility of
March 2022 | Volume 13 | Article 841703
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personalized medicine for chronic diseases with complex
pathogenesis. The study found that IPA, a metabolite produced
by Trp under the action of intestinal microbes, was correlated
with the occurrence and development of metabolic diseases
(Figure 2). Metabolic diseases such as obesity, T2D, NAFLD,
and CVD have been reported. The IPA content in the peripheral
region was significantly consumed. After 3 months of bariatric
surgery, it recovered, suggesting that IPA might be a potential
biomarker for metabolic diseases. However, further studies have
shown that IPA could be a potential biomarker of metabolic
illnesses (Table 1). The intervention with IPA reduced the body
weight and peripheral fat content; improved insulin resistance,
liver lipid deposition, and peripheral blood lipid content; and
maintained intestinal homeostasis, thereby improving metabolic
syndrome (Table 2). The metabolic benefit mechanism of IPA
may be predominantly related to its strong oxidant effect, which
has an excellent antagonistic effect on chronic inflammation
caused by metabolic diseases. Moreover, as a bacterial-derived
metabolite (Table 3), IPA exerts its beneficial effects in regulating
intestinal immune responses through Ahr and PXR ligand.
Intestinal bacteria play an important role in the pathogenesis
of metabolic diseases. In future research, we need to pay
Frontiers in Endocrinology | www.frontiersin.org 7
attention to the secondary metabolites produced by the
interaction between IPA and the bacterial flora and its remote
target organs to further study the mechanism of IPA.

However, the beneficial effects of IPA are all based on the HFD-
induced NAFLD model mice, and the opposite result has been
found in other models. In CCL4-induced liver fibrosis model mice,
IPA aggravated CCL4-induced liver fibrosis injury through
transforming growth factor-b1 (TGF-b1) and the Smad signaling
pathway (98). Therefore, multiple models are required to verify the
potential beneficial effects of IPA on metabolic diseases. At present,
the therapeutic effects of IPA are primarily concentrated in basic
animal experiments, and no clinical experiments have been
performed. Therefore, an in-depth study on the toxicity and safe
use of IPA is necessary to provide a sufficient theoretical basis for the
development and utilization of IPA.

Furthermore, to fully exploit the potential of the intestinal
microbiota in disease prevention, we need to understand in
greater depth how dietary components and host genetics affect
IPA production. Finally, these findings are converted into clinical
practice and developed into clinical methods that can be widely
used to predict the prognosis and outcome of diseases and even
have diagnostic effects on some metabolic disorders. While
FIGURE 2 | IPA was correlated with the occurrence and development of metabolic diseases.
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TABLE 1 | The relationship between IPA and metabolic diseases.

tion method Main research results Reference

IPA levels were decreased in liver fibrosis compared to those
without fibrosis (p = 0.039 for all participants; p = 0.013 for 153
individuals without T2D); IPA levels negatively correlated with
lobular inflammation (p = 0.039) and fibrosis (p = 0.039); IPA
levels negatively correlated with fibrosis signaling genes, including
ITGA3, ITGAV, LAMC3, and COL1A2 mRNA

(13)

IPA levels positively associated with fiber-rich foods (p =
7.3×10−60); IPA negatively associated with T2D incidence,
(Spearman’s r = −0.05 to 0.06); IPA showed a potential causal
relationship with T2D (genetic causality proportion = 76%, p =
1.6×10−24)

(39)

QQ-MS/MS IPA levels inversely associated with incidence of diabetes during
the mean 7-year follow-up (odds ratio [confidence interval]: 0.86
[0.73–0.99], p = 0.04); positively correlated with insulin secretion
(DI30) during the mean 7 years (b = 0.10, p = 0.06; positively
correlated with dietary fiber, r = 0.24, p = 1 × 10−6); inversely
associated with serum hsCRP levels (r = −0.22, p = 0.0001);
inversely associated with BMI (p = 0.001)

(21)

IPA levels inversely associated with T2D incidence (OR: 0.80
[0.70, 0.93], p = 0.003); positively correlated with insulin secretion
(b = 0.25 [0.06–0.44], p = 0.011); inversely associated with high
hsCRP levels (r = -0.23, p = 0.006); high IPA level inversely
associated with the likelihood of developing T2D during the 5-year
follow-up (OR: 0.31 [0.12– 0.76], p = 0.01)

(12)

IPA content decreases in advanced atherosclerosis and carotid
stenosis subgroups. IPA levels inversely associated with advanced
atherosclerosis incidence (OR, 0.27; 95% CI, 0.019–0.91; p = 02)

(14)

-ESI-MS/MS IPA content decreases in obesity (F[1,122] =13.89, p<0.001); IPA
levels inversely associated with BMI (data not shown); inversely
associated with serum levels Of hsCRP (b = −0.268 0.261, p <
0.05) hsIL-6 levels (b = −0.244, P < 0.05)

(40)

(Continued)
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Disease Research object Clinical trials number Study population
nation

Sample Detec

Liver fibrosis A total of 233 patients (BMI 43.1
± 5.4 kg/m2) undergoing bariatric
surgery with detailed liver
histology were included.
Normal liver (n = 79),
Simple steatosis (n = 40), NASH
(n = 45)

NA Finland (Europe) Serum LC-MS

T2D Prospective analysis of 11
circulating Trp metabolites and
T2D incidence; up to 9180
participants from 5 cohorts by
meta-analysis

NA Diverse racial/ethnic
backgrounds (USA)

Serum LC-MS

T2D Total 415 diabetes participants
lifestyle (n = 209); control groups
(n = 206)

NCT00518167 Finland (Europe) Serum HPLC-

T2D Two groups of individuals who
took part in the Finnish Diabetes
Prevention Study
Those who either early developed
T2D early (n = 96) or did not
develop T2D (n = 104) within the
15-year follow-up

NCT00518167 Finland, Sweden
(Europe)

Serum LC-MS

Advanced
atherosclerosis

Advanced atherosclerosis cohort
(n = 100); the control cohort (n =
22) were age- and sex-matched
participants

NA USA Serum LC-MS

Obesity obese adults (n = 85, BMI =
40.48); non-obese controls (n =
42, BMI = 24.03)

Registration numbers
2010/36 and 2016/40 for
obese and non-obese
participants, respectively

France (Europe) Serum UHPLC
Q
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TABLE 1 | Continued

Sample Detection method Main research results Reference

Fecal UPLC-MS/MS IPA content decreases in fried meat group (p FDR < 0.05); IPA
levels inversely associated with insulin resistance index (r = 0.243);
inversely associated with serum LPS levels (r = 0.243); IPA levels
inversely associated with serum TNF-a levels (r = 0.436)

(36)

Fecal Mass
spectroscopy

IPA was inversely associated with food addiction in patients with
obesity (Cohen’s d = 0.74, p = 0.045); inversely associated with
abundance of genus Prevotella; positively correlated with
abundance of Akkermansia muciniphila and Bacteroides

(41)

Serum LC-MS IPA content decreased in fried meat group obese T2D;
unchanged 1 week after RYGB surgery; increased 3 months after
RYGB surgery

(11)

Serum NA IPA content decreased in the CKD group; IPA content decreased
in patients with rapid decline 20% group

(53)

Serum EC-HPLC Serum IPA was decreased by approximately 60% in participants
with active UC compared to healthy controls (p < 0.05); IPA
content returned to normal in participants with UC in remission

(27)

Zhang
et

al.
IP
A
,Friends

ofM
etabolic

S
yndrom

e

Frontiers
in

Endocrinology
|
w
w
w
.frontiersin.org

M
arch

2022
|
Volum

e
13

|
A
rticle

841703
9

Disease Research object Clinical trials number Study population
nation

Obesity A total of 117 overweight (BMI >
24 kg/m2) adults were
randomized into two groups. One
group was provided fried meat
four times per week (n = 59); one
group of 58 participants had no
fried meat intake (n = 58).

ChiCTR1900028562 China (Asia)

Obesity Food addiction (n = 19,BMI =
35.6); No food addiction (n = 86)

IRB # 16–000187 USA

Obese T2D Lean (n = 7); obese T2D
participants either before (n = 9)
or after RYGB surgery (1 week
post-surgery [n=9]; 3 months
post-surgery [n=7])

NA NA

Chronic kidney
disease

The estimated glomerular filtration
rate (eGFR) rapid
decline 20% group (n = 10) vs.
control group (n = 10) was
defined as having a yearly eGFR
decline < 5%; the CKD group
(n = 140) vs. the normal group
(n = 144).

IRB no. 100-2243A3 China

UC Healthy controls (n = 20);
participants with active ulcerative
colitis (UC; n = 15); participants
with UC in remission (n = 20)

NA NA

NA, Not Available.

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


TABLE 2 | Benefits of IPA in metabolic diseases.

Mechanism References

tivation of LX-2 cells stimulated by TGF-b1;
ell activation gene expression of COL1A2, aSMA,

(13)

(15)

protect against Ab-induced neuronal death and
tion

(61)

otein expression of SLC2A5 (GLUT5, facilitated
ALDOB
te aldolase glycolytic enzyme) in T84 cells

(40)

n of tight junction proteins, such as ZO-1 and
intestinal epithelium homeostasis, leading to a
toxin levels. IPA inhibited NF-kB signaling and
nflammatory cytokines, such as TNFa, IL-1b, and
toxin in macrophages to repress hepatic
ry

(17)

(50)

trations of 10, 3, or 2 mM, increased membrane
ons of 10, 3, 2, or 1 mM completely prevented a
idity due to Fe(3+); the enhanced lipid
) was prevented by IPA only at the highest

(67)

creased the transcription of the key genes
BP1c and FAS) and cholesterol biosynthesis

(16)

methacin-induced intestinal injury via PXR and (82)

significantly lower levels of IPA (p < 0.01); IPA-
significantly less reduction in colon length (p <
d decreased colonic tissue cytokine levels: IFN-g
1), IL-1b (p < 0.05) mRNA

(27)
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Disease Modeling IPA concentration Result

Liver fibrosis LX-2 cell co-treatment with
TGF-b1

100 µM IPA treatment with 100 µM of IPA also
significantly reduced LX-2 cell migration

IPA treatment reduced a
reduced hepatic stellate
ITGA3 mRNA

T2D Male Sprague–Dawley rats
(diet not shown)

Mean intake 27.3 mg/kg/
day

IPA was associated with a reduction in fasting
blood glucose concentration by 0.42 mM (95%
CI: 0.11–0.73; t22 = 2.78; p = 0.01); IPA
treatment reduced plasma
insulin level (t19 = 2.26; p = 04) and the HOMA
index
(t19 = 2.46; p = 02)

NA

T2D cognitive
decline

db/db mice fed with regular
chow and pure water

Mice were intraperitoneally
injected with IPA (10 mg
kg/day) for 14 days

IPA treatment significantly attenuated cognitive
deficits in diabetic mice; improved insulin
sensitivity; enhanced mitochondrial biogenesis,
and protected the ultrastructure of synapses.

IPA has been reported to
restore mitochondrial fun

Obesity High-fat diet (HFD)-fed mice 20 mg kg−1 po. for 4 days IPA treatment did not change body weight;
significantly attenuated intestinal permeability;
and reduced LPS levels.

IPA treatment reduced p
fructose transporter) and
(fructose-1,6-bisphospha

NAFLD Sprague–Dawley rats; rats
were fed a standard chow
diet or a HFD

Gavage with IPA (20 mg/
kg/day) for 8 weeks

IPA treatment modulated the microbiota
composition in the gut and inhibited microbial
dysbiosis in rats fed a HFD.

IPA induced the expressi
occludin, and maintained
reduction in plasma endo
reduced the levels of pro
IL-6, in response to endo
inflammation and liver inju

NASH-HCC Cholesterol-induced
hepatocyte cell line LO2, and
NASH–HCC cell lines HKCl-2
and HKCl-10

IPA (10 mM,100 mM) IPA treatment suppressed cholesterol-induced
lipid accumulation in LO2 cells, and cell
proliferation in NAFLD-HCC cell lines (HKCI-2
and HKCI-10).

NA

HCC Rat hepatic microsomal
membrane incubated with
FeCl(3) (0.2 mM), ADP (1.7
mM), and NADPH (0.2 mM)
to induce oxidative damage

IPA (10, 3, 2, 1, 0.3, 0.1,
0.01 or 0.001 mM)

IPA may be used as a pharmacological agent
to protect against iron-induced oxidative
damage to membranes and, potentially, against
carcinogenesis.

IPA, when used in conce
fluidity; IPA at concentrat
decrease in membrane fl

peroxidation due to Fe(3+
concentration (10 mM)

Hyperlipidemia Male and female ICR mice Orally administered IPA
(100 mg/kg) for 60 days

IPA treatment significantly reduced the body
weight gain in mice; decreased serum levels of
TC, LDL-c, and TG.

IPA dose-dependently de
involved in fatty acid (SRE
(SREBP2 and HMGR)

IBD Nr1i2+/+ and Nr1i2−/− mice
using an inflammation-based
barrier defect (indomethacin)
model

Mice were gavaged with
10, 20, and 40 mg/kg IPA
for 4 days

IPA treatment significantly reduced FITC
dextran permeability in Nr1i2+/+ mice, but not in
Nr1i2−/−, mice; IPA notably decreased TNF-a
mRNA expression more in the Nr1i2+/+ mice
(3.73-fold) intestinal epithelium relative to
Nr1i2−/− mice (1.72-fold)

IPA Protects against indo
TLR4

IBD C57BL/6 mice were
administered 2.5% (wt/vol)
dextran sodium sulfate (DSS)

IPA 0.1 mg/ml was
administered to water for
9 days

Serum indole and IPA levels were significantly
decreased in actively colitic animals (p < 0.05)

DSS colitic mice displaye
treated animals displayed
0.05); IPA-treated mice h
(p < 0.05), TNF-a (p < 0.

NA, Not Available.
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leveraging metabolomics poses significant challenges in
promoting human health, past studies have demonstrated that
certain metabolites have considerable potential for the treatment
of human diseases.
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