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Abstract
Recently, an exciting experimental conclusion in Li et al. (Knowl Inf Syst 62(2):611–637, 2020) about measures of
uncertainty for knowledge bases has attracted great research interest for many scholars. However, these efforts lack solid
theoretical interpretations for the experimental conclusion. The main limitation of their research is that the final experimental
conclusions are only derived from experiments on three datasets, which makes it still unknown whether the conclusion is
universal. In our work, we first review the mathematical theories, definitions, and tools for measuring the uncertainty of
knowledge bases. Then, we provide a series of rigorous theoretical proofs to reveal the reasons for the superiority of using the
knowledge amount of knowledge structure to measure the uncertainty of the knowledge bases. Combining with experiment
results, we verify that knowledge amount has much better performance for measuring uncertainty of knowledge bases.
Hence, we prove an empirical conclusion established through experiments from a mathematical point of view. In addition, we
find that for some knowledge bases that cannot be classified by entity attributes, such as ProBase (a probabilistic taxonomy),
our conclusion is still applicable. Therefore, our conclusions have a certain degree of universality and interpretability and
provide a theoretical basis for measuring the uncertainty of many different types of knowledge bases, and the findings of
this study have a number of important implications for future practice.

Keywords Concept structure · Knowledge structure · Knowledge base · ProBase · Rough set theory · Uncertainty

1 Introduction

Although knowledge constitutes our area of interest and the
cognitive world, it does not have a unified and clear def-
inition [2], which means that knowledge has uncertainty.
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Uncertainty, including randomness, vagueness, inconsistency,
fuzziness, and incompleteness, exists in almost every sys-
tem and model [3–5], the KBs are no exception. Uncertainty
is really a key ingredient in the decision and a funda-
mental part in modelling [6], therefore, uncertainty is an
important research topic in many real-world applications,
such as decision making [7], recommendation system [8],
Dempster-Shafer evidence theory [9], graph data [10],
social networks [11, 12], multi-objective optimization prob-
lems [13] and risk analysis during the outbreak of COVID-
19 [14–17].

In machine learning tasks, data is an indispensable
resource for any machine learning model. However, any
machine learning model always has uncertainty when
it performs the task of predicting unobserved data. For
the KBs, when using the existing knowledge in the
KBs to perform inference and decision-making tasks,
the uncertainty of the KBs will affect the prediction
results of some downstream tasks of natural language
understanding. An important reason is the existence of
soft concepts, which have imprecision. For instance, in the
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phrase “large area”, the definition of large lacks
strict quantitative standards.

Therefore, how to measure the uncertainty of a system
plays a vital role in machine learning, data analysis,
artificial intelligence applications, and cognitive science [6].
The current mainstream method is to use rough set theory
(RST) [18] to measure the uncertainty of KBs [1, 19].
RST, as a powerful tool that effectively measures the
uncertainty of KBs, has attracted more and more attention
from artificial intelligence practitioners, such as decision-
making [20, 21], computer-aided diagnosis [22], attribute
reduction [23], decision analysis [24, 25], and predicting
the COVID-19 cases [26]. There are significant advantages
in measuring the uncertainty of KBs based on RST. For
instance, the RST uses the existing knowledge in the KBs
to approximately characterize the unknown knowledge (i.e.,
target concept) that needs to be explored. The upper and
lower approximation concepts in RST can well describe
the uncertainty of KBs [18], and it can be combined
with information theory to establish a connection between
knowledge uncertainty and information entropy [27]. In
addition, the RST is closely related to fuzzy mathematics,
which uses the method of describing the fuzziness to
measure the uncertainty of knowledge [7, 28].

1.1 Motivation

Based on RST, a series of measurement methods used
to measure the uncertainty of the KBs are proposed.
For instance, measurement based on the combination of
information entropy and rough sets [29]; Using rough
entropy theory to measure the uncertainty of KBs [30];
Measurement based on the combination of knowledge
granulation and rough sets [31, 32]. Especially in recent
work, many scholars focus on the method based on
knowledge structure [33] to measure the uncertainty of
knowledge bases [1, 19]. And obtain many exciting
conclusions through a lot of experiments. Although the use
of RST to measure the uncertainty of the KBs has achieved
a series of great progress, we find that there are still many
issues that have not been completely solved.

1. Conclusions are often based on the verification of
a limited number of data sets, lacking a solid and
comprehensive theoretical guarantee. For example,
recently, an exciting experimental conclusion in [1]
about measures of uncertainty for the KBs has
attracted great research interest for scholars. In [1], the
authors select three data sets and conduct numerical
experiments on these three data sets to verify the
superiority of using the knowledge amount to measure

the uncertainty of the KBs.1 However, these successful
conclusions lack perfect mathematical expression and
interpretability.

2. The classification of the instances of the knowledge
base heavily depends on its attributes. Using RST
to measure the uncertainty of a KB, an important
prerequisite is that this KB can be divided by
equivalence relations. Unfortunately, subject to certain
real task scenarios, some KBs are difficult to meet
this condition. For some special datasets, such as
ProBase [34], it does not contain a large number of
attributes of instances. Therefore, in ProBase, it is
difficult to perform the above classification operations
on instances based on their attributes. This requires us
to transfer the opinions in RST to ProBase for analogy
research.

To address the first issue, we employ RST as the theoret-
ical basis to analyze the differences between different meth-
ods used to measure the uncertainty in the KBs. Specifically,
(1) In terms of theoretical analysis, we compare and analyze
in detail the mathematical principles of using knowledge
granulation of knowledge structure, knowledge entropy of
knowledge structure, rough entropy of knowledge structure
and knowledge amount of knowledge structure (four mea-
surement functions in total) to measure the uncertainty of
the KBs. We find that the above four measurement functions
can be unified into an elementary function λ(·) (i.e., (12)).
The four measurement functions correspond to the four dif-
ferent inputs of function λ(·). Based on it, we theoretically
prove that the conclusion in [1] is universal and inter-
pretable, and further improved the theory of measures of
uncertainty for the KBs. (2) In terms of experimental eval-
uation, we conduct experiments on 18 public datasets in
different fields. The experimental results fully verified our
theoretical analysis conclusions.

To address the second issue, we transfer the method
of using RST to measure the uncertainty of the KBs to
the study of the uncertainty of ProBase. (1) In terms of
theoretical analysis, we explore the theoretical feasibility of
using RST to measure the uncertainty of ProBase. From the
view of RST, equivalence relations determine the partitions
on the set W, and get equivalence classes under different
equivalence relations thereby. Inspired by this, we regard
an equivalence relation in the KBs as a hypernym (or
concept) in ProBase, then we use hypernyms (or concepts)
to divide instances, to obtain the equivalence class thereby.

1This can be simply understood as knowledge amount has much
better performance for measuring uncertainty of knowledge bases,
and “performance” can be quantified by objective statistical indicators
such as coefficient of variation.
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To this end, we provide a strategy for inducing datasets
from ProBase, and the instances in the induced datasets can
be divided by their concepts. (2) In terms of experimental
evaluation, in order to verify the above ideas, we induce
three datasets based on the strategy in ProBase, and
perform experimental verification on three data sets. The
experimental results fully verified our theoretical analysis
conclusions.

1.2 Contribution

In brief, the contributions in this paper are summarized as
follows:

1. We rigorously explain why knowledge amount (KAM)
has much better performance for measuring the
uncertainty of KBs. We prove an empirical conclusion
established through experiments from a mathematical
point of view.

2. We prove that measurement methods based on knowl-
edge granulation, knowledge entropy, rough entropy,
and knowledge amount can be integrated into a unified
measurement function in measuring the uncertainty of
KBs. We provide a formal representation of the unified
measurement framework and exhaustive comparative
analysis.

3. We propose an efficient strategy that induces a new
dataset from ProBase. The instances in the induced
dataset can be rigorously partitioned based on their
concepts. Therefore, we expand the usage scenarios
of the measurement function so that the measurement
function is still valid for datasets that do not have
enough attributes.

1.3 Paper organization

In Section 2, we briefly review the previous studies related
to the work of this paper. In Section 3, we review some
definitions related to RST, KBs and summarize some
notations used in our work. In Section 4, we summarize the
calculation methods and properties of the four measurement
functions used to measure the uncertainty of KBs. In
Section 5, we review the dispersion analysis of numerical
experiments in [1]. In Section 6, we conduct a detailed
theoretical analysis of different measurement functions and
provide our main conclusions (i.e., Theorems 1,2, 3, and
4). Specifically, we unified the four popular measurement
functions into a new measurement function. In Section 7,
we first provide the definition of the concept structure
of ProBase (see Definition 13). And then, we provide
an effective strategy to induce KBs from ProBase, and
instances in induced KBs can be classified by their
concept of them. In Section 8, we verify our theoretical

analysis via extensive experiments. Specifically, we conduct
experiments on 18 public datasets and on three datasets
induced from ProBase based on our proposed strategy.
Section 11 summarizes our work.

2 Related work

In recent years, research on KBs has become one of
the important topics in industry and academia. Many
researchers have made exceptional contributions to this
field and achieved a series of important results. Especially
in theoretical research on the KBs, a series of important
results have been obtained. These important conclusions
have far-reaching significance for establishing a computable
and measurable framework in the KBs. In particular, the
uncertainty measurement of KBs based on knowledge
structure has been widely concerned.

Knowledge structure Qian et al. [35] describe the differ-
ences between various knowledge structures in the KBs
based on the concept of knowledge distance. Li et al. [33]
propose the definition of lattice, mapping, soft characteriza-
tions, and the group of knowledge structures. In the study
of the relationship between different KBs, Li et al. [36]
regard the KBs as a special relation information system.
By introducing homomorphisms, they prove that the KBs
are invariant under homomorphisms. Subsequently, based
on the homomorphism relation between KBs, Qin et al. [37]
propose the concept of communication between KBs, and
they obtain a series of invariant characterizations under
homomorphisms. It is worth noting that the above works
all involve RST, which also provides a strong theoretical
basis for our work. In addition, some scholars are committed
to using other means to describe the knowledge structure,
such as using fuzzy skill maps [38] and knowledge space
theory [39].

Measurement method The uncertainty of the KBs is usu-
ally calculated by entropy (e.g., information entropy) [40].
Some scholars have shown an increased interest in the com-
bination of entropy theory and rough theory to measure the
uncertainty of the system. Hence, many classic mathemat-
ical tools have been proposed. For example, Düntsch and
Gediga et al. [29] study measuring uncertainty of rough
sets with information entropy; Beaubouef et al. [30] pro-
pose a new concept, called rough entropy; Liang et al. [27]
establish the relationships between rough and information
entropy. In the study of knowledge granulation, Wier-
man [31] focuses on using knowledge granulation to mea-
sure the uncertainty of rough sets; Yao [41] employs the
concept of granularity measure when studying the proba-
bilistic approaches to rough sets; Shah et al. [32] propose
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many measures using soft rough covering sets theory and
applied this theory to the task of multi-criteria decision
making. Qin et al. [42] use rough set theory to ana-
lyze knowledge structures in a tolerance knowledge base.
Kobren et al. [43] provide a new framework that can use user
feedback to realize the construction and maintenance of the
knowledge base in the case of identity uncertainty. Guo and
Xu [7] provide a novel entropy-independent measurement
function to capture the features of intuitionistic fuzzy sets.

3 Preliminaries

In this section, the key mathematical notations and their
descriptions are listed in Table 1, and some basic definitions
are reviewed.

Definition 1 ([1] Binary relation R on W) Let wiRwj

denote the binary relation between wi and wj on W, where
wi is the predecessor of wj , and wj is the successor of wi .
If (wi, wj ) ∈ R ⊆ W × W, then we have wiRwj .

For any
(
wi, wj

)
, the binary relation R can be repre-

sented by a 0-1 square matrix as follows,

Matrix(R) =
⎡

⎢
⎣

R (w1, w1) · · · R (w1, wm)
...

. . .
...

R (wm, w1) · · · R (wm, wm)

⎤

⎥
⎦

m×m

where R
(
wi, wj

) = 1, if
(
wi, wj

) ∈ R, otherwise,
R
(
wi, wj

) = 0.

Definition 2 ([1, 44] Equivalence relation on W) If R
satisfies the following three properties, then we call R to be
an equivalence relation on W. Specifically,

1. reflexive means that wRw always holds for any w ∈ W,
2. symmetric means that wRv implies vRw for any w, v

∈ W,
3. transitive refers to wRv and vRu imply wRu for any

w, u, v ∈ W.

Since W can be partitioned by an equivalence relation
Ri , and the following definition of the equivalence class is
obtained.

Definition 3 ([44] Equivalence class on W) Let Ri be an
equivalence relation on W, we call that

[w]Ri
= {v ∈ W | wRiv}, (1)

is the equivalence class including w, and

W/Ri = {[w]Ri
| w ∈ W

}
(2)

is the family of all [w]Ri
.

Definition 4 ([18] Knowledge base) [W,R] is called a KB
if and only if R ∈ 2R[W].

Definition 5 ([44] Equivalence relationship between KBs)
Given two KBs [W,Q] and [W,O], if [W,Q] and [W,O]
are equivalent (i.e., [W,Q] � [W,O]) then we have

[W,Q] � [W,O] ⇐⇒ W/Q � W/O.

Table 1 Key Notations and
Descriptions Notation Description

∅ the empty set

R the set of real numbers

Z
+ the set of positive integers

W a non-empty finite set, named universeW
2W the family of all subsets of W
wiRwj the binary relation between wi and wj on W
R = {Ri}n1 the set of all binary relations Ri on universe W
O = {Oi}n2 the set of all binary relations Oi on universe W
P = {Pi}n3 the set of all binary relations Pi on universe W
Q = {Qi}n4 the set of all binary relations Qi on universe W
R[W] the family of all equivalence relations on W
|W | the cardinality of W , e.g., |{a, b, c}| = 3

M � N M and N are equivalent, where M and N be two functions or sets

W = {wi}k the simplified form of W = {w1, w2, ..., wk}
[W,R] the knowledge base

[T,H] the knowledge base induced by ProBase

M(W) the measure set on W
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Definition 6 ([1] Knowledge structure of [W,R]) If the
finite set W = {wi}k can be divided by relations R =
{R1,R2, ...,Ri}, then we call the vector

CSV(R) = 〈
[w1]R , [w2]R , . . . , [wk]R

〉
(3)

the knowledge structure of [W,R].

Definition 7 (Indiscernibility relation over P) If ∅ �= P ⊆
R, then we call

⋂
P is the indiscernibility relation over P,

which is denoted by ind(P).

In other words, let F be the finite set, and fa and fb are
two entities in F . fa and fb satisfy indiscernibility relation
over P if and only if fa and fb have the same value on
all elements in P. For example, a red Porsche and a red
Tesla satisfy the indiscernibility relation on the attribute
color.

Example 1 Given a collection W = {w1, w2, · · · , w8}
that contains 8 candies. Suppose these candies have
different colors (e.g., red, blue, yellow), shapes (e.g.,
square, round, triangular), flavors (e.g., lemony, sweet).
Therefore, these candies can be divided according to
color, shape and taste. Statistical information about W is
summarized in Table 2.

As shown in Table 2, we can define three equivalence
relations, namely, R1 (i.e., color), R2 (i.e., shape), and
R3 (i.e., taste). Further, through these three equivalence
relations, the following three equivalence classes are
obtained, i.e.,

W/R1 = {{w1, w3, w7}, {w2, w4}, {w5, w6, w8}},
W/R2 = {{w1, w5}, {w2, w6}, {w3, w4, w7, w8}},
W/R3 = {{w2, w3, w7}, {w1, w3, w4, w5, w6}}.

Apparently, according to Definition 4, [W, {R1, R2, R3}] is
the KB. And according to Definition 7, w1 and w3 satisfy
the indiscernibility relation on the color red, w1 and w4

satisfy the indiscernibility relation on the shape square.

Table 2 Candies are divided according to color, shape and taste

Attribute w1 w2 w3 w4 w5 w6 w7 w8

Red � � �
Blue � �
Yellow � � �
Square � �
Round � �
Triangular � � � �
Lemony � � �
Sweet � � � � �

4 Four uncertainty measurement functions
for KBs

In this section, we introduce the categories, the core idea,
and the formalization of four measurement functions. It is
worth noting that, for a finite set W, we can divide W
based on its equivalence relations R (based on rough set
theory guidance) to obtain the knowledge base [W,R].
Then, according to Definition 6, we obtain the knowledge
structure (i.e., CSV(R)) of [W,R]. Moreover, based on
the CSV(R), we can unitize the knowledge granulation of
CSV(R), the knowledge entropy of CSV(R), the rough
entropy of CSV(R), and the knowledge amount of CSV(R)

to construct the measure set, respectively. Finally, based on
the constructed measure set (the principles of measure set
construction and example are provided in Section 8), and the
coefficient of variation (denoted as Cv(W) in (11), which is
a common objective statistical indicator used to measure the
uncertainty of a dataset) of the set is calculated to measure
the uncertainty of the KB [W,R].

4.1 Categories of four measurement functions

In this paper, we focus on 4 currently popular measurement
functions for measuring uncertainty of knowledge bases.
Specifically, these methods include:

1. Granularity-based measures (i.e., the knowledge
granulation of CSV(R) in Definition 8).

2. Entropy-based measures (i.e., the knowledge entropy
of CSV(R) in Definition 9, and the rough entropy of
CSV(R) in Definition 10).

3. Knowledge amount-based measures (i.e., the knowl-
edge amount of CSV(R) in Definition 11).

4.2 The core idea of four measurement functions

1. The core idea of granularity-based measures: The
granulation of knowledge in the KB is mainly
quantified by counting the number of elements in the
equivalence relations R ∈ R. Specifically, given a KB
[W,R], if R ∈ 2R[W], then the granulation of [W,R]
can be formalized as a mapping function from 2R[W]
to (0, +∞].

2. The core idea of entropy-basedmeasures: In classical
thermodynamics, entropy as a measurable physical
property reveals the disorder of the system (the higher
the value of entropy, the higher disorder of the system).
In information theory, entropy (e.g., Shannon entropy)
is used to measure the uncertainty of a system.
Similarly, a large number of studies applied the concept
of entropy to measure the uncertainty of KBs.
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3. The core idea of knowledge amount-based mea-
sures: These measures are the variation of the entropy-
based measures described above, which introduces a
probability measure (e.g., the probability of Wi in the
universe W). These makes it possible to measure the
uncertainty and the fuzziness of the KB.

4.3 Formalization of four measurement functions

Definition 8 [[1] Knowledge granulation of CSV(R)] For
a knowledge base [W,R], the knowledge granulation of
CSV(R) is quantified as:

KGR(R) = 1

k2

m∑

i=1

|Wi |2 = 1

k2

k∑

i=1

∣
∣[wi]R

∣
∣ , (4)

where W/R = {Wi}m, Wi = {wi}ni
(i.e., |Wi | =

ni),
∑m

i=1(ni) = ∑m
i=1 |Wi | = |W| = k. R is the set of

equivalence relations.

Definition 9 ([1] Knowledge entropy of CSV(R)) For a
knowledge base [W,R], the knowledge entropy of CSV(R)

is quantified as:

KEN(R) = −
m∑

i=1

|Wi |
k

log2
|Wi |
k

= −
k∑

i=1

1

k
log2

∣∣[wi]R
∣∣

k

(5)

where W/R = {Wi}m, Wi = {wi}ni
(i.e., |Wi | =

ni),
∑m

i=1(ni) = ∑m
i=1 |Wi | = |W| = k. R is the set of

equivalence relations.

Definition 10 ([1] Rough entropy of CSV(R)) For a
knowledge base [W,R], the rough entropy of CSV(R) is
quantified as:

REN(R) = −
m∑

i=1

|Wi |
k

log2
1

|Wi | = −
k∑

i=1

1

k
log2

1
∣∣[wi]R

∣∣

(6)

where W/R = {Wi}m, Wi = {wi}ni
(i.e., |Wi | =

ni),
∑m

i=1(ni) = ∑m
i=1 |Wi | = |W| = k. R is the set of

equivalence relations.

Definition 11 ([1] Knowledge amount of CSV(R)) For a
knowledge base [W,R], the knowledge amount of CSV(R)

is quantified as:

KAM(R) =
m∑

i=1

1

k2
|Wi | |W − Wi |

=
k∑

i=1

1

k

(

1 −
∣
∣[wi]R

∣
∣

k

)

, (7)

where W/R = {Wi}m, Wi = {wi}ni
(i.e., |Wi | =

ni),
∑m

i=1(ni) = ∑m
i=1 |Wi | = |W| = k. R is the set of

equivalence relations.

4.4 Themain properties of KGR(R), KEN(R), REN(R),
and KAM(R)

Lemma 1 ([1] Boundedness) Suppose that [W,R] is a KB
and |W| = k, then

1
k

≤ KGR(R) ≤ 1,

0 ≤ REN(R) ≤ log2 k,

0 ≤ KAM(R) ≤ k−1
k

,

0 ≤ KEN(R) ≤ log2 k.

(8)

Inequalities in (8) reveal the boundedness of KGR(R),
KEN(R), REN(R), and KAM(R) on W.

Lemma 2 ([1] Monotonicity) Let [W,O], [W,Q] be two
KBs. If CSV(O) ≺ CSV(Q)(i.e., IDE (CSV(O)/CSV(Q)) =
1), then

KGR(O) < KGR(Q),

REN(O) < REN(Q),

KAM(O) > KAM(Q),

KEN(O) > KEN(Q).

(9)

For rigorous proof of Lemma 1 and 2, the reader is
referred to [1].

5 Dispersion analysis

In this section, we first review the conclusion of numerical
experiments of [1]. The authors construct 4 measure sets
(the principles of measure set construction and example
are provided in Section 8) on three datasets2 (Nursery,
Solar Flare, and Tic-Tac-Toe Endgamelaintaio in Table 3).
Then, they compare the performance of four measurement
functions (i.e., Definitions 8-11) by dispersion analysis.
In their numerical experiment, they use the coefficient
of variation of datasets to compare the performance
differences between four different measurement functions.
The experimental results are shown in Table 3.

According to Table 3, it is easy to see that this may imply
an interesting conclusion, i.e.,

Cv(MKGR(W)) > Cv(MREN(W)) > Cv(MKEN(W))

> Cv(MKAM(W)). (10)

Inequality (10) shows that KAM(Pi/Oi/Qi ) has a much
better performance. The conclusion of Inequality (10) and

2https://archive.ics.uci.edu/ml/datasets.php

https://archive.ics.uci.edu/ml/datasets.php
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Table 3 may reflect a kind of regularity, which naturally
leads to further thinking about the following questions:

1. Does the conclusion of (10) apply to most datasets?
2. Does (10) reveal general laws?
3. What is the mathematical principle of (10)?

This motivates us to conduct deeper insight into different
measurement functions. In the next section, we will give
answers to these three questions.

6 Theoretical analysis of measurement
functions

In this section, we answer the above three questions. We
provide a unified framework to prove Inequality (10), and
theoretically prove that Inequality (10) has general prop-
erties for most KBs. These conclusions provide a rigor-
ous theoretical basis for measuring uncertainty for KBs.
Before giving the conclusions, we review the mathematical
tools and notations we need to use in our proof. Specifically,
for a given finite set W = {wi}n, we use σ(W) and Cv(W)

to represent standard deviation and coefficient of variation
of W, respectively, i.e.,

w̄= 1

n

n∑

i=1

wi, σ (W)=
√√
√
√1

n

n∑

i=1

(wi −w̄)2, Cv(W)= σ(W)

w̄
.

(11)

Next, we provide our core theorems, which are Theo-
rems 1,2.3, and 4. These conclusions strictly theoretically
prove the experimental conclusion in [1], solving the two
questions raised in Section 5 thereby.

Theorem 1 Suppose that [W,Rn] be a KB. Let M(W) be
the measure set on W, where W = {wi}k , which can be
divided by relation Rn = {Rj }n. Then the Cv(MKGR(W))

can be equivalently described by the measurement function
λ(x), where

λ(·) =

√

n ·∑n
i=1

(∑k
i=1(·) − 1

n

∑n
j=1

∑k
i=1(·)

)2

∑n
j=1

∑k
i=1(·)

,

x = |[wi]Rj
| ∈ Z

+. (12)

Proof Suppose that [W,Rn] be a KB, and let MKGR(W) be
the measure set on the W based on knowledge granulation,
we suppose that,

MKGR(W) = {KGR(R1), KGR(R2), ..., KGR(Rn)}
= {KGR(Rj )}n. (13)

According to (11), we obtain the following, i.e.,

KGR(R) = 1

n

n∑

j=1

KGR(Rj ),

σ (MKGR(W)) =
√√
√
√1

n

n∑

j=1

(
KGR(Rj ) − KGR(R)

)2
,

Cv(MKGR(W)) = σ(MKGR(W))

KGR(R)
. (14)

According to (4), for the set W = {wi}k (i.e., |W| = k), it
follows that,

KGR(R) = 1

k2

k∑

i=1

∣∣
∣[wi]Rj

∣∣
∣
2
, (15)

and

KGR(R) = 1

n

n∑

j=1

KGR(Rj )

= 1

nk2

n∑

j=1

k∑

i=1

∣∣
∣[wi]Rj

∣∣
∣ . (16)

Further, we obtain

σ(MKGR(W))

=
√√√
√1

n

n∑

j=1

(
KGR(Rj ) − KGR(R)

)2
(17)

=

√√
√
√√1

n

n∑

j=1

⎛

⎝ 1

k2

k∑

i=1

∣∣
∣[wi]Rj

∣∣
∣− 1

nk2

n∑

j=1

k∑

i=1

∣∣
∣[wi]Rj

∣∣
∣

⎞

⎠

2

Table 3 Cv-values of measure
sets M(KGR), M(REN),
M(KEN) and M(KAM)

Date set Cv(M(KGR)) Cv(M(REN)) Cv(M(KEN)) Cv(M(KAM))

Nursery 2.0431 0.6978 0.4750 0.1141

Solar Flare 0.9857 0.3219 0.2806 0.0615

Tic-Tac-Toe Endgame 1.7882 0.9015 0.4340 0.1186
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, and

Cv(MKGR(W))

= σ(MKGR(W))

KGR(R)

=
√

1
n

∑n
j=1

(
KGR(Rj )−KGR(R)

)2

1
nk2

∑n
j=1

∑k
i=1

∣∣
∣
∣[wi ]Rj

∣∣
∣
∣

=

√
1
n

∑n
j=1

(
1
k2

∑k
i=1

∣
∣∣
∣[wi ]Rj

∣
∣∣
∣− 1

nk2

∑n
j=1

∑k
i=1

∣
∣∣
∣[wi ]Rj

∣
∣∣
∣

)2

1
nk2

∑n
j=1

∑k
i=1

∣
∣∣
∣[wi ]Rj

∣
∣∣
∣

=

√

n·∑n
i=1

(
∑k

i=1(|[wi ]Rj
|)− 1

n

∑n
j=1

∑k
i=1(|[wi ]Rj

|)
)2

∑n
j=1

∑k
i=1(|[wi ]Rj

|) .

(18)

By (18), we establish the mapping relationship between
Cv(MKGR(W)) and |[wi]Rj

|, i.e.,

λ(|[wi]Rj
|) = Cv(MKGR(W)) � Cv(KGR({Rj )}n), (19)

where λ(·) satisfies (12). The proof is completed.

Theorem 2 Suppose that [W,Rn] be a KB. Let M(W) be
the measure set on W, where W = {wi}k , which can be
divided by relation Rn = {Rj }n. Then the Cv(MREN(W))

can be equivalently described by the measurement function
λ(x) (i.e., (12)).

Proof Suppose that [W,Rn] be a KB, and let MREN(W)

be the measure set on the W based on rough entropy, we
suppose that,

MREN(W) = {REN(R1), REN(R2), ..., REN(Rn)}
= {REN(Rj )}n. (20)

According to (11), then we obtain the following, i.e.,

REN(R) = 1

n

n∑

j=1

REN(Rj ),

σ (MREN(W)) =
√√
√
√1

n

n∑

j=1

(
REM(Rj ) − REN(R)

)2
,

Cv(MREN(W)) = σ(MREN(W))

REN(R)
(21)

According to (6), for the set W = {wi}k (i.e., |W| = k), it
follows that,

REN(Rj )=−
k∑

i=1

1

k
log2

1
∣
∣
∣[wi]Rj

∣
∣
∣
=

k∑

i=1

1

k
log2

∣
∣
∣[wi]Rj

∣
∣
∣ ,

(22)

and

REN(R) = 1

n

n∑

j=1

REN(Rj ) = 1

nk

n∑

j=1

k∑

i=1

log2

∣∣
∣[wi]Rj

∣∣
∣ .

(23)

Further, we obtain

σ(MREN(W))

=
√√√
√ 1

n

n∑

j=1

(
REN(Rj ) − REN(R)

)2
(24)

=

√√
√√
√ 1

n

n∑

j=1

⎛

⎝
k∑

i=1

1

k
log2

∣∣
∣[wi ]Rj

∣∣
∣− 1

nk

n∑

j=1

k∑

i=1

log2

∣∣
∣[wi ]Rj

∣∣
∣

⎞

⎠

2

, and

Cv(MREN(W))

= σ(MREN(W))

REN(R)

=
√

1
n

∑n
j=1

(
REN(Rj )−REN(R)

)2

1
nk

∑n
j=1

∑k
i=1

∣
∣
∣∣[wi ]Rj

∣
∣
∣∣

=

√
1
n

∑n
j=1

(
∑k

i=1
1
k

log2

∣
∣
∣∣[wi ]Rj

∣
∣
∣∣− 1

nk

∑n
j=1

∑k
i=1 log2

∣
∣
∣∣[wi ]Rj

∣
∣
∣∣

)2

1
nk

∑n
j=1

∑k
i=1

∣∣
∣∣[wi ]Rj

∣∣
∣∣

=

√

n·∑n
i=1

(
∑k

i=1(log2 |[wi ]Rj
|)− 1

n

∑n
j=1

∑k
i=1(log2 |[wi ]Rj

|)
)2

∑n
j=1

∑k
i=1(log2 |[wi ]Rj

|) .

(25)

By (25), we establish the mapping relationship between
Cv(MREN(W)) and log2 |[wi]Rj

|, i.e.,

λ(log2 |[wi]Rj
|) = Cv(MREN(W)) � Cv(REN({Rj )}n),

(26)

where λ(·) satisfies (12). The proof is completed.

Theorem 3 Suppose that [W,Rn] be a KB. Let M(W) be
the measure set on W, where W = {wi}k , which can be
divided by relation Rn = {Rj }n. Then the Cv(MKEN(W))

can be equivalently described by the measurement function
λ(x) (i.e., (12)).

Proof Suppose that [W,Rn] be a KB, and let MREN(W)

be the measure set on the W based on rough entropy, we
suppose that,

MKEN(W) = {KEN(R1), KEN(R2), ..., KEN(Rn)}
= {KEN(Rj )}n. (27)
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According to (11), then we obtain the following, i.e.,

KEN(R) = 1

n

n∑

j=1

KEN(Rj ),

σ (MKEN(W)) =
√√
√√1

n

n∑

j=1

(
KEN(Rj ) − KEN(R)

)2
,

Cv(MKEN(W)) = σ(MKEN(W))

KEN(R)
(28)

According to (5), for the set W = {wi}k (i.e., |W | = k),
it follows that,

KEN(Rj )=−
k∑

i=1

1

k
log2

∣
∣∣[wi]Rj

∣
∣∣

k
= 1

k

k∑

i=1

log2
k

∣∣
∣[wi]Rj

∣∣
∣

(29)

and

KEN(R)= 1

n

n∑

j=1

KEN(Rj ) = 1

nk

n∑

j=1

k∑

i=1

log2
k

∣
∣∣[wi]Rj

∣
∣∣
.

(30)

Further, we can obtain

σ(MKEN(W))

=
√√√
√ 1

n

n∑

j=1

(
KEN(Rj ) − KEN(R)

)2
(31)

=

√√√
√
√

1

n

n∑

j=1

⎛

⎝
k∑

i=1

1

k
log2

k
∣
∣∣[wi ]Rj

∣
∣∣
− 1

nk

n∑

j=1

k∑

i=1

log2
k

∣
∣∣[wi ]Rj

∣
∣∣

⎞

⎠

2

, and

Cv(MKEN(W))

= σ(MKEN(W))

KEN(R)

=
√

1
n

∑n
j=1

(
KEN(Rj )−KEN(R)

)2

1
nk

∑n
j=1

∑k
i=1 log2

k∣
∣
∣∣∣
[wi ]Rj

∣
∣∣∣
∣

=

√√
√
√√
√√

1
n

∑n
j=1

⎛

⎜
⎜
⎝
∑k

i=1
1
k

log2
k∣

∣∣
∣∣
[wi ]Rj

∣
∣∣
∣∣

− 1
nk

∑n
j=1

∑k
i=1 log2

k∣
∣∣
∣∣
[wi ]Rj

∣
∣∣
∣∣

⎞

⎟
⎟
⎠

2

1
nk

∑n
j=1

∑k
i=1 log2

k∣∣
∣∣
∣
[wi ]Rj

∣
∣∣
∣∣

=

√√
√√
√
√√n·∑n

i=1

⎛

⎜
⎜
⎝
∑k

i=1(log2
k∣∣∣

∣∣
[wi ]Rj

∣∣
∣∣
∣

)− 1
n

∑n
j=1

∑k
i=1(log2

k∣∣∣
∣∣
[wi ]Rj

∣∣
∣∣
∣

)

⎞

⎟
⎟
⎠

2

∑n
j=1

∑k
i=1(log2

k∣∣∣
∣
∣
[wi ]Rj

∣∣
∣
∣∣

)
.

(32)

According to (32), we establish the mapping relationship
between Cv(MKEN(W)) and log2

k∣∣
∣
∣[wi ]Rj

∣∣
∣
∣

, i.e.,

λ

⎛

⎝log2

⎛

⎝ k
∣
∣∣[wi]Rj

∣
∣∣

⎞

⎠

⎞

⎠ = Cv(MKEN(W))

� Cv(KEN({Rj )}n), (33)

where λ(·) satisfies (12). The proof is completed.

Theorem 4 Suppose that [W,Rn] be a KB. Let M(W) be
the measure set on W, where W = {wi}k , which can be
divided by relation Rn = {Rj }n. Then the Cv(MKAM(W))

can be equivalently described by the measurement function
λ(x) (i.e., (12)).

Proof Suppose that [W,Rn] be a KB, and let MRAM(W)

be the measure set on the W based on rough entropy, we
suppose that,

MKAM(W) = {KAM(R1), KAM(R2), ..., KAM(Rn)}
= {KAM(Rj )}n. (34)

According to (11), then we obtain the following, i.e.,

KAM(R) = 1

n

n∑

j=1

KAM(Rj ),

σ (MKAM(W)) =
√√
√
√1

n

n∑

j=1

(
KEN(Rj ) − KAM(R)

)2
,

Cv(MKAM(W)) = σ(MKAM(W))

KAM(R)
(35)

According to (7), for the set W = {wi}k (i.e., |W | = k), it
follows that,

KAM(Rj ) =
k∑

i=1

1

k

⎛

⎝1 −
∣∣
∣[wi]Rj

∣∣
∣

k

⎞

⎠ , (36)

and

KAM(R)= 1

n

n∑

j=1

KAM(Rj )= 1

nk

n∑

j=1

k∑

i=1

⎛

⎝1−
∣
∣
∣[wi]Rj

∣
∣
∣

k

⎞

⎠.

(37)

Further, we obtain that,

σ(MKAM(W))

=
√√
√
√ 1

n

n∑

j=1

(
KAM(Rj ) − KAM(R)

)2
(38)

=

√√
√
√√1

n

n∑

j=1

⎛

⎝
k∑

i=1

1

k

⎛

⎝1−
∣
∣∣[wi ]Rj

∣
∣∣

k

⎞

⎠− 1

nk

n∑

j=1

k∑

i=1

⎛

⎝1−
∣
∣∣[wi ]Rj

∣
∣∣

k

⎞

⎠

⎞

⎠

2



C. Wang et al.

and

Cv(MKAM(W))

= σ(MKAM(W))

KAM(R)

=
√

1
n

∑n
j=1

(
KAM(Rj )−KAM(R)

)2

1
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⎛
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1
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⎞
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=
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√n·∑n
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⎛

⎜⎜
⎝
∑k

i=1

⎛
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⎝1−

∣
∣
∣
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∣[wi ]Rj

∣
∣
∣
∣
∣

k

⎞

⎟⎟
⎠− 1

n
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j=1

∑k
i=1

⎛
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∣
∣
∣
∣
∣[wi ]Rj

∣
∣
∣
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k

⎞

⎟⎟
⎠

⎞

⎟⎟
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2

∑n
j=1

∑k
i=1

⎛
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⎝1−

∣
∣∣∣∣[wi ]Rj

∣
∣∣∣∣

k

⎞

⎟⎟
⎠

.

(39)

Therefore, we establish the mapping relationship between

Cv(MKAM(W)) and

⎛

⎝1 −
∣
∣∣
∣[wi ]Rj

∣
∣∣
∣

k

⎞

⎠, i.e.,

λ

⎛

⎝1 −
∣
∣∣[wi]Rj

∣
∣∣

k

⎞

⎠ = Cv(MKAM(W))

� Cv(KAM({Rj )}n), (40)

where λ(·) satisfies (12). The proof is completed.

6.1 The relation between λ(·) and KGR(R), REN(R),
KEN(R) and KAM(R)

According to Theorems 1-4, we summarize the intrinsic
properties of function λ(·). Specifically, we can capture the
following three important pieces of information:

1. Universality Measurement function λ(·) establishes an
internal relationship with Cv(·) (e.g., (19)), in the final
mathematical expression, we find that the set W does
not affect (12). In other words, (12) is applied to any
finite set (only requires W can be divided according to
some relation R), which means that the function λ(·)
has universality.

2. One-to-one correspondence between four measure-
ment functions and the input of λ(·) For example,

log2 |[wi]Rj
| corresponds to REN(Rn); 1 −

∣∣
∣
∣[wi ]Rj

∣∣
∣
∣

k

corresponds to KAM(Rn). Therefore, λ(·) achieves

formal unification of the four different measurement
functions.

3. Monotonicity The function λ(·) can uniformly describe
these four different measurement tools in a two-
dimensional plane. Since

∣
∣
∣[wi]Rj

∣
∣
∣ ∈ R, thus that,

|[wi]Rj
|, log2 |[wi]Rj

|, log2
k∣

∣∣
∣[wi ]Rj

∣
∣∣
∣

and 1 −
∣
∣∣
∣[wi ]Rj

∣
∣∣
∣

k

can be described by the parameters x, log2(x), log2(
k
x
),

and 1 − x
k

, where x > 0, k ∈ Z
+, and they are all

elementary functions in a two-dimensional plane.

Equivalent representation According to λ(·) and Cv(·),
we use λ(·) to describe Cv(·) equivalently. In addi-
tion, according to (12), we see that the difference
between Cv(MKGR(W)), Cv(MREN(W)), Cv(MKEN(W))

and Cv(MKAM(W)) are completely dependent on their dif-
ferent inputs |[wi]Rj

|, log2 |[wi]Rj
|, log2

k∣
∣
∣∣[wi ]Rj

∣
∣
∣∣

and 1 −
∣∣
∣
∣[wi ]Rj

∣∣
∣
∣

k
. Therefore, the difference between four mathemat-

ical tools for measuring the uncertainty of [W,R] can be
represented by x, log2(x), log2(

k
x
), and 1 − x

k
.

Interval range Observably, considering the monotonicity of
each function, we can obtain that in the interval [α, β], the
In (10) always holds, where α satisfies α = x1 = √

k (i.e.,
log2(x1) = log2(

k
x1

)), and β satisfies β = x2 = 2k or

x2 = k (i.e., 1− x2
k

= log2(
k
x2

)). Consequently, we obtain an

initial range, that is [√k, 2k], k ∈ Z
+. However, 1 − x2

k
=

1 − 2k
k

= −1, which contradicts with 1 −
∣
∣
∣∣[wi ]Rj

∣
∣
∣∣

k
≥ 0

(because
∣
∣
∣[wi]Rj

∣
∣
∣ ≤ k). Then the value of βmin should be

subject to 1 − x2
k

= 0, i.e., β = x′
2 = k. Therefore, we

obtain that,

Corollary 1 If
∣∣
∣[wi]Rj

∣∣
∣ ∈ [α, β] = [x1, x

′
2] = [√k, k] ⊆ [�√k�, k], (41)

where �k� is ceiling function, i.e., �k� = min{n ∈ Z|k � n}
(e.g., �2.4� = 3). Then,

Cv(MKGR(W)) > Cv(MREN(W)) > Cv(MKEN(W))

> Cv(MKAM(W))

For an intuitive experience, we provide two visualiza-
tions of the different evaluation functions of x, log2(x),
log2(

k
x
), and 1 − x

k
under different k values. According to

Fig. 1 (k = 16), and Fig. 2 (k = 25), we can clearly see the
difference between the four measurement functions.
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Fig. 1 A visualization of the
different evaluation functions x,
log2(x), log2(

k
x
), and 1 − x

k
at

k = 16

Note We provide two visual examples to understand the
unified representation of these four measurement functions,
which correspond to the four different inputs of the unified
metric function λ(·). In the previous section, we provide
an explicit interval within which the Inequality (10) holds
strictly. However, as shown in Figs. 1 and 2, the magnitude
relations of the four measurement functions are not unique,

if
∣∣
∣[wi]Rj

∣∣
∣ ∈ (0,

√
k). In summary, we conclude the

following:

1. When
∣
∣∣[wi]Rj

∣
∣∣ ∈ [√k, k], inequality (10) holds

strictly. In other words, KAM(R) has a much better
performance for measuring the uncertainty of KBs.

2. When
∣
∣
∣[wi]Rj

∣
∣
∣ ∈ (0,

√
k), the four measurement

functions do not show regularity in the results, and
KAM(R) almost always shows better performance.
Note that since k represents the number of samples in

the dataset, the interval
∣
∣
∣[wi]Rj

∣
∣
∣ ∈ (k, +∞) does not

exist in practice, so we will not discuss this situation.

Comparison analysis λ(·) formally unifies KGR(R),
REN(R), KEN(R), and KAM(R). Next, we visualize the
similarities and differences between λ(·) and KGR(R),
REN(R), KEN(R), and KAM(R) by Figs. 3 and 4.

It is worth noting that λ(·) is not a new measurement
function, which is used as a unified equivalent form of
KGR(R), REN(R), KEN(R), and KAM(R). Therefore,
the following analysis does not involve a comparison of
performance, while focusing on the differences between
λ(·) and each measurement function in terms of principle,
interpretability. Specifically, as shown in Figs. 3 and 4,
we summarize the comparison between λ(·) and KGR(R),
REN(R), KEN(R), and KAM(R) as follows:

1. Measurement principle: For KGR(R), REN(R),
KEN(R), and KAM(R), they focus only on outputting
specific numerical results (e.g., coefficients of varia-
tion) in their studies of measures of uncertainty for
knowledge bases. In other words, the comparison of
the performance between these measurement functions

Fig. 2 A visualization of the
different evaluation functions x,
log2(x), log2(

k
x
), and 1 − x

k
at

k = 25
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Fig. 3 Comparison of the measure values of the four measurement
functions

is also limited to the presentation by the magnitude of
the statistical values they compute. Unfortunately, this
comparison at the level of results alone does not reflect
why the four measurement functions differ. For exam-
ple, in the case where the potential association between
KGR(R), REN(R), KEN(R), and KAM(R) are not
considered, it does not reveal the reason, although it
can reflect that the value of “pink” is (almost always)
greater than the value of “blue” (as shown on the left in
Fig. 3).

2. Interpretability: As shown in Fig. 4, λ(·) integrates the
four measurement functions in a unified measurement
framework, where different inputs correspond to
different outputs. In Theorem 1, we have proved that
λ(·) has the following form, i.e.,

λ(·) =

√

n ·∑n
i=1

(∑k
i=1(·) − 1

n

∑n
j=1

∑k
i=1(·)

)2

∑n
j=1

∑k
i=1(·)

,

x = |[wi]Rj
| ∈ Z

+.

Obviously, for determined x, n, and k (which can be
determined from the knowledge base), λ(·) involves
only changes in values and therefore does not change
the monotonicity of the original input. This excellent
property allows the comparison between different
outputs based on λ(·) to be translated into a comparison
of their corresponding inputs, i.e., x, log2(x), log2(

k
x
),

and 1 − x
k

. Fortunately, each of the above four inputs
corresponds to four more primitive functions and can

Fig. 4 Comparison of the outputs in λ(·) corresponding to the four different inputs

be compared (as shown in Figs. 1 and 2). Thus,
although λ(·) is not a new measurement function, as a
unified integrated framework for KGR(R), REN(R),
KEN(R), and KAM(R), it explains the differences in
the metric values of different measurement functions by
comparing x, log2(x), log2(

k
x
), and 1 − x

k
.

Limitations In RST, knowledge reflects the ability to clas-
sify some objects [45]. Specifically, in a KB, the set of
entities we are interested in a certain field can be regarded
as a finite set (or universe) W and any subset C ⊆ W
is called a category (or concept) in W, which contains
many entities. The concept family, which contains many
concepts, is called abstract knowledge about W. A KB
over W is equivalent to a family of classifications over W.
Objects in a KB can be divided according to their differ-
ent attributes. For example, given a set W, which contains
many candies, and suppose these candies have differ-
ent colors (e.g., white, yellow, red) and shapes (e.g.,
round, square, triangle), then, these candies can be described
by attributes such as color and shape, e.g., red
round candies, or yellow triangle candies,
etc. According to different attributes, we can describe the
specific situation of these candies by a certain attribute (e.g.,
color and shape). Hence, we can obtain two equiva-
lence relations (or attributes) from the above example, i.e.,
R = {R1,R2} = {color, shape}. According to these
equivalence relations, the corresponding equivalence class
can be further obtained. The elements in the set W are
divided and recombined according to the equivalence rela-
tions, e.g., candies are divided by color.

7Measures of uncertainty for KBs without
attribute information

In the previous section, we analyze the performance of
different measurement functions in measuring the uncer-
tainty of KBs. The limitation of previous research is that
the division of instances in a KB can often only depend
on their attributes. However, the type of knowledge base
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has changed with the needs of real applications, and some
of the knowledge bases do not contain the attributes of the
instances or lack sufficient attribute relations to classify the
instances (e.g., ProBase). In this section, we first provide
the definition of concept structure of ProBase (see Defini-
tion 6). And then, we provide an effective strategy to induce
KBs from ProBase, and instances in induced KBs can be
classified by their concepts.

7.1 Inducing KBs from ProBase: intuition

According to the definition 4, for the sake of simplicity of
description, we use a [T,H] to represent a KB induced by
ProBase. In fact, in ProBase, all KBs are induced by the
same strategy. Hence, in the rest of this paper, we unify
all knowledge bases into [T,H] for theoretical analysis.
Specifically, the more accurate description is that T is the set
containing a large number of instances, which refer to nodes
that no longer have hyponyms in Pobase, and H is the family
of hypernyms (or concepts) set of instances. Therefore, in
this paper, we do not strictly distinguish the difference
between InstanceOf and SubClass. In most downstream
tasks, the two can be unified as the isA relationship.

Definition 12 (ProBase [34]) ProBase3 is probabilistic
of taxonomy, which contains hundreds of millions of
instances, concepts, and isA relationships. isA relationship
can be specified as InstanceOf relation between a concept
and an instance (e.g., (Snoopy, isA, dog)) or SubClass
relation between a pair of concepts (e.g., (fruit, isA,
botany)).

Classifications We first use a simple example to illustrate
the intuition that the instances in ProBase can be classified
according to their concepts.

Example 2 Given a finite set T1 = {dhol, tiger, lion, wolf},
if T1 is divided by the equivalence relation Ha =
{carnivore}, the equivalence class of T1 can form an
independent set, i.e., T = C, where

C = T1/Ha = [dhole, tiger, lion, wolf ]H=carnivore.

If T1 is divided by the equivalence relation

Hb = {beast division} = {H1,H2} = {canidae, felidae}.
Then T1 can be divided into C = T1/Hb = {C1, C2},

where

C1 ={dhole, wolf}R1=canidae, and C2 ={tiger, lion}R2=felidae.

As can be seen from Example 2, T1 can be divided by
Hb ∈ H to obtain C1 and C2.

3https://www.microsoft.com/en-us/research/project/probase/

For ProBase, the dimension of T = {Ci}m can be
determined by H, hence, T = {Ci}m can be regarded as a
vector in vector space. Note that, suppose [T,H] be a KB
induced by ProBase, where T is the set of instances, and H is
the family consisting of the set of hypernyms (i.e., concepts)
of instances, then the choice of concepts is constrained.
This means that the instances in T can be divided by H.
Therefore, in this paper, we regard an equivalence relation
(i.e., attribute) in the KB as a concept (i.e., hypernym) in
ProBase. Li et al. [33] define the vector T = {Ci}m as
the knowledge structure of KBs. Similarly, we provide the
definition of the concept structures of [T,H] as follows:

Definition 13 (Concept structures of [T,H]) Suppose
[T,H] be a KB induced by ProBase, if the finite set T =
{ti}k can be divided by relations H = {H1,H2, ...,Hi}, then
we call the vector

CSV(H) = 〈
[t1]H , [t2]H , . . . , [tk]H

〉
(42)

is the concept structure of [T,H].

In Example 2, let t1 = tiger, t2 = lion, and H2 =
{felidae}, then [t1]Hb

� [t2]Hb
, which mean that tiger

and lion are equivalent under relation H2. Similarity, C1

and C2 are equivalent under relation Hb.

7.2 Inducing KBs from ProBase: strategy

Strategy It is worth noting that in ProBase, most instances
belong to many hypernyms, in other words, two or more
different concepts may have the identical instances (e.g.,
the hypernyms of apple can be company, fruit, etc.).
Therefore, intuitively, ProBase can divide instances based
on different levels of hypernyms to obtain multiple KBs, and
the specific division strategy is:

1. Select an instance ti ∈ T which should have at least
three hypernym hierarchies (denoted as hj (ti , q), i ∈
|T|, j, q ∈ Z

+, jmax � 3), i.e.,

ti −→ h1
k(ti , q) −→ h2(ti , q) −→ h3(ti , q) −→ · · · ,

(43)

where x −→ y means x is the hyponym of y. For
example,

corn −→ crop −→ plant −→ · · · (44)

2. Repeat the above strategy, and finally obtain all h1
k(ti)

satisfying (45), i.e.,

ti −→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

h1
1(ti , 1)

h1
2(ti , 1)

...
h1

k(ti , 1)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

−→ h2(ti , 1) −→ · · · (45)

https://www.microsoft.com/en-us/research/project/probase/
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For example.

corn−→crop −→ plant −→ · · · ,

corn−→Monocotyledoneae −→ plant −→ · · · ,

corn−→herbaceous plants −→ plant −→ · · · .

(46)

3. Collect all the instances in each h1
k(ti , 1) to form set T1.

4. Repeat the selection strategy above, similarly, we
collect all the instances in each h1

k′(ti , 2) to form set T2.
For example,

corn −→

⎧
⎪⎪⎨

⎪⎪⎩

food −→ Foods Association −→ · · · ,

...

coarse food grain −→ Foods Association −→ · · · .

(47)

5. Until ti does not satisfy (45), the search is terminated.
The final acquired dataset

[T,H],
T = {T1, T2, ..., Tq},
H = {h2(ti , 1), h2(ti , 2), ..., h2(ti , q)}.
s.t.

{
Ti ∩ Tj,j �=i = ∅,

hypo(h2(ti , qi)) ∩ hypo(h2(ti , qj,j �=i )) �= ∅.

(48)

can be viewed as a sub-dataset induced by ProBase,
based on instance ti . Ti ∩ Tj,j �=i = ∅ ensures that
the same instance is strictly divided according to its
hypernyms. For example, a candy cannot be both red
and blue. hypo(h2(ti , qi)) ∩ hypo(h2(ti , qj,j �=i )) �=
∅ ensures that presence of instances under any
combination of hypo(h2(ti , qi), qi ∈ {1, 2, , ..., q}).

Rationality analysis The strategy is not unique. Similarly,
we also select a concept (the concept must have enough
hypernym hierarchies and hyponym hierarchies) to conform
to the selection strategy of (45). We won’t repeat it here.
Obviously, multiple KBs can be induced from ProBase
based on the above strategy, and the instances in these
KBs can be divided according to their selected concepts.
As a comparison, in [T,H], a “h2(ti , q)” plays the role of
an attribute, and “h1

k(ti , 1)” represents the attribute value.
Therefore, based on the above strategy and analysis, we
theoretically provide a strategy for inducing a KB from
ProBase, and the instances in the induced KB can be strictly
classified based on their selected concepts. Our results
indicate that λ(·) provides valuable insights to integrate
four measurement functions into a unified framework for
measuring the uncertainty of KBs.

8 Experiments

8.1 KBs with attribute information

Comparison of four measurement functions We conduct
experiments on the datasets in Table 4 with the aim of

comparing the performance of four measurement functions,
KGR(·), REN(·), KEN(·) and KAM(·), across different
knowledge bases.

The measure sets construction Specifically, for a KB
[W,R], we denote Ri = ind({fi ∈ R}), where ind(·)
stands for the indiscernibility relation, such as ind(R) =⋂

fi∈RR. Let R be the set consisting of Ri , where R
satisfies Rj = {R1, R2, ..., Rj } (e.g., R3 = {R1, R2, R3}).
Obviously, [W,Rj ] is the knowledge base induced by W.
Therefore, we obtain four measure sets on W as follows:

M(KGR)={KGR(R1), KGR(R2), ..., KGR(Rj )},
M(REN)={REN(R1), REN(R2), ..., REN(Rj )},
M(KEN)={KEN(R1), KEN(R2), ..., KEN(Rj )},
M(KAM)={KAM(R1), KAM(R2), ..., KAM(Rj )},

(49)

Example 3 For example, “Lymphography” in Table 4 can
be viewed as an information system [T,F] with |T| =
148, |F| = 18. We can obtain four measure sets on
“Lymphography” as follows:

MKGR(W)={KGR(R1), KGR(R2), ..., KGR(R18)},
MREN(W)={REN(R1), REN(R2), ..., REN(R18)},
MKEN(W)={KEN(R1), KEN(R2), ..., KEN(R18)},
MKAM(W)={KAM(R1),KAM(R2), ...,KAM(R18)},

(50)

and the values of KGR(Rj ), REN(Rj ), KEN(Rj ) and
KAM(Rj ) are calculated by (4)–(7).

8.2 Experimental results and analysis on
multi-domain datasets

Experimental results The experimental results are shown in
Table 5 and Fig. 5.

Analysis From the results, we conclude that:

1. Consistency of results: We select datasets from differ-
ent domains to validate our theoretical analysis, which
contains different numbers of instances and attributes.
Specifically, 18 datasets involving 6 domains (i.e.,
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Table 4 Data sets from UCI,a

“#X”represents the number of
“X”

Datasets Area #Attributes #Instances

Tic-Tac-Toe Endgame Game 9 958

Chess Game 36 3,196

Dota2 Games Game 116 102,944

Lymphography Life Science 18 148

Mushroom Life Science 22 8,124

SPECT Heart Life Science 22 267

Abalone Life Science 8 4,177

Estimation of obesity levels Life Science 17 2,111

Primary Tumor Life Science 17 339

Breast Cancer Life Science 10 116

Congressional Voting Records Social Science 16 435

Balance Scale Social Science 4 625

Nursery Social Science 8 12,960

Student Performance Social Science 33 649

Letter Recognition Computer 16 20,000

Solar Flare Physical 10 1,389

Car Evaluation Other 6 1,728

MONK’s Problems Other 7 432

ahttps://archive.ics.uci.edu/ml/index.php

game, life science, social science, computer, physical
and other) all consistently demonstrate our theoretical
analysis, i.e.,

Cv(MKGR(W)) > Cv(MREN(W)) > Cv(MKEN(W))

> Cv(MKAM(W)).

2. Metric Performance: For the dataset of different
domains, the value of Cv(MKGR(W)) fluctuates the
most, and it has the worst performance for measuring
the uncertainty of KBs. By contrast, the value of
Cv(MKAM(W)) has good stability, and it has the best
performance for measuring the uncertainty of KBs.

Table 5 Coefficient of variation values of measure sets MKGR(Wi ), MREN(Wi ), MKEN(Wi ), and MKAM(Wi )

Index Datesets Cv(MKGR(Wi )) Cv(MREN(Wi )) Cv(MKEN(Wi )) Cv(MKAM(Wi ))

W1 Tic-Tac-Toe Endgame 1.7879 0.9015 0.4340 0.1186

W2 Chess 1.5765 0.6719 0.5865 0.1276

W3 Dota2 Games 4.6868 2.5229 1.5775 0.6037

W4 Lymphography 1.5971 0.7135 0.4518 0.0946

W5 Mushroom 2.8592 0.6501 0.3279 0.0807

W6 SPECT Heart 0.8096 0.5593 0.2969 0.1384

W7 Abalone 2.0676 1.7854 0.6837 0.1041

W8 Estimation of obesity levels 3.6314 3.0076 0.2442 0.1288

W9 Primary Tumor 1.8870 0.8839 0.3288 0.1289

W10 Breast Cancer 1.5247 0.9560 0.3517 0.0980

W11 Congressional Voting Records 1.5189 0.6481 0.3574 0.1253

W12 Balance Scale 1.2943 0.7453 0.4472 0.0861

W13 Nursery 2.0431 0.6978 0.4750 0.1141

W14 Student Performance 3.1088 1.9325 0.2946 0.1643

W15 Letter Recognition 3.1032 1.3883 0.2953 0.0380

W16 Solar Flare 0.9537 0.4224 0.1988 0.0204

W17 Car Evaluation 1.5439 1.0686 0.2148 0.0556

W18 MONK’s Problems 1.3650 0.9847 0.3916 0.1201

https://archive.ics.uci.edu/ml/index.php
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Fig. 5 Coefficient of variation
values of four measure sets on
datasets (a)–(r)

3. Comparison of Cv(MREN(W)) and Cv(MKEN(W)):
As shown in Fig. 5, the gap between Cv(MREN(W))

and Cv(MKEN(W)) is not significant in most of the
datasets, which is consistent with our analysis of the
measurement functions REN(R) and REN(R) in the
previous section. For example, as shown in Figs. 1

and 2, when the value of x is in the interval [√k, k], the
gap between Cv(MREN(W)) and Cv(MKEN(W)) is not
too significant in most cases.

4. Comparison of Cv(MRGR(W)) and Cv(MKAM(W)):
Contrasted with the above conclusion, the gap between
Cv(MRGR(W)) and Cv(MKAM(W)) demonstrates a
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Table 6 Statistical information of D1, D2 and D3

Datasets #concepts (h2(ti , q)) #Instances

D1 3 72

D2 3 123

D3 3 1290

significant difference on almost all datasets, which
is consistent with our analysis of the measurement
functions RGR(R) and KAM(R) in the previous
section. For example, as shown in Figs. 1 and 2, when
the value of x is in the interval [√k, k], the gap between
Cv(MRGR(W)) and Cv(MKAM(W)) will increase as x

increases.

8.3 KBs induced by ProBase

In this section, we aim to induce several KBs from ProBase
based on the above strategy and to perform uncertainty
measurement on the induced KBs. Specifically, we induce
three different sizes of KBs (denoted as D1, D2, andD3)
for the metric, and the specific information of D1 (based
on concept fruit induction), D2 (based on concept corn
induction, containing 123 instances) and D3 (based on
concept corn induction, containing 1290 instances) are
shown in Table 6. The construction method of the measure
sets on D1, D2, and D3 is the same as the construction
method (49) on the general datasets.

8.4 Experimental results and analysis on ProBase

Experimental results The experimental results are shown in
Table 7 and Fig. 6.

Analysis From the results, we conclude that:

1. In datasets D1 and D3, the results show the following
relationship, i.e.,

Cv(MKGR(Di) > Cv(MKEN(Di)) > Cv(MREN(Di)

> Cv(MKAM(Di). (51)

Table 7 Coefficient of
variation values of measure
sets MKGR(Di), MREN(Di),
MKEN(Di), and MKAM(Di) on
dataset Di,i=1,2,3

Datesets Cv(MKGR(Di)) Cv(MREN(Di)) Cv(MKEN(Di)) Cv(MKAM(Di))

D1 0.6217 0.3554 0.4246 0.2498

D2 0.8889 0.5106 0.4073 0.1239

D3 0.2705 0.0891 0.2397 0.0658

The result is in line with our analysis conclusion. As
shown in Figs. 1 and 2, we find that, in the interval
(0,

√
k), there will be a situation where

Cv(MKEN(W)) > Cv(MREN(W)), if
∣∣
∣[wi]Rj

∣∣
∣

∈ [0,
√

k], wi ∈ W. (52)

This fully validates the rigor of our theoretical analysis.
Moreover, this conclusion also reveal that KEN(W) and
REN(W) are greatly affected by the parameter k.

2. In dataset D2, the results reveal the following relation-
ship, i.e.,

Cv(MKGR(W)) > Cv(MREN(W)) > Cv(MKEN(W))

> Cv(MKAM(W)).

This further verifies that Cv(MREN(W)) has stable and
excellent performance in measuring the uncertainty of
the KB.

3. Consistent with the experimental conclusions on the
public datasets, KGR(W) has the worst performance
in measuring the uncertainty of KBs, while KAM(W)

maintains the best performance in measuring the
uncertainty of KBs.

9 Case study

In this section, we provide a small-scale case to visually
demonstrate how to use rough set theory and induction strat-
egy (i.e., Section 7.2) to induce a measurable knowledge
base (denoted as D4) from ProBase. Dataset D4 contains
19 concepts about fruit, and their corresponding hyper-
nyms in ProBase (the selection of hypernyms is based
on the induction strategy in Section 7.2). The statistical
information of D4 is summarized in Table 8.

Further, as in the above experiments, we construct
measure sets on D4, and calculate the coefficient of
variation of measure sets, and the results are shown in Fig. 7.

Obviously, the experimental results based on dataset D4

are consistent with the previous theoretical analysis and
experimental evaluation conclusions. That is KGR(D4) has
the worst performance in measuring the uncertainty of
KBs, while KAM(D4) maintains the best performance in
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Fig. 6 Coefficient of variation values of four measure sets on datasets D1, D2 and D3

measuring the uncertainty of the KB. In particular, the case
study also captures the situation where Cv(MKEN(D4)) is
greater than Cv(MREN(D4)).

10 Discussion

In this section, we hope to bring some guidance and
insight to the study of knowledge base uncertainty through
the results of the theoretical analysis in this paper.
According to Table 5 and Fig. 5, we visually observe that
although Cv(MKGR(W)), Cv(MREN(W)), Cv(MKEN(W)),
and Cv(MKAM(W)) exhibit the theoretical analysis of this
paper on all 18 public datasets, i.e.,

Cv(MKGR(W)) > Cv(MREN(W)) > Cv(MKEN(W))

> Cv(MKAM(W)).

However, a more detailed analysis reveals that there are
significant differences between the different measurement

Table 8 Statistical information of D4

Fruits Hard Soft Non-citrus Citrus

Apple � �
Apricot � �
Banana � �
Berry � �
Cherry � �
Gooseberry � �
Grape � �
Grapefruit � �
Kiwi � �
Melon � �
Orange � �
Papaya � �
Peach � �
Pear � �
Pineapple � �
Plum � �
Raspberry � �
Tomato � �

functions (e.g., in the dataset “Letter Precognition”,
Cv(MKAM(W)) is 0.0380, but Cv(MKGR(W)) can reach
3.1032). Therefore, a single conclusion based on a sin-
gle measurement function is not sufficient. Based on the
theoretical analysis and experimental validation in this
paper, we advocate that the uncertainty of the knowledge
base should be evaluated by combining the four mea-
surement functions. For example, for datasets“Solar Flare”
and “Letter Recognition”, although they differ slightly
in the Cv(MKAM(W)) (Cv(MKAM(W15)) = 0.0380,
Cv(MKAM(W16)) = 0.0204), they differ significantly in the
Cv(MKGR(W)) and Cv(MREN(W)). Therefore, it may be
a more reasonable way to comprehensively consider these
measurement functions.

The rapid development of deep neural networks (DNNs)
in recent years has reached almost every field of AI, mean-
while, many researchers begin to think deeply about the
reliability of prediction results based on neural networks.
There is already evidence that uncertainty (e.g., data uncer-
tainty and model uncertainty) imposes many limitations on
DNNs, such as the lack of transparency of a DNN’s infer-
ence framework [46]. In the previous sections, we focus on
measures of uncertainty for knowledge bases, aiming to pro-
vide a rigorous theoretical analysis for the existing conclu-
sions (e.g., uncover the reasons for performance differences
between measurement functions). We hope these results
will provide insights into understanding the essence of

Fig. 7 Coefficient of variation values of measure sets on dataset D4
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uncertainty (e.g, uncertainty quantification [47]) for knowl-
edge bases.

11 Conclusion and further work

The work of this paper is inspired by the experimental
conclusions of [1]. In [1], the authors verify the superiority
of measuring the uncertainty of KBs based on the
knowledge amount through experiments on three datasets.
Although this conclusion lacks rigorous theoretical analysis,
it encourages us to study why the knowledge-amount-
based measurement function has the best performance
in measuring the uncertainty of the knowledge base.
Therefore, this paper provides deeper insights into the
uncertainty measurement of the knowledge base.

In this paper, we review four popular measurement
functions in measuring the uncertainty for KBs. Then, at
the theoretical level, we integrate the four measurement
functions into a unified new measurement function, which
provides valuable insights for measuring the uncertainty
of KBs. At the experimental level, the experimental
results on the 18 public datasets are consistent with our
theoretical analysis conclusions, which fully demonstrates
the correctness of our theoretical analysis. In addition, for
some special datasets (e.g., ProBase), which contains a
large amount of structured knowledge, there are not enough
attributes to classify the instances in it. This leads to the
inability of the above measurement functions to perform
the uncertainty measurement on ProBase. In order to solve
this issue, we propose an effective strategy, which can
induce sub-datasets from ProBase, and all the instances in
the sub-dataset can be divided according to their concepts.
Comparative experimental results justify the effectiveness
of the strategy and the consistency with the theoretical
conclusions.

Further work Knowledge base, as an indispensable carrier
for the development of artificial intelligence technology
today, provides far-reaching resources for smart devices.
With the increase in the amount of downstream real tasks
and the diversification of real application scenarios, various
types of knowledge bases have appeared one after another,
and their knowledge structures have become more and more
complicated. Therefore, how to measure the uncertainty of
these knowledge bases is the future important work.

In addition, the timeliness, accuracy, and redundancy
of the knowledge base are also important indicators
to measure the knowledge base. Whether a complete
theoretical analysis of the above measurement indicators
can be established is one of our future efforts.
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