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Abstract
Background: It is known that the back muscles of scoliotic subjects present abnormalities in their fiber type
composition. Some researchers have hypothesized that abnormal fiber composition can lead to paraspinal muscle
dysfunction such as poor neuromuscular efficiency and muscle fatigue. EMG parameters were used to evaluate these
impairments. The purpose of the present study was to examine the clinical potential of different EMG parameters such
as amplitude (RMS) and median frequency (MF) of the power spectrum in order to assess the back muscles of patients
presenting idiopathic scoliosis in terms of their neuromuscular efficiency and their muscular fatigue.

Methods: L5/S1 moments during isometric efforts in extension were measured in six subjects with idiopathic scoliosis
and ten healthy controls. The subjects performed three 7 s ramp contractions ranging from 0 to 100% maximum
voluntary contraction (MVC) and one 30 s sustained contraction at 75% MVC. Surface EMG activity was recorded
bilaterally from the paraspinal muscles at L5, L3, L1 and T10. The slope of the EMG RMS/force (neuromuscular efficiency)
and MF/force (muscle composition) relationships were computed during the ramp contractions while the slope of the
EMG RMS/time and MF/time relationships (muscle fatigue) were computed during the sustained contraction.
Comparisons were performed between the two groups and between the left and right sides for the EMG parameters.

Results: No significant group or side differences between the slopes of the different measures used were found at the
level of the apex (around T10) of the major curve of the spine. However, a significant side difference was seen at a lower
level (L3, p = 0.01) for the MF/time parameter.

Conclusion: The EMG parameters used in this study could not discriminate between the back muscles of scoliotic
subjects and those of control subject regarding fiber type composition, neuromuscular efficiency and muscle fatigue at
the level of the apex. The results of this pilot study indicate that compensatory strategies are potentially seen at lower
level of the spine with these EMG parameters.
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Background
Scoliosis can be biomechanically described as a three-
dimensional deformity of the spine, with deviations from
the physiologic curves in the sagittal and frontal planes,
usually combined with intervertebral rotation [1]. The
disease often occurs during childhood or adolescence. It
can be associated with congenital malformation of one or
many vertebraes, fracture and/or dislocation of the spine,
leg length discrepancy, hormone imbalance, habitual
poor posture or by pain and muscle spasms [2]. When the
deformity cannot be associated with any of the aforemen-
tioned causes, it is then labelled as "idiopathic scoliosis".
Idiopathic scoliosis is the most common diagnosis given
to a deviation of the spine [2,3] and despite the fact that a
considerable number of studies aimed at explaining its
etiology, the cause of idiopathic scoliosis is still unknown.

Back muscle composition and idiopathic scoliosis
Biopsy studies shows abnormalities in the paraspinal
muscles of scoliotic subjects concerning their architecture
[4], their protein synthesis [5] and their muscle fiber type
composition [1,6,7]. Even if many authors have investi-
gated the alteration of the muscle fiber characteristics of
paraspinal muscles with regards to idiopathic scoliosis, it
is still not known if the observed differences are the cause
of the disease or a consequence of it [1,6,7]. Idiopathic
scoliosis affects mostly young women [8] and the major
curve is often located in the thoracic spine. These facts
raise a difficulty when one tries to explain the etiology of
this disease through the alteration of muscle fibers
because there is not much information on healthy backs,
especially with regards to women and to muscles of the
thoracic spine. Sirca & Kostevc [7] found that there was
more type I than type II muscle fibers in the thoracic
spine. However, their study included male subjects only.
Mannion et al. [6,9] have investigated the muscle fiber
composition in both genders at T10 and L3 levels. In their
female subjects group, type I muscle fibers were present in
a larger proportion than type II muscle fibers at the level
of the thoracic spine. Moreover, type I muscle fibers pre-
sented a larger diameter at the thoracic level than at the
lumbar level and also had a larger diameter than type II
muscle fibers at both levels of the spine.

When one looks at the muscle fiber composition of scoli-
otic subjects, an important factor is whether or not the
muscles are located on the concave or the convex side of
the major spinal curve. Studies have demonstrated that
the concavity of the curve shows alteration of fiber charac-
teristics [6,10,11]. In general, in the muscle of scoliotic
subjects taken at the same level of the spine (apex around
T9, T10), the proportion of type I muscle fibers is smaller
on the concave side than on the convex side whereas in
normal subjects, a symmetric distribution is observed.
However, type I muscle fibers are still more numerous

than type II muscle fibers on both sides of the apex [6,10].
The other important difference is that the cross sectional
area (CSA) of type II muscle fibers is larger on the concave
side than on the convex side. Moreover, this CSA of the
type II fibers is larger than in normal subjects [6,12]. Spen-
cer and Eccles [11] have proposed that the difference on
the concave side is due to a disparity in the proportion of
each fiber type (type I fibers in a smaller percentage)
rather than a difference in their relative size.

Surface EMG has been used as a non-invasive correlate to
different muscle intrinsic properties such as muscle fiber
composition, neuromuscular efficiency (related to weak-
ness) and muscle fatigue. Obviously, the detection of dif-
ferences in muscle fiber composition would be the
primary focus of an EMG study. However, it would also be
of interest to determine if scoliotic subjects also show
other muscle impairments such as muscle weakness and
fatigue. The rationale that justify the use of surface EMG
to measure each of these muscle intrinsic property will be
developed in the next sections.

Assessment of muscle composition with the EMG MF/force 
relationship
Muscle biopsy remains the technique commonly used to
study muscle fiber type composition. However it has been
suggested that the MF/force relationship could potentially
be used as a non-invasive measure of muscle fiber compo-
sition and muscle fiber size [13,14]. The conduction
velocity of the muscle fibers has been shown to be propor-
tional to the diameter of the recruited muscle fibers [15].
The central tendency statistics such as the MF and the
mean power frequency (MPF) of the EMG power spec-
trum are highly correlated with the average muscle fiber
conduction velocity [13,16,17]. Thus, it is expected that
the values of the MF or the MPF will increase with the
increasing force level due to the recruitment of larger type
II muscle fibers [14,18,19]. However, with atypical mus-
cles such as the erector spinae where the predominant
type I fibres have an equal or larger diameter than type II
fibres [9,20], the MF remains usually stable or decreases in
some cases across the force levels [21].

Assessment of neuromuscular efficiency with the EMG 
RMS/force relationship
One EMG measure of interest associated with the func-
tional capacity of a muscle is linked to the "neuromuscu-
lar efficiency" concept [22]. This concept suggests that a
weak subject would produce more EMG than a stronger
subject to generate a given absolute force, thus less effi-
cient muscle contractions are characterised by steeper
RMS/force relationship slopes [23,24]. This concept has
been used to study muscles of subjects suffering from neck
pain [25] and cerebro-vascular accident (CVA) [26]. It
appears that with reliable EMG parameters, some
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differences in efficiency are observed among subjects who
are experiencing pain [25] whereas among CVA subjects,
it was only partially demonstrated [26].

Assessment of muscle fatigue with the EMG RMS/time and 
MF/time relationships
To sustain a sub-maximal contraction for a substantial
amount time, the recruitment of new motor units is nec-
essary. While the contraction is ongoing, the muscle pro-
duces more EMG [27]. When the EMG amplitude (RMS)
is plotted against time, the slope of the RMS/time relation-
ship is generally positive. However, when one looks at the
median frequency (MF) of the power spectrum over time,
the MF/time slope presents a negative relationship dem-
onstrating a shift toward lower frequencies. The MF
decrease of the EMG power spectrum during a fatiguing
muscle contraction is mainly attributed to the decrease of
the conduction velocity [28], which reflects the accumula-
tion of metabolic products on the surface area of the mus-
cle fibers. That could also explain the shift of the MF of the
power spectrum towards lower frequencies. The EMG
RMS and MF of the power spectrum can thus be consid-
ered sensitive measures of muscle fatigue [27,29].

The above EMG measures have been successfully used to
study the paravertebral muscle activity in normal and
back pain subjects [21,30-32]. Before using a similar
measurement protocol in a cohort of scoliotic subjects
and considering the difficulty of recruiting scoliotic
patients before surgery, a pilot study was conducted on a
small number of patients. The main objective of this pilot
study was to examine the clinical potential of these differ-
ent EMG parameters for assessing the back muscles of
patients presenting idiopathic scoliosis, using a triaxial
dynamometer allowing the measurement of asymmetric
efforts during extension contractions. More specifically,
the sensitivity of these EMG measures (amplitude and
MF) to detect muscle weakness and muscle fatigue was
assessed among scoliotic subjects and contrasted with
normal subjects. Also, the sensitivity of these EMG param-
eters to the known muscle morphological differences
between the concave and convex side in scoliotic subjects
was explored.

Methods
Subjects and tasks
The control group (CG) was composed of ten young
women with no back problem or physical disability. They
were recruited among the children of parents attending a
physiotherapy clinic. Subjects were excluded if they had
experienced back pain in the last six months prior to the
experiment. Six young women with a diagnosis of idio-
pathic scoliosis formed the scoliotic group (SG) and they
were recruited from the Clinique de la Scoliose of Ste-Jus-
tine Hospital in Montreal. Any scoliotic subject having

experienced episodes of back pain in the last six months
prior to the experiment, who was on a specific treatment
for the scoliosis, had been wearing a corset for more than
three months at the time of the experiment or for more
than six months prior to the experiment was excluded.
Explanations concerning the experimental protocol were
given and a written consent form was signed by all the
subjects and their parents. The subjects' characteristics
were for the scoliotic group (age: 16 ± 3.5 years; height:
160.6 cm ± 10.2; mass: 51.3 Kg ± 8.5; L5/S1 peak exten-
sion moment: 100.2 Nm ± 40.2; handedness: all right;
Cobb's angle (all right thoracic curve, apex T8–T10):
35.6° ± 4.2) and for the control group (age: 14.4 ± 2.6
years; height: 154.6 cm ± 10.4; mass 44.8 Kg ± 8; L5/S1
peak extension moment: 100.7 Nm ± 33.3; handedness:
all right).

After the EMG electrodes were positioned and the subject
was stabilized in the static dynamometer, two to three
submaximal extension contractions were performed in
order to get used to the apparatus. Then, two maximal vol-
untary contractions (MVC) in extension were performed
and the highest value was kept to obtain a reference value
for the following tests. The neuromuscular efficiency test
consisted of three 7 s ramp extension contractions from
0% to 100% MVC separated by a two minute rest period.
The rate of the contraction had to be paced with the speed
of a target. If this condition was not respected, the trial was
rejected and repeated after an adequate rest period. The
ramp demonstrating the best control was kept for data
processing.

For the muscle fatigue test, the subjects performed a 30 s
extension static contraction at 75% MVC as proposed by
van Dieen & Heijblom [33]. Again, visual feedback was
given to the subject on a computer screen located in front
of her.

Dynamometry
The subjects stood in a dynamometer which consisted of
a triaxial force platform (Advanced Mechanical Technol-
ogy Inc., model MC6-6-1000) allowing simultaneous
measurements of static moment generated around the
trunk three axes (flexion-extension, lateral flexion and
rotation) at the level of L5-S1 joint during an isometric
effort in back extension [34]. The force platform was fixed
on a metal frame and could be adjusted at the superior
part of the trunk to be positioned at the level of T4. The
pelvis, the knees and the feet were stabilized to minimize
movement of the lower body and to isolate back muscle
contractions (Figure 1). The knees were kept in a slightly
flexed position. The L5/S1 extension moments were com-
puted in real time and provided to the subjects as visual
feedback on a monitor positioned in front of them. The
visual feedback consisted of a vertically moving target
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Subject positioned in the triaxial dynamometer with the sign convention of the AMTI force platformFigure 1
Subject positioned in the triaxial dynamometer with the sign convention of the AMTI force platform. Positive My = extension 
moment, positive Mx = right lateral bending moment and positive Mz = left axial rotation moment.

Figure 1:
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with lower and upper bounds corresponding to a toler-
ance limit of ± 10% MVC. It was used to control the pace
of the contraction rate for the neuromuscular efficiency
test and to make sure that the isometric contraction of the
fatigue test was as steady as possible.

Electromyography
Eight active surface electrodes (Model DE-2.3, Delsys Inc.,
Wellesley, MA) were used to collect the EMG signal. Each
pair of electrodes is composed of two silver bars 10 mm
long and 1 mm wide encastrated in non-conductive mate-
rial and separated from each other by 10 mm. The EMG
signal was bandpass filtered (20 – 450 Hz), pre-amplified
with a gain of 1000, analogue to digital converted at a
sampling rate of 4096 Hz and stored on a hard disc for
later analysis. A custom Lab View software (National
Inst.) was used to collect and process force and EMG data.

Electrode sites were identified (details below) and the
thickness of subcutaneous tissues at these electrode sites
was measured twice on each side with a Harpenden skin-
fold caliper. Afterwards, the skin at the electrode sites was
abraded and cleaned with alcohol. The electrodes were
positioned on each side of the following muscles respect-
ing the muscle fibers direction [35]: Multifidus at L5, Ilio-
costalis at L3, Longissimus at L1 and T10. One ground
electrode (snap-on type) was positioned on the spinous
process of T8.

Data processing and statistical analyses
For the neuromuscular efficiency test, 250 ms windows
were selected from the EMG signals at each of the follow-
ing force levels: 10, 20, 30, 40, 50, 60, 70, 80% MVC. The
signal within each window was transformed in RMS and
in MF of the EMG power spectrum (fast Fourier transform,
Hanning window processing). A spectral resolution of 4
Hz was then possible with respect to MF for the efficiency
test (1024 points in a 250 ms window and with a sam-
pling frequency of 4096 Hz). The RMS/force and MF/force
relationships of each muscle were determined using linear
regression. A linear RMS to force relationship was
assumed in the present study based on other studies
showing either a linear [36,37] or a quasi linear [37] rela-
tionship depending on the selected back muscle.

The slope values for the RMS/force relationship were indi-
cators of neuromuscular efficiency, thus weaker muscles
were characterized by steeper slopes. The slope values for
the MF/force relationship reflected the average conduc-
tion velocity of the muscle and indirectly, muscle fiber
type composition.

For the fatigue test, both RMS and MF values were calcu-
lated on a succession of 21 windows (250 ms) equally
placed from the 3rd second to the 25th second of a contrac-

tion lasting 30 seconds at 75 % MVC. The RMS/time and
the MF/time relations were also studied using linear
regression techniques and the slope values were indicators
of muscular fatigue.

To verify if scoliotic subjects produced more asymmetric
efforts than controls during the neuromuscular efficiency
and fatigue tests, the coupled (lateral bending, axial rota-
tion) L5/S1 moments were computed at the same time-
windows as for EMG analyses. For each series of data (effi-
ciency test: 8 values; fatigue test: 21 values) and each sub-
ject, the mean, the minimum and the maximum values
were determined. Student unpaired t-tests were used to
compare groups characteristics such as age, height, body
mass, skinfold thickness at each electrode site and to com-
pare L5/S1 peak extension (during MVC tasks) and cou-
pled moments (during the efficiency and fatigue tasks).

Two-way ANOVAS (2 Groups × 2 Sides) with one
repeated measure (side) were used to compare the slope
values between the two groups and between left and right
sides for the EMG parameters of both the efficiency and
the fatigue tests. The level of statistical significance was set
at 0.05.

Results
Description of subject samples
No intergroup differences were observed by the Student t-
tests performed for age (p = 0.36), height (p = 0.28) and
body mass (p = 0.16). The peak L5/S1 moment produced
in extension was equivalent for both groups as disclosed
by a Student's t-test (p = 0.98).

Concerning the skinfold thickness, although the subjects
of the scoliotic group tended to present higher values for
all muscle sites, no significant difference was shown when
these values were compared with those of the control
group. Similarly, regarding the side factor, again no differ-
ence was observed within each group (paired Student t-
test p > 0.05).

During the efficiency tasks, the coupled L5/S1 moments
in lateral bending and axial rotation were not significantly
different between groups (t-test, p > 0.05). There were no
significant intergroup differences either for mean, the
minimum and the maximum values in both L5/S1 cou-
pled moments (t-test, p > 0.05). In lateral bending (posi-
tive values = right lateral bending), the mean, the
minimum and the maximum values were respectively
0.85, -0.56 and 2.5 Nm for the control subjects and 0.34,
-3.27 and 1.81 Nm for the scoliotic subjects. In axial rota-
tion (positive values = left axial rotation), the mean, the
minimum and the maximum values were respectively
1.86, -0.33 and 4.28 Nm for the control subjects and 1.97,
-1.53 and 5.34 Nm for the scoliotic subjects.
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Similar results were obtained during the fatigue test as no
group differences (Student's t-test, p > 0.05) were
observed. In lateral bending the mean, the minimum and
the maximum values were respectively 1,62, -3,57 and
6,62 Nm for the control subjects and -1.28, -4.37 and 0.71
Nm for the scoliotic subjects. In axial rotation, the mean,
the minimum and the maximum values were respectively
-2.56, -5.36 and 0.42 Nm for the control subjects and -
1.50, -2.84 and 0.82 Nm for the scoliotic subjects.

Assessment of muscle composition
No significant difference in the MF/force relationships
between the two groups were observed for all eight mus-
cles investigated. Regarding side differences, the iliocosta-
lis (L3) showed a nearly significant difference (p = 0.09)
(Table 2). The MF/force slopes were negative for the right
and left multifidus muscles (L5) as well as for the right ili-
ocostalis muscle (L3) in the normal group. In the scoliotic
group, the slopes were negative on both sides of the mul-
tifidus (L5) and iliocostalis (L3) as well as on the right
side of the longissimus (L1).

Assessment of neuromuscular efficiency
Table 1 presents the mean values of the slopes of the
regression line for each measure used for a given muscle
for both the control group and the scoliotic group. Table
2 presents the summary of the two-way ANOVAs with one
repeated measure for each of the muscle investigated and
each of the measures used.

For the EMG signals, no significant differences were found
in the RMS/force relationships obtained between the sco-
liotic and control groups or between the left and right
sides. This was true for each muscle pair investigated
(Table 2).

Assessment of muscle fatigue
As expected, the slopes of the RMS/time relationships
were all positive for all muscles in both groups (Table 1).
There were no significant differences in the RMS/time
relationships (fatigue test) between groups and between
sides for each muscle pair (Table 2).

Table 1: Descriptive statistics for each measure used (slope of a regression line) for a given muscle for both the control (CG, n = 10) 
and the scoliotic group (SG, n = 6)

Mucles Groups Slope value measures (mean (SD))

RMS/Force MF/Force RMS/Time MF/Time

L5 (L) SC 0.80 (0.50) -0.18 (0.38) 0.60 (0.46) -1.04 (0.53)
CG 0.98 (0.53) -0.24 (0.41) 0.54 (0.67) -0.75 (0.82)

L5 (R) SC 0.81 (0.48) -0.21 (0.26) 0.83 (0.86) -0.92 (0.92)
CG 0.99 (0,55) -0.08 (0.59) 0.59 (0.68) -1.12 (0.73)

L3 (L) SC 0.83 (0.56) -0.03 (0.33) 0.54 (0.41) -0.31 (0.64)
CG 1.29 (0.82) 0.00 (0.17) 0.84 (1.28) -0.28 (0.51)

L3 (R) SC 0.67 (0.43) -0.41 (0.24) 1.22 (1.17) -0.70 (0.64)
CG 1.44 (1.42) -0.10 (0.27) 0.90 (1.08) -0.60 (0.57)

L1 (L) SC 1.32 (0.81) 0.07 (0.31) 0.63 (0.72) -0.52 (0.37)
CG 1.08 (0.46) 0.08 (0.19) 0.72 (1.01) -0.57 (0.60)

L1 (R) SC 1.26 (1.14) -0.02 (0.22) 0.63 (0.46) -0.38 (0.37)
CG 1.18 (0.66) 0.11 (0.18) 0.63 (0.74) -0.48 (0.45)

T10 (L) SC 0.68 (0.47) 0.10 (0.24) 0.86 (0.56) -0.49 (0.19)
CG 0.87 (0.37) 0.16 (0.33) 0.58 (0.97) -0.33 (0.38)

T10 (R) SC 0.79 (0.64) 0.04 (0.30) 0.44 (0.39) -0.49 (0.48)
CG 0.80 (0.41) 0.15 (0.22) 0.51 (0.92) -0.23 (0.63)

R/L: Right/Left; L5: Multifidus muscle; L3: Iliocostalis muscle; L1: Longissimus muscle; T10: Longissimus muscle
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For the MF/time relationships, there was a side difference
(p = 0.01) for the iliocostalis (L3) muscles, the right side
showing more negative slopes (more fatigue) than the left
side. However the Group × Side interaction was not signif-
icant (Table 2). The slopes were all negative for all muscles
in both groups (Figure 2 and Figure 3)

Discussion
Control of potential confounders
One factor of importance when interpreting EMG signals
is the skinfold thickness, since it may act as a biological fil-
ter [38]. Fortunately, no differences were found between
subjects, groups and sides. However, the small number of
subjects cannot fully support the control of this con-
founding variable and this will be taken into account in
future research protocols developed from those prelimi-
nary data.

Before contrasting the EMG results of the control and sco-
liotic subjects, it was also important to verify if the efforts
performed in the different planes were similar. Although
it cannot be ascertained that the back muscle forces were
the same between groups, the analysis of the principal
(extension) and coupled (lateral bending and axial rota-
tion) L5/S1 moments demonstrated that the main efforts
were comparable. Thus, contrary to what might be
expected from their asymmetric deformity of the spine,
scoliotic subjects performed coupled L5/S1 moments
comparable to those of the control subjects. This is a new

finding in this literature. Furthermore, the small coupled
moment values, which were either within or close to the
maximal measurement errors of the dynamometer (lateral
bending: 1 Nm; axial rotation: 8.8 Nm) [34], were negli-
gible from a physiological point of view.

Assessment of muscle composition
As seen in the introduction section, there is an alteration
of the muscle fiber type composition on the concave side
of the thoracic curve in scoliotic subjects. The percentage
of type I muscle fibers is reduced in the paraspinal muscles
on the concave side relative to the convex side and relative
to the homologous muscle of non scoliotic subjects
[6,10]. The cross sectional area occupied by type II muscle
fibers is larger in the paraspinal muscles on the concave
side than in those on the convex side and is also larger
than in the paraspinal muscles of normal subjects [6]. The
average muscle conduction velocity should be faster in the
muscles on the concave side than in those on the convex
side. Considering this, a more pronounced increase of the
conduction velocity, and consequently, of MF values,
would have been expected in the paraspinal muscles on
the concave side of the thoracic curve of scoliotic subjects
as the force level increases. This was shown in other stud-
ies using the muscles of the extremities [23,27,28,39].
However, the interpretation of the relationship between
muscle fiber composition (proportions, areas) and spec-
tral parameters is non-conclusive in the literature [22,40-
42] and this section of the study was done on an explora-

Table 2: Summary of the two way ANOVAs with one repeated measure on the side factor for each muscle investigated for the RMS/
force, MF/force, RMS/time and MF/time relationships

RMS/Force MF/Force RMS/Time MF/Time
F p F p F p F p

L5 Group 1.00 0.39 0.66 0.53 0.04 0.96 0.50 0.62
Side 1.78 0.20 0.21 0.65 0.04 0.84 0.21 0.65
Group × 
side

0.63 0.44 0.82 0.38 0.02 0.89 0.56 0.47

L3 Group 1.72 0.22 1.61 0.23 0.46 0.62 4.59 0.17
Side 2.52 0.14 3.13 0.09 0.00 0.97 8.28 0.01*
Group × 
side

1.75 0.21 0.02 0.89 0.87 0.37 2.69 0.12

L1 Group 0.14 0.87 0.20 0.82 0.34 0.72 0.56 0.59
Side 0.10 0.76 0.41 0.53 0.02 0.88 0.18 0.68
Group × 
side

0.10 0.75 0.01 0.91 0.56 0.47 1.08 0.32

T10 Group 0.71 0.51 0.16 0.85 0.97 0.40 0.09 0.92
Side 1.15 0.30 0.11 0.75 0.11 0.75 0.13 0.73

0.61 0.45 0.12 0.73 1.95 0.18 0.09 0.77

* : Statistically significant
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MF/time relationship for both groups for the left Iliocostalis muscle at the level of L3Figure 2
MF/time relationship for both groups for the left Iliocostalis muscle at the level of L3.

Figure 2:
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MF/time relationship for both groups for the right Iliocostalis muscle at the level of L3Figure 3
MF/time relationship for both groups for the right Iliocostalis muscle at the level of L3.
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tory basis. The MF/force slope showed no side difference
in the present study at the level of the thoracic spine. It is
possible that our scoliotic subjects were not affected
enough (small Cobb angle, the younger subjects may not
have altered muscle fiber type composition yet) by their
condition in order to see major alterations in the EMG sig-
nals. The lack of difference can also demonstrate that
either this measure was not sensitive to the back muscle
composition of this population or that there was no dif-
ference in the back muscle composition of the subjects
evaluated.

It is of interest to note that for the muscles at the level of
L5, the values of the MF were compressed towards the
lower frequencies of the spectrum as the force level was
increasing. This could be explained by the recruitment of
type II muscle fibers of the multifidus muscle which are
known to be smaller than type I muscle fibers [29].

Assessment of neuromuscular efficiency
The peak L5/S1 extension moment showed no group dif-
ference. This concurs with other comparative studies con-
trasting scoliotic and normal subjects [43,44]. Given the
same net moment and that the effort was symmetric, we
could speculate that the EMG would be the same in both
groups and on both sides. This was demonstrated with the
results of the present study, where no significant differ-
ences were found in the RMS/force relationships obtained
between the scoliotic and control groups or between the
left and right sides and this, for each muscle pair
investigated.

Contrary to the present findings, data from other studies
demonstrated that muscles of the back on the convex side
of the curve of scoliotic subjects produced more EMG
than homologous muscles of healthy subjects and that
they also produced more EMG than muscles on the con-
cave side [45-47]. However, it cannot be verified from the
data of previous studies if the back asymmetric efforts in
extension, which could have produced these EMG differ-
ences, were similar between groups. Nevertheless, these
differences can also be associated with different experi-
mental procedures involving different position of the sub-
ject as well as different tasks performed.

Assessment of muscle fatigue
The RMS/time slopes were all positive indicating that the
muscles generated more EMG to maintain the level of the
contraction for the required time to perform the task.
However, no group or side differences were disclosed
(Table 2). Likewise, as seen in previous studies on scoli-
otic subjects [46] and low back pain subjects [32,48], the
slopes of the MF/time relationship were all negative, also
indicating the presence of muscle fatigue. In the present
study, no between-group differences were shown for this

parameter. Thus, since the L5/S1 peak extension moment
and the MF/time relationship were equivalent in both
groups, the muscle endurance was similar and this for all
the muscles evaluated. This is in accordance with the
results of Zetterberg [46], although it is not mentioned if
their subjects have performed similar symmetric efforts.

The MF/time slope showed a significant side effect in the
iliocostalis muscle at the level of L3 but the Group × Side
interaction was not significant. A side difference at the
lumbar spine was shown in another study on muscles of
low back pain subjects [32] and one possible explanation
can be related to side dominance [45]. The back muscles
on the non-dominant side showed less muscle fatigue and
this was significant in the right handed population [49].
This is in accordance with the results of the present study
where all subjects were right handed and where the MF/
time slopes on the right side were more negative, indicat-
ing greater signs of muscle fatigue.

Some limitations of the study must be addressed. Group
or side discrimination in the muscle efficiency and in the
muscle fatigue tasks may not have been possible in the
muscles of the thoracic spine due to the small number of
subjects. Data obtained from the present study will be
used to carry out some power calculations in order to
determine the number of subjects needed to demonstrate
a clinically significant difference in the main outcome
measures between scoliotic subjects and controls in the
next step of this research. It is also a possibility that the
scoliotic subjects who participated to the study were not
impaired enough to show any alteration in their muscle
function and or in their muscle fibers.

Conclusion
The EMG parameters used in this study could not discrim-
inate the back muscles of scoliotic subjects from those of
control subject regarding muscle fiber composition, neu-
romuscular efficiency and muscle fatigue at the level of
the apex, where abnormal muscle fiber composition is
observed from biopsy data. However, the results of this
pilot study showed a side difference for muscles located at
lower level of the spine (L3). That might be an indicator
that the erector spinae at the thoracic level might rely on
compensatory strategies involving muscles located in the
lumbar area to maintain a specific torque level during a
fatigue task.
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