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Simple Summary: The reactivation of embryonic developmental programs is crucial for melanoma
cells to grow and to metastasize. In order to understand this process better, we first summarize the
melanocytic differentiation process both in vivo and in vitro. Secondly, we compare and highlight
important similarities between neural crest cell fate during differentiation and tumor cell characteristics
during melanoma mestastasis. Finally, we suggest possible therapeutic targets, which could be
used to inhibit phenotype switching by developmental cues and hence also suppress the metastatic
melanoma spread.

Abstract: Malignant melanoma represents a highly aggressive form of skin cancer. The metastatic
process itself is mostly governed by the so-called epithelial mesenchymal transition (EMT), which
confers cancer cells migrative, invasive and resistance abilities. Since EMT represents a conserved
developmental process, it is worthwhile further examining the nature of early developmental
steps fundamental for melanocyte differentiation. This can be done either in vivo by analyzing
the physiologic embryo development in different species or by in vitro studies of melanocytic
differentiation originating from embryonic human stem cells. Most importantly, external cues drive
progenitor cell differentiation, which can be divided in stages favoring neural crest specification or
melanocytic differentiation and proliferation. In this review, we describe ectopic factors which drive
human pluripotent stem cell differentiation to melanocytes in 2D, as well as in organoid models.
Furthermore, we compare developmental mechanisms with processes described to occur during
melanoma development. Finally, we suggest differentiation factors as potential co-treatment options
for metastatic melanoma patients.
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1. Introduction

Melanoma arises from melanocytes and represents the most dangerous form of skin cancer, as it
frequently metastasizes to distant organs. Melanoma is generally hallmarked by activating MAPK
(Mitogen Activated Protein Kinase) mutations and loss of the cell cycle suppressor gene CDKN2A,
while functional TP53 is often retained [1,2]. A recent study analyzed the mutation profile in 331
patients and found melanoma subtypes based on mutation patterns, with 52% of cases hallmarked by
a V600E mutation in BRAF, 28% showing mutations in NRAS and 14% in NF1 [3].

The metastatic process occurring during melanoma progression has been described as a switch
in the tumor phenotype from a mainly proliferating type to a highly invasive type [4]. Importantly,
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this process is characterized by onset and reversion of epithelial mesenchymal transition (EMT) in a
repeating process. Hence, phenotype switching can occur multiple times at different sites in the human
body. It is postulated that this process is one of the main reasons for the aggressiveness of human
malignant melanoma and it has been shown that the transcription factors TWIST, ZEB1 and STAT3 are
its main drivers [5–7].

During development, EMT enables epithelial cells of different tissues to become migratory and
have the capacity to move freely through the extracellular matrix [8,9]. This process can be fully reversed
by counter regulation of the same genes [10,11]. During EMT, cells lose their cell-cell-junctions [12],
as TGFβ recruits TGFBR2, which phosphorylates PAR6 and which then leads to the degradation
of RhoA [13], an essential protein for these junctions. Cells also lose their adherence to the cellular
matrix [12] by internalization of E- and β-catenin [14,15] because of the induction by growth factors
and subsequent internalization and degradation [16].

EMT itself is a well described sequence of events in which cell adhesion molecules like E-cadherin,
claudins, occludin, plakophilin and desmoplakin become down-regulated, thus destabilizing cell-cell
adhesion and cell junctions [17–19]. In this process, the Snail family of zinc-finger transcription factors
and Twist, a basic helix-loop-helix transcription factor, have an essential role, converting epithelial
cells into migratory mesenchymal cells [20,21]. These factors are not only important for organogenesis
during embryonic development and wound healing later on, but can also be used by tumor cells to
acquire invasive properties. The main function of Snail and Twist is to down-regulate E-cadherin
expression and up-regulate mesenchymal proteins including N-cadherin. This changes the adhesive
properties of the cell in a process referred to as cadherin switching [22]. These transcription factors
also induce changes in the cytoskeleton that are necessary for the induction of motility [23], especially
the expression of intermediary filaments like vimentin [24].

This review will first provide examples from the literature where developmental cues have
inhibited aggressive melanoma progression. Then, to elucidate the nature of such cues, embryonic
stem cell differentiation models towards melanocytes will be discussed. Furthermore, parallels
between developmental stages of melanocyte differentiation and different tumor stages will be drawn.
Finally, we will outline possible future melanoma treatment with regards to influencing melanoma
differentiation and thereby inhibiting the dynamic process of phenotype switching.

2. Evidence for a Role of Development-Associated Factors during Melanoma Progression

During embryonic development there are numerous examples where the embryo
microenvironment displays a tumor suppressive effect on melanoma cells. Early evidence for
such a phenomenon was found when B16 murine melanoma cells were transplanted into the skin
of mid gestation mouse embryos, which resulted in reduced tumor incidence [25]. Additionally,
embryo-derived factors from the skin could also reduce tumor proliferation in vitro. When human
melanoma cells were transplanted into chick embryos, the invading melanoma cells displayed neural
crest-like characteristics and did not form tumors; instead, melanoma cells responded to cues from
the surrounding host tissues and migrated along routes also used by neural crest cells [26]. In zebra
fish, phenotype switching of melanoma cells was observed [27]. In this study extravasated and
migration-arrested melanoma cells became differentiated and showed a highly proliferative status.

Considering the above examples of the microenvironment acting upon melanoma cells and
altering their behavior, it is reasonable to conclude that specific developmentally controlled factors
have the potential to influence human melanoma progression. Hence, understanding neural crest
induction and further differentiation towards melanocytes could provide information on additional
factors suitable for melanoma treatment. Additionally, model systems which enable the investigation
of stem cell differentiation towards the melanocytic lineage are of great interest, since they allow the
identification of such extrinsic differentiation factors under laboratory conditions.
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3. In Vivo Differentiation of Melanocytes

Melanocytes are cells of the neural crest, a unique ectodermal cell population of vertebrates
derived from the outermost layer of the neural tube [28]. When the neural plate of the early embryo
folds onto itself to become the neural tube, the small area of cells along the border becomes free from
both the epidermis and the newly formed neural tube and undergoes EMT as described in Figure 1 on
the left panel. These cells migrate through the body and differentiate into various cell types of the
neural crest lineage: the cranial neural crest, the cardiac neural crest, the trunk neural crest, the vagal
and the sacral neural crest [28]. The cranial neural crest differentiates further into cells of the thymus,
some bones of the jaw and the odontoblasts, among others [29]. The cells of the cardiac neural crest
form cartilage, connective tissue and differentiate into melanocytes of the head region [30]. The trunk
neural crest forms cells of the adrenal gland, the nerves surrounding the aorta and also melanocytes
(those of the rest of the body) [31]. The vagal and the sacral neural crest form the enteric ganglia [31,32].

Figure 1. Comparison of embryonic melanocyte generation and the metastatic process in malignant
melanoma. Left panel depicts neural tube formation and subsequent delamination. Migration of neural
crest cells is indicated following terminal differentiation after invasion into the epidermis. Right panel
depicts primary melanoma growth and subsequent migration and invasion of cells until melanoma
cells colonize distant metastatic sites.

Trunk neural crest cells are further divided into two distinct subpopulations—dorsal and ventral
trunk neural crest—after the direction of their migration. The dorsal trunk neural crest differentiate
into the main population of melanocytes, while the larger part of the ventral trunk neural crest
produces neurons of the dorsal root ganglia, sympathetic chain and adrenal medulla, as well as a small
subpopulation of melanocytes [33]. Melanocytes reach the skin during its innervation, as the Schwann
cell precursors innervate the skin along with the cells of the ventral trunk neural crest that later become
neurons [34]. This process of skin innervation, during which congenital or prenatal nevi appear [35],
takes place in pregnancy weeks six to eight [34,35]. After the 13th week of pregnancy, the majority of
melanocytes are located at their final destination [36].

Melanocytes are derived from glial-melanocyte precursors called melanoblasts, a stem cell
population, which also gives rise to glial Schwann cells. A fully developed glia cell—if put
into melanocytic medium—will give rise first to progenitor cells and later on to fully developed
melanocytes [37]. Further evidence exists that melanocytic stem cells derived from the ventral trunk
neural crest are also located in some cutaneous nerves and are regulated by nerve signaling [38].

Melanoblasts proliferation occurs within the same time period, not concomitantly but in an
alternating cycle, as their migration into the skin. For this process to take place, multiple steps
of changes in gene regulation need to occur. The master regulator of melanocyte development is
the so-called microphtalmia-associated transcription factor (MITF), a basic helix-loop-helix leucine
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zipper transcription factor. Markers for melanocyte precursors include c-kit, SOX10, MITF, TYRP-2
and Pax 3 [39–41]. Migration is controlled by the extracellular matrix via receptors for a specific
kind of endothelin (EDNRB2) and for ephrin (EphR) [42,43], although the process is yet to be fully
understood. For the development of melanocytes from the neural crest, essential proteins including
various endothelins, SCF (Stem Cell Factor), Wnt proteins and Neuregulin-1 [44,45] are needed;
most of them will induce MITF expression [39,46]. This process is best described in other works,
including [40,44,45,47]. The main marker for adult melanocytes is the enzyme tyrosinase, a protein
which oxidizes tyrosine to become L-Dopa, the first step in the synthesis of melanin, the so-called
melanogenesis, which is the melanocyte’s main task [48].

4. In Vitro 2D and 3D Differentiation Models for Melanocytes

Deriving melanocytes or melanoblasts in vitro from hESCs (human Embryonic Stem Cells) or
hiPSCs (human induced Pluripotent Stem Cells) provides a valuable tool for studying melanocyte
differentiation or to model pigmentation related diseases [49]. Differentiation protocols follow in
general the same path as in vivo: hPSCs are first induced to differentiate into neural crest cells, then
into melanoblasts and finally are matured into melanin producing melanocytes which correctly home
to the basement membrane in an organotypic skin reconstruction assay [50,51].

The induction of neural crest cells at the neural plate border before undergoing EMT and migrating
out of the neural tube relies on BMP, WNT, Notch/Delta and FGF signaling coming from the surrounding
embryonic tissues [52]. Phenotypic differentiation into peripheral neurons, glia cells, bone and cartilage
of the head, smooth muscle cells, melanocytes and endocrine cells will be strongly modulated by the
neural crest cells spatial identity along the neural tube and onset of migration [53]. According to these
developmental programs there are several ways of differentiating neural crest cells from hPSCs in vitro.

Early strategies relied on producing neural rosettes, neurospheres or embryoid bodies interspersed
with neural crest cells by using dual-SMAD inhibition of BMP and Activin A/Nodal signaling and by
promoting WNT signaling [53–55]. This was an inefficient and highly variable approach, as different
groups used different markers for the isolation of neural crest cells (CD271, HNK-1 and SOX10 to
name a few) and the role of the rosettes, neurospheres and embryoid bodies was not well defined in
the induction. Another method is based on direct reprogramming of fibroblasts using transcription
factor SOX10 and WNT activation to derive induced cells from human patients [56].

The preferred protocol for an adherent culture system today is based on the dual-SMAD-inhibition
(DSi) conditions, known to play a role in the differentiation of hPSCs into the central nervous system
lineages [57]. This protocol is optimized for melanocyte specification and has been used to model
pigmentation defects in hESCs and patient-specific iPSCs [50]. In brief, hPSCs seeded on matrigel
matrix are treated for 11 days with two small molecules (LDN193189 and SB431542) which inhibit
BMP, TGF-b, activin and nodal signaling. This triggers the exit from the pluripotent state, prevents
trophectoderm formation and blocks the formation of mesendoderm and non-neural ectoderm. A brief
pulse of WNT activation afterwards will induce neural crest cells with high efficiency. This is achieved
by CHIR99021, a WNT agonist, which selectively inhibits GSK-3b.

The dual-SMAD inhibition/WNT activation protocols derive a neural crest cell population biased
towards the cranial (anterior) identity over the vagal (posterior) one. By adding retinoic acid and/or
BMP to a neural crest induction protocol, vagal [58,59] and trunk [60] neural crest cells could be
generated. While the generation of several neural crest derivatives is restricted to specific locations
along the neural tube, melanogenic and neurogenic progenitors are produced along the entire axis [61],
circumventing the need to specify regionally for the melanoblast precursors.

Melanocyte-competent subfractions of the induced neural crest cells are then isolated based on the
presence of two transcription factors: c-KIT, which plays an important role in melanocyte migration,
proliferation and maturation, and SOX10, which has major roles in the establishment and normal
function of the melanocyte. Both these genes are known to be affected in melanoma patients [62,63].
After sorting, these cells are cultured in defined conditions using media that contains factors important
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for melanocyte maturation (SCF, EDN3, FGF2, CHIR, cyclic AMP, BMP4 and B27). First, pigmented
cells, which contain melanophores appear on day 6 of melanocytic induction, with all the cells being
pigmented by day 20. The gene expression profiles of these in vitro differentiated melanocytes showed
that they are more similar to adult than neonatal primary melanocytes, although they lacked Hox
genes expression [50].

Other protocols induce ectodermal differentiation and neural crest specification using human
recombinant BMP4 and ascorbic acid, as well as Wnt3A, and make use of feeder cells for the seeding of
hPSCs. This requires using FAD culturing media comprised of 2/3 DMEM, 1/3 HAM/F12, 10% FCS and
other factors, such as insulin, hydrocortisone, triiodothyronine, adenine, recombinant human EGF
and cholera toxin. Cells are grown until pigmented populations are observed, which are selected and
amplified in melanocyte culture media M254 containing essential amino-acids, vitamins, inorganic salts,
glucose, adenine, thymidine, sodium pyruvate, etc. This is supplemented with melanocyte growth
factors: FGF2, insulin, transferrin, bovine, pituitary extract, DMSO, FBS, heparine, hydrocortisone and
endothelin-1 [51,55].

A different and rather elaborate approach for generating melanocytes in vitro is represented by
the organoid model. This co-induces both surface ectodermal and mesenchymal cells from hPSCs by
using a stepwise modulation of the TGFb and FGF signaling pathways in a self-organizing system
that mimics cell-to-cell signaling mechanisms needed for hair follicle induction. Cells are induced
to become non-neural ectoderm with BMP4 and SB431542 (TGF-b inhibitor), upon which uniform
epithelial cysts are generated. These are then treated with media containing FGF2 and LDN193189,
a BMP inhibitor to induce cranial neural crest cells on the outer surface. An incubation period of 4–5
months in maturation media and constant shaking yields inside-out cyst-like skin organoids consisting
of stratified epidermis, fat-rich dermis and pigmented hair follicles equipped with sebaceous glands.
These organoids could be integrated in the endogenous skin of a mouse model and grew hairs a month
after the transplantation in 55% of the cases [64].

5. Parallels between Neural Crest Development and Melanoma Progression

The EMT phenotype reflects a cellular status which confers invasive abilities. Additionally, it has
been found to be linked with the cell cycle. In embryo development it seems that for the initiation
of migration, entry into cell cycle is of advantage, but during the migrative process, the majority of
cells do not cycle. It has been shown that trunk neural crest cells, when they delaminate from the
dorsal portion of the neural tube to migrate, do so in the S phase of the cell cycle [65], while cranial
neural crest cells do not depend on the cell cycle for delamination and migration [66]. Another study
using the FUCCI reporter showed that most cranial neural crest cells are quiescent during migration,
and that when the destination was reached, some cells showed rapid proliferation, while others exited
the cell cycle [67]. Attempts have been made to identify gene expression signatures of trunk neural
crest cells after they settled at selected sites and initiated differentiation [68].

In cancer, EMT has often been found associated with reduced cell cycle [69,70]. Specifically in
melanoma, the transcription factor MITF is impacted by the EMT process, with ZEB1 and HIF1A
being potent repressors of MITF expression [71,72]. A schematic, including exemplary factors, during
embryonic development and melanoma progression is shown in Figure 1.

Importantly, the presence of MITF, as well as SOX10, is crucial for lineage commitment and
cell proliferation [73]. SOX10 binds in the promoter region of MITF and hence is expressed in all
congenital naevi and melanomas. During development, it regulates the balance between neural stem
cells maintenance and multi-lineage differentiation and has a key role in the formation of pigmented
cells. In melanoma, SOX10 is essential for the maintenance of proliferation. In vitro studies have
shown that silencing this transcription factor results in suppression of neural stem cell properties, cell
proliferation and survival, completely abolishing in vivo tumor formation [74].

Melanoma cells are characterized by an either high or low MITF expression signature, which
confers the following corresponding functional characteristics: strong MITF expressing cancer cells
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are highly proliferative, but neither invasive nor metastatic. On the other hand, low MITF expressing
cells frequently give rise to metastatic lesions, while the cell cycle is strongly reduced in this tumor cell
sub-population [75,76]. In addition to its effect on proliferation, melanoma cells low in MITF also show
strong resistance to multiple targeted drugs against melanoma [77].

It is important to note that MITF expression can also be induced in progenitor cells with the
help of BMP4; however, it needs the help of cofactors induced by distinct signaling pathways like
endothelin 3 to promote the differentiation of precursors into mature melanocytes [78].

An important characteristic of cells that undergo EMT and disseminate, is the expression of
stem cell markers previously encountered during development, which are associated with stemness
and tumorigenicity. This aberrant re-activation of the embryonic neural crest program alters the cell
metabolism as well as behavior, lifting the paracrine control of the surrounding keratinocytes, while
acquiring autocrine signaling [79,80]. Stem cell markers present in melanoma cells are nestin, CD133,
CD271 and Sox2.

Nestin, a neuroectodermal stem cell marker, is an intermediate filament protein expressed in the
cytoplasm of neuro-epithelial stem cells and the endothelium of growing blood vessels. It cannot
be detected in differentiated neuronal cells and normal melanocytes, but re-appears in benign and
malignant melanocytic tumors and usually predicts poor prognosis in human melanoma [81].

CD133, also called prominin-1, is a transmembrane glycoprotein expressed on hematopoietic stem
cells, endothelial progenitor cells and dermal derived stem cells capable of differentiating into neural
cells. It is considered one of the most important cancer stem cell-associated marker identifiers so far,
being present in a wide variety of solid tumors (brain, prostate, pancreas, glioblastoma, melanoma
and gut) [82,83]. Upon Wnt signaling, it influences cell polarity, migration and the interaction of
cancer stem cells with both surrounding cells and ECM (Extra Cellular Matrix), highly increasing their
metastatic potential [84,85].

CD271 (NGFR/p75NTR) acts as a molecular switch with divergent roles in melanocyte development
and melanoma. During embryonic development, neural crest cells and melanoblasts express the
growth factor receptor CD271 responding to the action of neutrophins through several canonical
pathways, including MAPK and PI3K/AKT. For the melanocytic lineage this mediates cell growth,
survival and differentiation. Melanoma cells that show high levels of CD271 are associated with
metastatic progression, enhanced survival, resistance to chemotherapeutic agents (MAPK inhibitors)
and evasion of the immune system [86,87].

Sox2 is an embryonic stem cell marker essential for the self-renewal of embryonic stem cells [88].
During embryogenesis, it is expressed throughout developing cells of the neural tube, as well as in
the progenitors of the nervous system, until cells differentiate and become post mitotic [89]. Sox2
is highly expressed in melanoma stem cells contributing to dermal invasion and primary tumor
thickness [90]. Mechanistically, Sox2 binds to an enhancer region of the gene that codes for nestin
and positively influences its expression. In human melanomas, the co-expression of these two factors
serves as an indicator of the tumor’s aggressiveness [91]. Importantly, SOX2 expression in melanoma
is up-regulated by STAT3 activity [92].

Another key player in the developmental and malignant processes is the extra-cellular matrix
(ECM). Under normal conditions, surrounding keratinocytes control the growth rate and phenotype
of melanocytes in the epidermis in an E-cadherin dependent fashion. They secrete endothelins,
short peptides which stimulate proliferation, chemotaxis and pigment production and survival in
melanocytes through the Endothelin Receptor Type B (ETB). During melanomagenesis, E-cadherin,
a tumor invasion suppressor, is down-regulated, epigenetically and environmentally, and melanoma
cells become refractory to the keratinocyte control. Activation of ETB pathway by ET1 and ET3
contributes to the down-regulation of mRNA and protein levels of E-cadherin, as well as of α- and
β-catenin adhesion proteins [93].

BMP4/7 stimulates the expression of Id (inhibitor of differentiation/DNA binding) proteins through
its interaction with a number of ECM components, particularly hyaluronan (HA), present in high



Cancers 2020, 12, 2508 7 of 19

amounts in the skin. Increased levels of BMP4,7/Id axis contributes to malignancy in melanoma by
promoting stemness and tumor initiation [94]. HA is a linear high molecular weight polysaccharide
synthesized by three transmembrane synthases HAS 1,2,3 and is extruded into the ECM. Melanoma
cells synthesize large amounts of HA in early tumorigenesis and with tumor-associated fibroblasts
continuing to produce this molecule later on. HA promotes BMP4/7-dependent Id1/3 protein expression
in melanoma cells by binding its cellular receptor CD44 and directly aids in cell proliferation, motility,
invasion and metastasis. Loss of HA from the ECM can reduce Id1/3 protein expression.

Last, but not least, hypoxia, among micro-environmental/ECM components, represents a
key-tumor promoting factor. Mild hypoxia is essential for melanocyte transformation, as only
under hypoxic conditions does PI3K-Akt stabilize and up-regulate HIF-1α [95]. This transcription
factor is key in the progression of melanoma, as it allows adaptation to hypoxia, angiogenesis, glucose
utilization and switching on of survival factors, especially of the transferrin receptor, as cancer cells
have a much higher metabolic iron requirement [96,97].

Taken together, the physiologic processes of neural crest delamination show many similarities to
those found in melanoma cells in the EMT status. It is plausible that the cell cycle is down-regulated
during the migration phase and activated again when the destination site is reached. Accordingly,
MITF, the master regulator, is expressed in developing melanocytes similarly to its expression in highly
proliferative melanoma cells. However, aggressive melanoma is hallmarked by its ability to repeat
this phenotype switching process multiple times by using both paracrine and autocrine signals, as
well as hijacking signaling pathways active in stem and progenitor cell populations during normal
development. The molecular switch which triggers the EMT process has ultimately not been identified,
but candidate transcription factors as well as receptors and ligands are shown in Table 1.

Table 1. List of molecules contributing either to a differentiated, proliferative phenotype or to a
migrative, neural crest phenotype.

Category Name Proliferative,
Differentiated

Migrative,
Progenitor References

TF SOX10 + + + [74,98]
TF SOX2 + + + [90,91,99]
TF MITF + + + + [73,100,101]

hormone a-MSH/Melanocortin + + + + [80,102]
receptor/ligand CD44/Hyaluronic acid + + + [94,103–106]

receptor CD271 + + + + [86,87,107]
receptor CD133 + + + [84,108,109]

co-enzyme Iron + + + [110,111]
TF HIF-1α + + + [96,97,112]

ligand BMP-4 + + + + [78,113,114]
cytokine IL-6 + + + + [115–118]
filament Nestin + + + [81,119]
hormone IGF-1 + + [120,121]

ligand Endothelin 1, 3 + + + [122,123]
receptor Endothelin receptor + + + [124,125]
receptor c-kit + + + [126–129]
ligand SCF + + + [130–132]

TF STAT3 + + + [133–135]
ligand FGF2 + + + + [136–140]
ligand FGF7 + + + [141–143]

TF Id1, Id3 + + + [94,144,145]

TF: transcription factor.

6. A Working Model for Melanoma Progression

Melanomagenesis can be seen as a de-differentiation process of mature melanocytes, where altered
melanocyte stem cells or immature progenitors hijack signaling pathways active in stem or progenitor
cell populations [81]. This process can more readily occur in melanocytes, since as a result of their
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developmental program, they harbor a high degree of plasticity and invasiveness. Hence, when under
appropriate conditions, melanoma cells can re-activate developmental programs in order to further
progress in malignancy [79].

The initial niche of melanocytes is within keratinocytes in the stratum basale at the bottom of the
epidermis. Keratinocytes supply melanocytes with an array of signalling molecules that regulate their
proliferation and differentiation in a paracrine manner. Additionally, UV radiation triggers the release
of pro-, but also anti-inflammatory, cytokines. The ligands secreted by keratinocytes include SCF, basic
FGF (FGF2), keratinocyte FGF (FGF7), interleukines (such as IL6 and IL18), endothelines (ET1 and ET3)
and bone morphogenic proteins (BMP4 and BMP7). These factors are generally secreted in response
to UV radiation and melanocytes are under paracrine control by expression of the corresponding
receptors: c-kit for SCF, FGF receptor, endothelin receptor and others.

According to the cancer stem cell theory, there are two possible tumor initiators within the
melanocytic niche. One is represented by the melanoblasts or immature progenitors, comprising cells
with a low differentiation level, but high self-renewal potential in vivo and high tumorigenic potential,
while the others are the melanocytes themselves, a more differentiated cell population with only low
potential of renewal. In general, melanoma initiating stem cells are positive for stem cell markers,
such as CD271 and CD133 and exhibit morphological, phenotypic and functional features of a stem
cell population. Cells positive for these markers are capable of generating secondary tumors in nude
mice [107].

The microenvironment of melanoma-initiating cells contains, besides keratinocytes, also fibroblasts,
endothelial cells and immune system cells, which provide a rich repertoire of secreted molecules which
aid in cell motility, angiogenesis and invasion [80]. The cancer cells themselves secrete soluble factors to
prepare their homing site even before they reach it, such as VEGF, GCSF, FGF2, PDGF and TGF-β [146].
These factors, and others, alter the ECM and recruit myeloid cells with immune-suppressive properties,
so-called myelo-derived suppressive cells, tumor-associated macrophages or tolerogenic dendritic
cells. This process enables the formation of metastases and protects tumor cells from the immune
system [147]. Immune privileged sites, such as the eye and the brain, seem to be preferred colonization
sites by melanoma cells. Metastatic spread is considered to be the most inefficient step in melanoma
progression [148]. Still metastasis is the major reason why patients succumb to this often fatal disease.
Inhibition of the metastatic process is the major aim for the future and insights into developmental
cues may hold the key for novel and effective therapeutic approaches.

7. Conclusion and Possible Therapeutic Options for Future Melanoma Treatment

Here, we reviewed, on the one hand, the developmental process of neural crest induction and, on
the other hand, discussed factors which contribute to melanocytic differentiation. We have summarized
molecular clues instrumental for establishing neural crest and melanocyte progenitor cells. A number
of molecular markers are available to identify these cell populations as already outlined in Table 1.
The transition from the progenitor pool to differentiated melanocytes is accompanied by up-regulation
of the MITF pathway, which controls pigmentation, but also other melanocyte specific characteristics.
The knowledge gathered from developmental programs occurring during embryonic skin development
can be used in order to gain mechanistic insights into the process of malignant melanoma formation
and progression. Especially, the metastatic process in melanoma can be associated with a switch in
developmental states. On the one hand, melanoma cells in the migrative and invasive phase express
prominent neural crest cell marker profiles, including genes controlling stemness. On the other hand,
cells which stopped migrating and adopted a proliferative phenotype express differentiation associated
genes. A model for the dynamic process of phenotype switching is shown in Figure 2.
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Figure 2. Dynamic process of phenotype switching in human melanoma. Proliferative melanoma cells
become invasive and migrative upon stimulation with extrinsic factors. In turn, invasive melanoma
cells switch to a more differentiated and proliferative phenotype when treated with ascorbic acid
(AA), the hormone a-MSH or the growth factor FGF-2. Therapeutic options include (A) treatment of
invasive cells with epithelial mesenchymal transition (EMT) inhibitors or differentiation promoters
and (B) treatment of proliferative cells with cell cycle or kinase inhibitors. Importantly, therapy should
stop the continuous switching between cellular states. AA: Ascorbic Acid, a-MSH: α-Melanocyte
stimulating hormone, FGF2: basic fibroblast growth factor, TGFb: transforming growth factor beta, IL6:
interleukine 6.

Given the evidence presented that melanoma cells start re-expressing neural crest stem cell
markers and behave according to an embryonic development program, the question remains whether
differentiation of melanoma cells into melanocyte-like cells would represent a valuable therapeutic
strategy. Since forced differentiation of melanoma cells is a difficult task, researchers have manipulated
individual factors and thereby influenced melanoma outcome. In the following, we present several
treatment approaches targeting melanoma stemness or differentiation factors.

MITF is the master regulator for the melanocyte lineage. Its down-regulation by siRNA in murine
melanoma cells lead to the re-expression of pluripotency markers OCT4 and NANOG, together with
an increased invasive phenotype [149]. A similar effect is generated by treatment of melanoma cells
with TNF-alpha, which mimics an immunotherapy induced inflammation. There, a de-differentiated
phenotype was induced with down-regulation of pigmentation-related genes and up-regulation of
the stemness marker CD271 [150]. CD44 is also designated as a stemness marker and its regulation
influences melanoma fate. As an example, forced expression of a secreted and mutated form of
CD44 completely abolished melanoma cell adhesion to immobilized hyaluronic acid and inhibited
the hyaluronic-acid induced proliferation of melanoma cells in vitro and in vivo [104]. Interestingly,
down-regulation of another stemness marker CD-133 via shRNA resulted in a reduced capacity of the
cells to metastasize and decreased ability to form spheroids under stem cell-like growth conditions of a
human melanoma cell line [84].

α-Melanocyte stimulating hormone (α-MSH) is secreted by normal human keratinocytes and
melanocytes and has pigmentary, anti-inflammatory, antipyretic and immunoregulatory roles. This
peptide also acts as a paracrine regulator of proliferation and differentiation for both melanocytes and
melanoma cells and in early melanoma stages it inhibits tumor evasion [102]. Importantly, α-MSH
stimulates the melanocortin-1 receptor and triggers increased pigmentation and control of senescence.
Accordingly, it has been shown that melanocortin-1 activity prevented melanomagenesis in mice [151].
In the past, the presence of pigmentation and in particular expression of MART-1 (MLANA)-derived
peptides has been used to generate vaccines against melanoma (e.g., NCT00006385, NCT00923195).
However, significant clinical benefit was not achieved [152].

Interference with FGF2 signaling has so far not been reported to change overall melanoma
differentiation. However, blockade of FGF signaling resulted in reduced proliferation and increased
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cellular apoptosis [136]. Additionally, a FGF2-derived peptide that inhibits FGF2 dimerization and
acts as a molecular decoy has inhibited melanoma growth in vitro and in vivo [137].

Another potent substance is sodium ascorbate, because it showed promising results in inhibiting
the invasion and growth of melanoma cells. Tumor cell responsiveness is based on multiple effects,
including alteration of cellular reactive oxygen species amounts and inducing cellular apoptosis. For
example, it was shown that ascorbic acid decreases cellular iron uptake in a dose- and time-dependent
fashion by decreasing the transferrin and melano-transferrin surface receptors [111]. Iron is a
rate-limiting nutrient for growth and the expression of an extra transferrin receptor may provide the
neoplasic cells with a competitive advantage against normal cells, which could account for their highly
aggressive nature in vivo [110]. Sodium ascorbate induced apoptosis can be enhanced by the iron
chelator desferrioxiamine and inhibited by the iron donor ferric ammonium citrate. Moreover, ascorbic
acid serves as an essential co-factor for prolylhydroxylase (PHD) enzymes, which post-translationally
target HIF-1α for degradation [153]. Using ascorbic acid in a mixture containing lysine, proline, arginine
and green tea extract inhibited pulmonary metastasis of melanoma B16FO cells in C57BL/6 mice. This
could additionally be explained through the roles lysine and ascorbic acid have in maintaining the
stability of connective tissue as natural inhibitors of ECM degradation; the synthesis and structure of
collagen fibrils depends upon hydroxylation of proline and lysine residues by ascorbic acid [154].

Melanoma de-differentiation can be triggered by inflammatory and cellular stress signals like
transforming growth factor beta (TGF-beta), hypoxia and Interleukin-6 (IL-6).

TGF-beta signaling induces transcription factors like SNAIL, SLUG and ZEB1, which repress
E-cadherin. Importantly, TGF-beta activity has been shown to reduce MITF amounts and to induce
an invasion process [155]. While repression of TGF-beta signaling decreased invasion [156]. Hence
TGF-beta is considered a main driver of the EMT process. Patients suffering from advanced malignant
melanoma were treated with a TGF-beta neutralizing antibody (NCT00356460). Preliminary evidence
of antitumor activity was observed and further combination treatments are expected [157]. Recent
work has shown that along with TGF-beta the hypoxia induced transcription factors (HIF) are also
activated [158]. HIFs are very important for the metastatic process and as indicated above oxygen as
well as reactive oxygen species regulate PHD activity, which determines stability of HIF proteins.

Interleukin-6 (IL-6) is a cytokine strongly expressed in human malignant melanoma cell lines [117].
IL-6 acts as a growth inhibitor for melanoma cells in early stages, but IL-6 can stimulate cells derived
from advanced lesions. Hence, addition of purified recombinant human IL-6 resulted in a growth
inhibition in vitro by G1/G0 arrest of early, but not advanced stage melanomas [115,118]. Additionally,
STAT3 activation by IL6 was shown to reduce MITF levels, but enhance NANOG and OCT4 levels,
which was reminiscent of a tumor-initiation phenotype [135]. A study on the interleukin-6 receptor
inhibitor Tocilizumab in combination with Ipilimumab and Nivolumab in patients with stage III or
stage IV melanoma is in the phase of recruiting (NCT03999749).

Currently, melanoma patients frequently suffer from acquired resistance towards systemic targeted
therapy [159]. In melanoma combined treatment with BRAF and MEK inhibitors only extended
median progression-free survival, from 7.3 months, in the monotherapy group, to 11.4 months in the
combination therapy group [160]. Resistance is established by reactivation of RAF-MEK-ERK signaling
and, besides mutational changes, the acquisition of an EMT phenotype has been shown to enable this
process [161,162]. Hence, there is an urgent need to improve the current situation. As depicted in
Figure 2, molecular targets are available which provide multiple opportunities for therapeutic options.
This can be achieved by interfering with the phenotype switching process in melanoma and thereby
blocking the continuous cycling between cellular states. A synergistic approach should be considered,
where cells are blocked to reach the invasive, neural crest like status. Thereby, cells would return to a
differentiated and possibly highly proliferative phenotype. Targeted therapy should be highly effective
in continuous proliferating cells, since the generation of dormant, EMT-like stem cells could be largely
excluded [163]. Ways to achieve changes in cellular differentiation include the use of neutralizing
antibodies directed against extracellular ligands or pharmacologic inhibition of signaling pathways.
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Endogenous proteins, such as transcription factors, are difficult to target. However, recently, the field of
targeted proteolysis has evolved into a promising technology for novel therapeutic applications [164].
Importantly, the method using proteolysis-targeting chimeras (PROTACs) does not require prior
genetic modification of target proteins. Instead, small molecules are used, which specifically bind
endogenous target proteins as well as an E3ligase component. This leads to ubiquitination and
degradation of the target proteins. A PROTAC class of molecule was used to degrade the transcription
factor BRD4 in Vemurafenib resistant melanoma cells, which leads to severely reduced colonogenic
growth activity [165].

Finally, understanding the dynamics of melanocyte differentiation holds great promise for
revealing further insights into mechanisms of melanoma progression. The identification and targeting
of key factors, driving phenotype switching during melanoma development, might lead to more
effective strategies in combating this fatal disease.
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