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ABSTRACT

Background: Type 2 diabetes mellitus (T2DM) is the most common type of diabetes, accounting for around 90% of all diabetes. Studies have
found that dietary habits and biochemical metabolic changes are closely related to T2DM disease surveillance, but early surveillance tools are
not specific and have lower accuracy. This paper aimed to provide a reliable artificial intelligence model with high accuracy for the clinical
diagnosis of T2DM. Methods: A cross-sectional dataset comprising 8981 individuals from the First Affiliated Hospital of Guangxi Medical
University was analyzed by a model fusion framework. The model includes four machine learning (ML) models, which used the stacking
method. The ability to leverage the strengths of different algorithms to capture complex patterns in the data can effectively combine question-
naire data and blood test data to predict diabetes. Results: The experimental results show that the stacking model achieves significant prediction
results in diabetes detection. Compared with the single machine learning algorithm, the stacking model has improved in the metrics of accuracy,
recall, and F1-score. The test set accuracy is 0.90, and the precision, recall, F1-score, area under the curve, and average precision (AP) are 0.91,
0.90, 0.90, 0.90, and 0.85, respectively. Additionally, this study showed that HbA1c (P< 0.001,OR¼ 2.203), fasting blood glucose (FBG)
(P< 0.001,OR¼ 1.586), Ph2BG (P< 0.001,OR¼ 1.190), age (P< 0.001,OR¼ 1.018), Han nationality (P< 0.001,OR¼ 1.484), and carbonate
beverages (P¼ 0.001,OR¼ 1.347) were important predictors of T2DM. Conclusion: This study demonstrates that stacking models show great
potential in diabetes detection, and by integrating multiple machine learning algorithms, stacking models can significantly improve the accuracy
and stability of diabetes prediction and provide strong support for disease prevention, early diagnosis, and individualized treatment.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0207658

I. INTRODUCTION

About 422 � 106 people worldwide have diabetes, the majority
living in low- and middle-income countries, and 1.5 � 106 deaths are
directly attributed to diabetes each year. Both the number of cases and
the prevalence of diabetes have been steadily increasing over the past
few decades.1 According to International Diabetes Federation statistics,
China has become the country with the largest number of adults aged

20–79 years with diabetes. The huge diabetic population places a great
burden onmodern healthcare systems and a great economic burden on
the family of patients with diabetes. Diabetes accounts for more than
$966 billion in health spending, and this amount is still increasing.2

Type 2 diabetes is the most common type, a metabolic chronic
disease characterized by insulin resistance and elevated blood glucose
levels.3 Type 2 diabetes not only imposes health burdens on the
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patient, such as a significantly increased risk of complications, such
as cardiovascular disease, neuropathy, and retinopathy, but it also
puts significant socioeconomic pressures, such as rising healthcare
costs, a reduced workforce, and an increased burden on families and
social increased burden on family and social support systems.
However, the symptoms of the disease are not obvious at the onset,
making it difficult to detect and confirm the diagnosis.4 Prevention
and detection are essential means to cope with diabetes. Therefore,
establishing effective prediction models to assess an individual’s risk of
diabetes is essential.

Machine learning (ML) is widely used in various fields, Shaukat
et al.5,6 explored the potential of machine learning techniques to
improve the detection of unknown and polymorphic security attacks,
and Alam7,8 proposed a new framework to identify prognostic factors
for malignant mesothelioma through association rule mining techni-
ques. (All abbreviations in the paper are listed in Nomenclature). The
application of machine learning and deep learning (DL) algorithms in
healthcare has been proven.9 Nowadays, many scholars use ML for dis-
ease detection, Kumar et al.10 used ML and DL models for speech rec-
ognition task to achieve detection of dementia, Abdullah et al.11 study
proved the potential of deep learning convolutional neural networks
(CNNs) and sequential CNNs for disease detection and classification,
Srinivas et al.12 proposed three migration learning based CNN models
to localize brain tumors, and Alsubaie et al.13 proposed a novel CNN
architecture called ConvADD for detecting Alzheimer’s disease.
Shaukat et al.14–16 applied machine learning and deep learning technol-
ogy in the field of network security, and in the past decade, the applica-
tion of machine learning technology in the field of network security has
made remarkable progress. From static analysis to dynamic analysis,
and then to use deep learning for malicious software detection, expand-
ing the application scope of machine learning technology, combining
DL and ML, eliminates the demand for intensive characteristic engi-
neering tasks and field knowledge, the accuracy of malicious software
reached 99.06%, and this fusion can combine the advantages of both,
improve the performance of the model and robustness.

This work consists of the following contributions:

Propose a new stacking machine learning framework to analyze
the 8981-case cross-sectional dataset from the First Affiliated
Hospital of Guangxi Medical University. Data problems are solved
by feature engineering and data preprocessing methods, hyper-
parameters are optimized by learning curves and grid search, and
model performance is evaluated using cross-validation and medical
statistical methods.
The proposed machine learning framework in this work is superior
to any separately constructed machine learning methods and
ensemble models. The effect of data preprocessing on the model
was also examined using the PIMA database to demonstrate the
stability of the model. Statistical analysis was performed to show
that our proposed stacking model is capable of better detection
efficiency. The reliability of the model was demonstrated using fea-
ture importance visualization, and the potential value of other fea-
tures for diabetes diagnosis was explored.

II. RELATEDWORKS

The application of machine learning (ML) technology in medical
diagnostic systems has become mature. This technology has been

proven to be accurate in diagnosis, successful in treatment, and cost
effective.17 In this research, we conducted a thorough search of the
PubMed and Web of Science databases using the following search
terms to identify recent and relevant studies: Type 2 diabetes mellitus
(T2DM), type 2 diabetes, diabetes mellitus, machine learning, stacking
model, fusion model, and ensemble model. Nineteen relevant studies
were adopted. Many scholars have performed several research using
the Pima Indians dataset to improve the accuracy of models in clinical
prediction. Joshi et al.18 achieved 78.26% accuracy on the Pima
Indians dataset using logistic regression (LR) and decision tree (DT).
Chang et al.19 used random forest (RF) to improve accuracy to
79.57%. Furthermore, Adua et al.20 recruited 219 patients with type 2
diabetes mellitus (T2DM) and 219 healthy individuals. Four ML classi-
fication algorithms, namely, Naïve–Bayes (NB), k-nearest neighbor
(KNN), support vector machine (SVM), and DT, were used to predict
T2DM. NB classifiers yielded 94% accuracy.

In processing small datasets, traditional ML methods can obtain
satisfactory results. However, in terms of accuracy, the development of
traditional ML models is near saturation. Many scholars use traditional
ML algorithms for comparison with new models, and more scholars
focus their attention on ensemble classifiers and neural network models.
In the Pima Indians dataset, Khanam and Foo used a neural network
with two hidden layers to increase accuracy to 88.6%.21 Edeh et al.22

presented a supportive diagnostic system based on the comparison of
four predictive algorithmmodels for predicting diabetes in two different
databases (Frankfurt Hospital diabetes dataset and Pima Indian data-
set). Based on several performance assessment methods, such as accu-
racy, recall, and F1 score, the authors concluded that RF provides a
more accurate prediction and a higher performance than other models.
Xie et al.23 constructed a ML prediction model using diabetes data from
138146 participants, and the experimental results showed that the neu-
ral network model had the best model performance with an area under
the curve (AUC) of 0.7949 and an accuracy of 82.4%.When using a sin-
gle machine learning model, there may be challenges such as overfitting,
underfitting, and lack of generalization ability. These difficulties can
result in good performance on the training data but inadequate perfor-
mance on new data.24,25 To address these concerns, an ensemble
machine learning approach can be utilized.

Medical data are usually unbalanced, which affects the perfor-
mance of the model, and many scholars have used various methods in
order to solve this problem. Khushi et al.26 explored the performance
effects of 23 class-imbalance methods and three classical classifiers
using two datasets, the Prostate, Lung, Colorectal, and Ovarian
(PLCO) Cancer Screening Trial dataset and the National Lung
Screening Trial (NLST) dataset (with imbalance ratios of 24.7 and
25.0, respectively); the results of the study showed that class-imbalance
balanced learning can significantly improve the classification ability of
the model. Talha Mahboob Alam et al. encountered the class imbal-
ance problem in a number of studies,27,28 and they solved the problem
by synthetic minority over-sampling technique (SMOTE) technique,
borderline SMOTE technique, data augmentation method, and other
methods to solve the data imbalance problem, and the experimental
results were significantly improved after class imbalance learning.
Yang et al.29 used extremely imbalanced dataset (imbalance ratio of
143.7) in their study and employed 23 class imbalance learning meth-
ods combined with machine learning models to improve the accuracy
of early screening for ovarian cancer.
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Ensemble ML methods is a powerful and widely used technique
in the field of machine learning, which aims to improve the predictive
performance and stability of a model by constructing and combining
multiple learners to accomplish a learning task. Ali et al.30 solved the
problem of data imbalance by using the resampling algorithms such as
random under-sampling, random over-sampling, and SMOTE, and
four integrated machine learning algorithms were used to predict
schistosomiasis and finally CatBoost model performed the best with
87.1% accuracy. Devnath et al.31 applied deep integration learning
technique for automatic detection of cxr pneumoconiosis in coal min-
ers and showed that the integrated integration technique combining
deep learning methods outperformed the other methods and achieved
91.50% accuracy in the automatic detection of pneumoconiosis.
Integrated ML methods, such as LightGBM and CatBoost, were also
applied to diabetes prediction. LightGBM and CatBoost are also
applied to diabetes prediction. Liu et al. predicted T2DM in older
Chinese adults by applying random under sampling to address cate-
gory imbalance and Shapley additive interpretation to calculate and
visualize feature importance. The XGBoost model with 21 features per-
formed the best in predicting T2DM.32 Yang et al.33 also did related
research using the 2011–2017 dataset of patients with diabetes in
Luzhou City, China. The XGBoost model also performed excellently in
this dataset. Xue et al. compared DT, RF, AdaBoost, and DT
(AdaBoost), and extreme gradient enhanced DT (XGBoost) based on
a cross-sectional study of 584 168 adult subjects from a national physi-
cal examination and showed that XGBoost was the best classifier with
an AUC of 0.9680.34 Dong et al.35 compared the XGBoost and
LightGBM models in the dataset of PLA General Hospital, and the
results showed that LightGBM was better than XGBoost. Rufo et al.
explored the application of diabetes data from Zewditu Memorial
Hospital in Addis Ababa, Ethiopia, in the field of ML and constructed
the LightGBM model, which was validated by comparing KNN, SVM,
NB, bagging, RF, and XGBoost.36 Rufo et al.36 also used the LightGBM
model, which yielded 98.1% accuracy. In the field of clinical prediction,
machine learning models like LightGBM, CatBoost, and XGBoost
have proven to be effective. However, there is still a concern with bias
and variance. To address this issue, a stacking model that combines
various models can reduce bias and variance, ultimately improving the
overall performance and generalization of the model.

Ensemble techniques that stacking propose diversity, stability,
and outstanding performance illustrated in many recent studies. Xiong
et al.37 used voting to combine five ML models to predict diabetes in
the dataset from Nanjing Drum Tower Hospital with 91% accuracy
and 0.97 AUC. Sumathi and Meganathan used voting to predict gesta-
tional DM, and studies showed that the fusion model is superior to the
classical ML model and achieved good results with a precision of 94%,
a recall of 94%, an accuracy of 94.24%, and a F1 score of 94%.38

Deberneh and Kim used LR, RF, SVM, XGBoost, and model fusion
methods (stacking and soft voting) to train and predict DM using elec-
tronic health records collected by a private medical institution and
achieved effective results.39 However, without deep exploration, the
superiority of model fusion is not obvious.

Table I outlines the development of ML in diabetes diagnostics.
From the table, fusion models can integrate the benefits of a single
model to better predict outcomes. The potential of fusion models in
disease diagnosis and prognosis remains to be explored. In this paper,
we try to prove that the stacking model has more advantages in

obtaining a higher prediction accuracy. The study flow chart is
depicted in Fig. 1.

III. RESULTS

This section will be divided into five parts to fully demonstrate the
results of each step of the experiments. Section IIIA describes the results
of class imbalance learning and feature selection. Section III B shows the
performance comparison of stacking with other models, and the results
show that the stacked model is able to have better results relative to a
single integrated learning model. Section IIIC shows external validation,
and Sec. IIID experiments of model comparison by dividing the dataset.
The results further validate the reliability of the model. Section IIIE uses
statistical analysis methods for feature evaluation as well as validation of
the proposed model against other models.

A. Class imbalance and feature selection

After class imbalance, our dataset has 8630 samples. It contains
2215 with T2DM and 6415 with non-diabetic. After features selected,
the results showed Age, Female, Male, HAN, ZHUANG, Smoke,
Drink alcohol, Tea, Carbonate Beverages, Coffee, Hypertension,
Retinopathy, Hyperlipidemia, Snore, Hypotensive Drugs, SBP, DBP,
BMI, WC, HC, CRP, HDL, LDL, TCHO, TG, AST, Y-GT, FBG,
P2hPG, HbA1C, and FINS. Figure 2 illustrates the relationship
between the number of features and the accuracy of the model. From
the curve, it is found that when the features reach 22, the model
improvement begins to slow down, and when the features reach 30,
the model can reach the highest accuracy.

B. Comparison of the model performance

Table III shows a comparison of the performance of the five
models. As can be seen from the data in the table, the stacking model
can combine the advantages of the basic learner to produce better
results. The stacking model performed best on this dataset, with a test
set accuracy of 0.91, and the precision, recall, F1-score, AUC, and AP
were 0.91, 0.90, 0.90, 0.90, and 0.85, respectively. The ROC curves and
PR curves are shown in Fig. 3.

CatBoost, XGBoost, and LightGBM are recognized as the three
leading implementations of gradient boosting decision trees (GBDT),
each representing significant advancements within the GBDT framework.
These models have become indispensable tools in machine learning,
especially for structured data tasks. XGBoost, CatBoost, and LightGBM
are highly efficient and capable of delivering state-of-the-art performance
across a wide range of machine learning challenges. Each model offers
distinct advantages depending on the characteristics of the dataset and
the specific requirements of the task, making them critical components
in modern machine learning workflows. In this study, these three models
were compared with the stacking model, the results are shown in Fig. 4,
and the ROC curve of the stacking model is not inferior to the three
models, or even better than XGBoost, CatBoost, and LightGBM.

C. External validation

Table IV outlines the stacking model’s performance in the Pima
Indian medical association (PIMA) dataset and compares the perfor-
mance of other models. As shown in the table, the stacking model still
reached the best performance in the test set with accuracy, precision,
recall, and F1-score of 0.74, 0.73, 0.74, and 0.73, respectively.
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D. Comparison of divide the dataset

Table V shows the model performance of the four experiments. It
can be seen that stacking models perform best from the table. Figure 5
presents the contributions of the features on the models output ranked
in four experiments. Permutation feature importance is an effective
method for explaining black box models. This is helpful for us looking
for features that are significant risk factors for incident T2DM. Figure
6 provides an overview of the distribution of the effects of age and
BMI on diabetes. From the figure, it is found that the yellow dots are
mostly concentrated between 60 and 80, while the trend line has an
upward trend, but the amplitude is not obvious.

E. Statistical analysis

According to the univariate logistic regression analysis in Table
VI, Age, Carbonate Beverages, Han, AST, FBG, Ph2BG, and HbA1c
are significant predictors of the occurrence of T2DM in the overall

population (P< 0.05). Tea drinking was not statistically significant in
our dataset. Therefore, we not included tea in the multivariate regres-
sion. As can be seen from Table VII, the salient features identified in
the univariate analysis described above were included in the multivari-
ate logistic regression analysis. The odds ratios (ORs) calculated indi-
cated the relative risk of T2DM. The results showed that Age,
Carbonate Beverages, Han, FBG, Ph2BG, and HbA1c were indepen-
dent predictors of T2DM.

IV. DISCUSSION

With the development of artificial intelligence, machine learning
has been widely integrated into the field of medical diagnosis.15–21,31–36

The stacking model has also been widely applied in the field of diabe-
tes diagnostics.37,38,40,41 In this retrospective study, we applied four
machine learning models to build a stacked model of the risk of type
2 diabetes in the Guangxi area. It was found that the stacking model
showed the best performance in predicting type 2 diabetes through

TABLE I. Summary of literature review.

Authors Year Models Data sources Accuracy (%) & AUC

Xie et al.23 2019 SVM, DT, LR, RF, NN, and
Gaussian NB

2014 BRFSS dataset 82.4%

Xiong et al.37 2019 MLP, AdaBoost, RF, SVM, GTB,
and voting

Nanjing Drum Tower Hospital
dataset

91%

Xue et al.34 2020 DT, RF, AdaBoost, and XGBoost National physical examination 90.6%
Yang et al.29 2020 DT PLCO 95.32%
Joshi et al.18 2021 LR and DT PIDD 78.26%
Adua et al.20 2021 NB, KNN, SVM, and DT A hospital and community for

African populations in Ghana
93%

Khanam and Foo21 2021 NN, DT, KNN, RF, NB, AB, and LR PIDD 88.6%
Yang et al.33 2021 XGBoost 2011–2017 dataset of patients with

diabetes in Luzhou City, China
87.68%

Rufo et al.36 2021 LightGBM Zewditu Memorial Hospital in
Addis Ababa, Ethiopia

98.1% and 98.1%

Deberneh and Kim39 2021 LR, RF, SVM, XGBoost, CIM, stack-
ing classifier, and soft Voting

Private medical institutions 73%

Sumathi and Meganathan38 2021 MLP, SVM, LR, and stacking PIDD 78.2%
Chang et al.19 2022 NB, RF, and J48DT PIDD 79.57%
Alam et al.27 2022 AlexNet, InceptionV3, and

RegNetY-320
MNIST: HAM10 000 dataset 91%

Onyema Edeh et al.22 2022 RF, SVM, NB, DT, and K-means Frankfurt Hospital dataset and
PIDD

97.6%

Ali et al.30 2022 Gradient boosting, light gradient
boosting, extreme gradient boosting,

and CatBoost

Hubei Institute of Schistosomiasis
Prevention and Control, China

87.1%

Liu et al.31 2022 (Simple averaging, multi-weighted
averaging, and majority voting

(MVOT)

CSIRO dataset, NIOSH teaching
chest x-ray dataset and ILO

Standard Radiographs

91.50%

Liu et al.32 2022 LR, DT, RF, and XGBoost Health screening data of adults older
than 65 years in Wuhan, China from

2018–2020

75.03% and 78.05%

Dong et al.35 2022 LightGBM, XGBoost, AdaBoost,
NN, DT, SVM, and LR

PLA General Hospital 81.5%
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model performance comparison and external validation, with a test
set accuracy of 0.90, and the precision, recall, F1-score, AUC, and AP
were 0.91, 0.90, 0.90, 0.90, and 0.85, respectively. This suggested that
the stacking model can use questionnaire data and blood test data to
predict early type 2 diabetes, which could benefit the prevention and
control of diabetes. Compared with previous research,40,41 we used
random forest to fill the dataset, SMOTEENN to handle class imbal-
ance data, and wrapper for feature selection. Model performance is
proven through external verification. In addition, we have added the
HbA1c indicator. By ranking the importance of HbA1c indicators in

the model, it is proved that the model can predict the occurrence of
diabetes based on the currently recognized indicators.

This study also designed four experiments to explore the effect of
data preprocessing on the model. Experiment 1 had no imbalance
processing and feature selection; experiment 2 did not use imbalance
processing but feature selection; experiment 3 used imbalance process-
ing without feature selection; and experiment 4 used imbalance proc-
essing and used feature selection. The performance of the stacked
fusion model was observed to determine whether unbalanced process-
ing and feature selection were used. We verified the above-mentioned

FIG. 1. Study flow chart. Clinical data and blood test data were cleansed, encoded with dumb variables, disposed missing values and class imbalances. Feature selection
results were used to construct the dataset. RF, Extra-Trees, GBDT, and AdaBoost were used to build stacking models. The performance of the stacking model was validated in
three datasets (questionnaire data, blood test data, and comprehensive data on HbA1C removal). The PIMA dataset serves as an external validation to further validated the
model. RF¼Random forest; Extra-Trees¼ extremely randomized trees; and GBDT¼ gradient boosting decision tree.
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hypotheses using the Pima Indians dataset. As shown in Table IV, the
integrated model’s detection of the Pima Indian dataset improved by
about 18% after the imbalance treatment. We conclude that data
imbalance affects the performance of the stacked fusion model.

Despite increasing knowledge regarding risk factors for type 2
diabetes and evidence for successful prevention programs, the inci-
dence and prevalence of the disease continue to rise globally.42

How to design screening programs for early detection and safe and
effective treatment will be a key issue in reducing diabetes morbid-
ity and mortality. Notably, the feature importance analysis is an
important way to study the factors that influence diabetes in the
early stages. To rule out the possible randomness of diabetes fac-
tors to model predictions, we divided the dataset and visualized
feature importance. In our study, substantial contributions of
HbA1c, FBG, Ph2BG, Age, Tea, Han, Carbonate Beverages, AST,
etc., were made to the prediction model.

We used statistical methods to verify the importance charac-
teristics of the model, and the results showed that Age, Carbonate
Beverages, Han, FBG, Ph2BG, and HbA1c were all risk factors for
diabetes mellitus (OR> 1) and were statistically significant
(P< 0.05). Tea drinking is not statistically significant in our data,
but many references to polyphenolic compounds in tea can effec-
tively inhibit diabetes,43,44 which is also consistent with the results
shown that the tea drinking has an impact on diabetes by our
model. HbA1c concentration is a stable diagnostic measure for type
2 diabetes.45,46 However, it is not available in all regions. In devel-
oping countries, fasting plasma glucose and HbA1c concentrations
are inconsistent across ethnicities and with age.47 This makes sense
to look for early diagnostic factors that trigger type 2 diabetes in dif-
ferent regions and ethnicities. As shown in the present study,
HbA1c concentration occupies the most important position in the
model as a reliable diagnostic indicator for diagnosing type 2

TABLE II. Features’ description.

Type of data Feature Description

Questionnaire data

Age Age at the time of sampling.
Gender Male (1) or Female (2)
Race Han (1) or Zhuang (2) or other (3)
Smoke Whether or not you smoke? No (1) or Yes, but no often (2) or Yes, everyday (3)

Drink alcohol Whether or not you drink alcohol? No (1) or Yes, but no often (2) or Yes, every week (3).
Tea Whether or not you drink tea in the past year? Never or almost never (1)

or occasional drinking (2) or drinking tea often in the
past (3) or drinking tea often now (4)

Carbonated beverages Whether or not you drink carbonated beverages? Yes (1) or No (2)
Coffee Whether or not you drink coffee? Yes (1) or No (2)

Hypertension Whether or not you have hypertension? Yes (1) or No (2)
Retinopathy Whether or not you have retinopathy? Yes (1) or No (2)

Hyperlipidemia Whether or not you have hyperlipidemia? Yes (1) or No (2)
FLD Whether or not you have fatty liver? Yes (1) or No (2)
Snore Whether or not you snore? Often (1) or Occasionally (2) or Never (3) or Unclear (4)

Hypotensive Drugs Whether or not to take hypotensive drugs today? Yes (1) or No (2)
SBP Systolic pressure
DBP Diastolic pressure
BMI Body mass index is a commonly used standard to measure the

degree of fat and thinness of the human body and whether it is healthy.
WC Waist circumference
HC Hip circumference

Blood test data

CRP C-reactive protein
HDL High-density lipoprotein
LDL LDL
TCHO Total cholesterol.
TG Triglyceride.
AST Aspartate aminotransferase
c-GT c-glutamyl transpeptidase
FBG Fasting plasma glucose

P2hPG Blood glucose 2 h after meals
HbA1C Glycated hemoglobin
FINS Fasting insulin
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diabetes, followed by FBG and blood sugar 2 h after a meal. Studies
have shown that individuals with a higher blood glucose would
have a greater likelihood of developing diabetes.31,38 These features
can also be used as diagnostic indicators for type 2 diabetes

detection.46 However, in our study, FBG was shown to be more reli-
able in diagnosing type 2 diabetes than blood sugar 2 h after a meal.
AST also occupies a certain position, but there are no relevant stud-
ies that show an association between AST and diabetes.

FIG. 2. Wrapper (RFE) curve: the X-axis represents the model accuracy and the Y-axis represents the number of features. The accuracy of the model increases as the number
of features increases.

TABLE III. Evaluation attributes results for different models.

Learner Test set accuracy Precision (weighted) Recall (weighted) F1-score (weighted) AUC AP

RF 0.82 0.84 0.82 0.82 0.89 0.83
Extra-trees 0.81 0.83 0.81 0.82 0.88 0.81
GBDT 0.90 0.90 0.89 0.89 0.90 0.83
AdaBoost 0.88 0.88 0.88 0.87 0.88 0.81
Stacking 0.90 0.91 0.90 0.90 0.90 0.85

FIG. 3. ROC curves and PR curves. (a) The overall reliability of RF, GBDT, Extra-Trees, AdaBoost, and stacking model. (b) Prediction performance of RF, GBDT, Extra-Trees,
AdaBoost, and stacking model. AUC¼ area under curve; RF¼ random forest; Extra-Trees¼ extremely randomized trees; and GBDT¼ gradient boosting decision tree.
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Obesity and age are important factors in diabetes.42 We plot-
ted the distribution of the effects of age and BMI on diabetes. As
can be seen from Fig. 6, diabetics are concentrated between the
ages of 60 and 80. In addition, BMI also increases slightly with age.
More diabetic patients have a BMI of more than 30. In our study,
another interesting finding was that snoring people are more likely
to develop diabetes and the Han population will be more likely to
get diabetes than the Zhuang population, which agreed with results
from earlier studies.17,20,48 Our findings further support the views
of the above study.

There are limitations in this paper. We only explain the model in
terms of feature importance, which is one-sided. Due to data issues, we
cannot prove that there is an association between AST and diabetes. In
addition, due to the follow-up condition, this study used data from the
whole year of 2011, so it may be a bit outdated in time. However, as a
chronic disease, diabetes is independent of the timing of the sampled
data. Our external validation data also use the already publicly avail-
able PIMA dataset. On the other hand, the machine learning frame-
work used in this paper does not incorporate deep learning, which
could potentially degrade the performance of the model. Time com-
plexity qualitatively describes the running time of an algorithm and

can measure the efficiency of its execution.49 At present, we do not dis-
cuss the time complexity, which will be further supplemented in the
future work.

In future research, we will explore the robustness of the model
against adversarial attacks. In addition, the integration of machine
learning algorithms and deep learning models still deserves further
exploration by tuning the parameters of the model pairs, including
learning rate, batch size, and network structure, in order to find the
optimal model configuration. With the continuous updating of data,
the models will be continuously trained and updated to adapt to new
data distributions and task requirements.

V. CONCLUSIONS

In this retrospective study, we propose a model fusion framework
to analyze a cross-sectional dataset of 8981 cases from the First
Affiliated Hospital of Guangxi Medical University. Data problems are
solved by feature engineering and data preprocessing methods, hyper-
parameters are optimized using learning curves and grid search, and
model performance is evaluated using cross-validation and medical
statistical methods. This paper compares other machine learning mod-
els with the fusion model, and the results demonstrate that the fusion
model outperforms any constructed individual machine learning
method and integrated model. The effect of data imbalance handling
and feature selection on the model was tested. This study examined
the effect of data preprocessing on the model using the PIMA database
to demonstrate the robustness of the model. Statistical tests were per-
formed to verify that the proposed model has better generalization.
Using feature importance visualization, the reliability of the fusion
model is demonstrated and the potential value of other features for
diabetes diagnosis is explored. The model fusion framework proposed
in this paper can provide assistance in diabetes detection and preven-
tion. In addition, the fusion model can be used in applications or web-
sites to help early warning of diabetic patients.

FIG. 4. ROC curves and PR curves. (a) The overall reliability of XGBoost, CatBoost, LightGBM, and stacking model. (b) Prediction performance of XGBoost, CatBoost,
LightGBM, and stacking model. AUC¼ area under curve; xgb¼ XGBoost; catboost¼CatBoost; and lgb¼ LightGBM.

TABLE IV. Evaluation attributes results for different models (PIMA).

Learner
Test set
accuracy

Precision
(weighted)

Recall
(weighted)

F1-score
(weighted)

RF 0.72 0.73 0.72 0.72
Extra-trees 0.70 0.71 0.70 0.70
GBDT 0.72 0.72 0.72 0.72
AdaBoost 0.72 0.72 0.72 0.72
Stacking 0.74 0.73 0.74 0.73
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VI. METHODS

In this work, we built a two-layer stacking model and demon-
strated that the stacking model has more advantages in obtaining a
higher predictive accuracy for type 2 diabetes prediction. Figure 1
shows the learning process of the whole study. It includes dataset selec-
tion, data preprocessing (data cleaning, class imbalance learning, and
feature selection), and model selection. The details of the work are
described in the following.

A. Data source

In this retrospective cohort study, the raw data were derived
from the Endocrine Department of the First Affiliated Hospital of
Guangxi Medical University. Ethical approval was granted by the
Ethics Committee of the First Affiliated Hospital of Guangxi
Medical University with grant number 2011–14. Data samples
were reviewed, and samples containing unreasonable values were
removed based on medical criteria. However, the samples with an
overly high value in the blood test were not treated since these out-
liers belong to valid patients. In addition, samples with too many
missing features (�12 features) in a single sample are also deleted.
The features in the dataset have been carefully selected based on
the available variables in our dataset, clinical expertise, and prior
literature evidence of their associations with T2DM. A dataset con-
taining 8981 samples was finally obtained. It contains 30 unique
features, where 1596 were diagnosed with T2DM, and 7385 with
non-diabetic. Table II outlines the description of the database
attributes used in this study. A detailed statistical description of
the nominal characteristics and a statistical analysis of the numeri-
cal attributes presented in the diabetes dataset, including missing

values, centralized trend measures, standard deviations, minimum
values, and maximum values in Appendix Tables VIII and IX.

The Pima Indian dataset was used in the external validation. The
Pima Indian dataset was downloaded from Kaggle (https://www.kag-
gle.com/datasets/uciml/pima-indians-diabetes-database) and is avail-
able via a CC0 public domain license. The dataset is properly
anonymized and does not contain any identifiable features of the sub-
jects. This dataset comprised 768 samples, including 500 patients with-
out diabetes and 268 patients with diabetes, as well as their eight
characteristics and corresponding classifications.

B. Data preprocessing

Substantial instances of missing data are a serious problem that
undermines the scientific credibility of causal conclusions from clinical
trials.50 This study built a random forest regression model to fill in
missing values.

Class imbalance is naturally inherent in many real-world applica-
tions. Treatment methods of unbalanced data have an important
impact on the model performance.51,52 Since the categories of the inci-
dent T2DM in the dataset were imbalanced, the SMOTEENN23,53 was
applied to the training set to resolve the effect of class imbalance.
Synthetic minority oversampling technique (SMOTE)54 is used to ana-
lyze minority samples and synthesize new samples based on minority
samples to add to the dataset. Edited nearest neighbors (ENN)23 test
each instance with k-NN against the remaining samples in this
method. Those incorrectly classified will be discarded, and the remain-
ing samples will form the edited dataset. The hyperparameter sampling
strategy is set to 0.3, and the ratio is obtained after many repeated
experiments.

TABLE V. Model performance comparison in four experiments.

Learner Test set accuracy Precision (weighted) Recall (weighted) F1-score (weighted)

Experiment 1 (questionnaire Data) RF 0.69 0.75 0.69 0.70
Extra-trees 0.68 0.74 0.68 0.69
GBDT 0.81 0.81 0.81 0.77

AdaBoost 0.80 0.80 0.80 0.77
Stacking 0.81 0.81 0.81 0.77

Experiment 2 (blood test data) RF 0.72 0.80 0.72 0.74
Extra-trees 0.72 0.81 0.72 0.74
GBDT 0.88 0.89 0.88 0.87

AdaBoost 0.86 0.86 0.86 0.85
Stacking 0.89 0.89 0.89 0.88

Experiment 3 (remove HbA1C) RF 0.82 0.83 0.82 0.82
Extra-trees 0.80 0.82 0.80 0.80
GBDT 0.89 0.89 0.89 0.88

AdaBoost 0.87 0.87 0.87 0.87
Stacking 0.89 0.89 0.89 0.88

Experiment 4 (all data) RF 0.82 0.84 0.82 0.82
Extra-trees 0.81 0.83 0.81 0.82
GBDT 0.89 0.90 0.89 0.89

AdaBoost 0.88 0.88 0.88 0.87
Stacking 0.90 0.91 0.90 0.90
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Using positively or negatively correlated features will cause data
redundancy, reduce the accuracy of the model, and increase the com-
putational cost.55 Feature selection is an important task in data mining
and ML applications. It removes irrelevant and redundant features to
improve model learning performance.56

Wrapper is a method of feature selection that predicts the effect
score based on the objective function. It generally finds better feature
subset classification performance and relatively high accuracy com-
pared to other feature selection methods. This study set the objective
function as recursive feature elimination (RFE).57 The learning curve
of the wrapper is plotted as shown in Fig. 2.

C. Model development

Model fusion refers to building and combining multiple well-
performing learners to accomplish a learning task. Different models
have their own strengths and differences, and model fusion can make
it possible to utilize the strengths of each model, so that these relatively
weak learners can be combined by some strategy to achieve a relatively

strong learner. Model fusion is derived from, but superior to, model
integration. The main difference is that model fusion uses better per-
forming learners, while model integration uses learners from multiple
bases, so the training bases are different. From a statistical point of
view, model fusion reduces the risk caused by choosing the wrong
assumptions, improves the likelihood of capturing real data patterns,
and improves the likelihood of having better generalization capabili-
ties. There are two main integration learning methods, boosting and
bagging. Stacking combines these two integration methods by utilizing
multiple primary learners on the raw data and then sending the fea-
tures learned by the primary learners to the meta-learner for fitting.

In this study, we built a two-story stacking model. Random forest
(RF), Extra-Trees(ET), GradientBoosting (GBDT), and AdaBoost are
basic learning algorithms as the first layer, whereas RF is the meta-
learner as the second layer. Figure 7 outlines the specific model
structure. To avoid overfitting, we use fivefold cross-validation and set
random seeds. This study uses the setup learning curve and the
GridSearchCV hyper-parameter tuning method to find the best hyper-
parameters. The GridSearchCV hyper-parameter tuning method will

FIG. 5. The feature importance ranking. (a) Permutation feature importance of questionnaire data. (b) Permutation feature importance of blood test data. (c) Permutation feature
importance of the comprehensive dataset (remove the HbA1C). (d) Permutation feature importance for the complete dataset.

APL Bioengineering ARTICLE pubs.aip.org/aip/apb

APL Bioeng. 8, 046111 (2024); doi: 10.1063/5.0207658 8, 046111-10

VC Author(s) 2024

pubs.aip.org/aip/apb


loop through all candidate parameter selections, trying every possibil-
ity to find the best performing hyperparameters. To ensure the stability
of the hyperparameters, we chose tenfold cross-validation.

D. Model evaluation

Model performance was evaluated on a test set using accuracy,
precision, recall, F1-score, P-R curve, and AUC as model evaluation
criteria. Each evaluation method was based on one of four categories:
true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN):

True Positive (TP): predicts positive classes as positive class
numbers.

True Negative (TN): predicts a negative class as a negative number.
False Positive (FP): predicts a negative class as a positive class
(type 1 error).
False Negative (FN): predicts the positive class as the number of
negative classes (type 2 error).

Accuracy: responds to the percentage of samples correctly catego-
rized by the model and is one of the most intuitive metrics to evaluate.
However, in unbalanced datasets, accuracy can be misleading because
the model may tend to predict the majority of categories while ignor-
ing a few.

Accuracy: accuracy ¼ TPþTNð Þð Þ= TPþTNþ FPþFNð Þð Þ: (1)

FIG. 6. Age, BMI, and diabetes trends scatterplot. The X-axis is the age indicator, and the Y-axis is the BMI indicator. The label indicates whether the sample has diabetes.
Yellow represents diabetic patients, and purple represents non-diabetic participants.

TABLE VI. Univariate logistic regression in the differential diagnosis of diabetes in the feature cohort.

Variables OR 95%CI P-value

Age 1.053 (1.047,1.058) <0.001
Han (No) 1 (reference)

(Yes) 1.799 (1.586,2.041) <0.001
Tea (Never) 1 (reference)

(Occasional) 0.907 (0.800,1.029) 0.129
(Used to drink tea) 0.972 (0.602,1.568) 0.906

(Now often) 0.901 (0.780,1.039) 0.152
Carbonated Beverages (No) 1 (reference)

(Yes) 1.913 (1.660,2.204) <0.001
AST 1.015 (1.011,1.020) <0.001
FBG 2.708 (2.547,2.879) <0.001
P2hPG 1.450 (1.470,1.480) <0.001
HbA1c 5.194 (4.703,5.736) <0.001
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Precision: measures the proportion of true instances in the sam-
ple that the model categorizes as positive instances. The level of preci-
sion reflects how accurately the model predicts positive cases and is
especially important when the cost of false positive cases (false alarms)
is high.

Precision: precision ¼ TP= TPþ FPð Þð Þ: (2)

Recall: measures the model’s ability to identify samples of positive
examples, i.e., how many true positive examples the model is able to
correctly capture. Recall is a key metric in the context of concerns
about missing true positive examples, especially when the cost of false
negative examples (underreporting) is high.

Recall: recall ¼ TP= TPþ FNð Þð Þ: (3)

F1-score: combining precision and recall, it is a metric that takes
into account both the predictive accuracy and recognition ability of the
model. It is particularly useful for the evaluation of unbalanced data-
sets because it balances the trade-off between precision and recall.

F1-score: F1� score ¼ TP= TPþ FPð Þð Þ: (4)

PR Curve (Precision–Recall Curve): the PR curve demonstrates
the trade-off between precision and recall of the model at different
thresholds. By analyzing the PR curve, the optimal model threshold
can be determined and the performance of the model under different
thresholds can be understood.

AUC (Area Under the Curve): AUC provides a single value for
comparing the performance of different models, with higher AUC
indicating better model performance in classification tasks.

E. Model explanation

In this paper, the model is built using stacking and compared to
the RF, ET, GBDT, and AdaBoost models. Table III presents the per-
formance metric scores of different methods.

To verify the robustness of the model, external validation is set
up. In this paper, the model is tested using the Pima Indian dataset.
Table IV shows the performance of stacking models in the datasets.

To validate the reliability of the model and what are the key fac-
tors in diagnosing diabetes with different characteristics, in this study,
the processed data are divided into four parts for experiments:

experiment one: using the model to train and predict the questionnaire
data in the dataset; experiment two: using the model to train and pre-
dict the blood test data in the dataset; in the third experiment, the
model was trained and predicted using the dataset after excluding the
gold standard for detecting diabetes (HbA1C); and experiment four
uses all the data for model training. To show the impact of model per-
formance and features on diabetes, the model performance was com-
pared for different datasets. Table V outlines the details. In order to
evaluate the practical significance of the model, a visual interpretation
of the model was performed. The ranking of the importance of the fea-
tures shows the risk factors that are most relevant to the impact of
diabetes.

Characteristics were assessed using one-way logistic regression
and multifactor logistic regression. Logistic regression analysis was
applied to calculate the odds ratio (OR) with 95% confidence interval

TABLE VII. Multivariate logistic regression in the differential diagnosis of diabetes in
the feature cohort.

Variables OR 95%CI P-value

Age 1.018 (1.011,1.024) <0.001
Han (No) 1 (reference)

(Yes) 1.484 (1.263,1.743) <0.001
Carbonated
beverages

(No) 1 (reference)

(Yes) 1.347 (1.129,1.607) 0.001
AST 1.004 (0.997,1.011) 0.236
FBG 1.586 (1.485,1.693) <0.001
P2hPG 1.190 (1.159,1.222) <0.001
HbA1c 2.203 (1.916,2.469) <0.001

TABLE VIII. Numerical attributes statistical description.

Feature State Count Mean Std Min Max

Age
NonT2DM 7385 54.71 112.174 29 100
T2DM 1596 60.77 106.321 35 91

SBP
NonT2DM 7277 131.37 427.896 66 216
T2DM 1575 138.58 437.075 70 228

DBP
NonT2DM 7277 78.53 144.965 33 139
T2DM 1575 79.69 142.326 49 125

BMI
NonT2DM 7231 23.9897 10.550 13.333 45.6538
T2DM 1568 24.8180 12.276 15.623 44.7087

WC
NonT2DM 7218 82.442 80.630 53.0 125.0
T2DM 1560 85.666 81.454 58.0 130.2

HC
NonT2DM 7181 94.002 43.893 59.2 140.0
T2DM 1550 95.398 50.378 70.0 133.0

CRP
NonT2DM 7310 69.205 331.450 19.6 358.7
T2DM 1583 72.544 305.577 19.8 259.1

HDL
NonT2DM 7311 1.3039 0.170 0.13 3.00
T2DM 1583 1.3246 0.147 0.31 2.77

LDL
NonT2DM 7310 2.9151 0.995 0.18 10.46
T2DM 1583 3.1779 0.934 0.62 11.93

TCHO
NonT2DM 7311 4.9387 1.957 0.40 13.03
T2DM 1582 5.3598 1.614 1.39 12.17

TG
NonT2DM 7304 1.4754 1.402 0.10 15.59
T2DM 1579 1.8708 2.352 0.25 14.76

AST
NonT2DM 7288 19.60 106.358 3 254
T2DM 1583 21.43 98.971 3 136

YGT
NonT2DM 7265 27.21 833.690 4 595
T2DM 1581 33.97 1668.779 4 768

FBG
NonT2DM 7102 5.51803 0.727 0.110 17.060
T2DM 1579 7.5948 8.323 1.88 26.95

P2hPG
NonT2DM 7015 6.99696 4.630 3.010 23.200
T2DM 1554 11.6580 32.563 3.10 33.86

HbA1C
NonT2DM 7218 5.533 0.356 2.7 19.5
T2DM 1579 6.847 2.952 4.0 15.5

FINS
NonT2DM 7312 8.426 32.041 0.1 163.9
T2DM 1582 11.283 185.873 0.4 238.7
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TABLE IX. Nominal attributes statistical analysis.

Feature State Count Values (count)

Gender
NonT2DM 7385 Male (2850), Female (4535)
T2DM 1596 Male (575), Female (1021)

Race
NonT2DM 7183 Han (4609), Zhuang (2487), other (87)
T2DM 1552 Han (1186), Zhuang (341), other (25)

Smoke
NonT2DM 7062 Non-smoke (5935), occasionally (264), smoke (863)
T2DM 1509 Non-smoke (1327), Occasionally (32), smoke (150)

Drink alcohol
NonT2DM 7113 Non-drink alcohol (4654) occasionally (1780), drink alcohol (679)
T2DM 1533 Non-drink alcohol (1122) occasionally (294), drink alcohol (117)

Tea
NonT2DM 7307 Non-tea (3404) occasional (2262) often (89) drinking tea (1552)
T2DM 1580 Non-tea (774) occasional (468) often (20) drinking tea (318)

Carbonate beverages
NonT2DM 7059 Carbonated beverages (1704), non-carbonated beverages (5355)
T2DM 1536 Carbonated beverages (204), non-carbonated beverages (1332)

Coffee
NonT2DM 7046 Coffee (643), non- coffee (6403)
T2DM 1530 Coffee (102), non- coffee (1428)

Hypertension
NonT2DM 7324 Hypertension (1291), non- hypertension (6033)
T2DM 1590 Hypertension (494), non- hypertension (1096)

Retinopathy
NonT2DM 7324 Retinopathy (24), non-retinopathy (7289)
T2DM 1587 Retinopathy (19), non-retinopathy (1566)

Hyperlipidemia
NonT2DM 7050 Hyperlipidemia (735), non-hyperlipidemia (6580)
T2DM 1510 Hyperlipidemia (274), non-hyperlipidemia (1312)

FLD
NonT2DM 7176 Fatty liver (768), non-fatty liver (6556)
T2DM 1546 Fatty liver (249), non-fatty liver (1338)

Snore
NonT2DM 7324 Often (1328) or occasionally (2569) or never (2402) or unclear (751).
T2DM 1587 Often (372) or occasionally (521) or never (468) or unclear (149).

Hypotensive drugs
NonT2DM 7050 Hypotensive drugs (317), non-hypotensive drugs (6859)
T2DM 1510 Hypotensive drugs (164), non-hypotensive drugs (1382)

FIG. 7. Model fusion flow chart. Using stacking model fusion, RF, GBDT, ET, and AdaBoost were used as the primary learners for model fusion. The data were subjected to
internal fivefold cross-validation using stacking, and the characteristics of each learner output in the training set were extracted and fed into the model fusion meta-learner.
Model classification prediction was finally achieved through the data training and learning of the meta-learner.
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(CI). P< 0.05 was considered to indicate statistical significance. The
results are shown in Tables VI and VII. To explore the impact of cer-
tain characteristics on diabetes, we present trends in the form of scatter
plots.

SUPPLEMENTARY MATERIAL

See the supplementary material for the following: “an epidemio-
logical investigation project on the risk of complications in
patients with diabetes mellitus in the community baseline survey
informed consent” and “epidemiological study of the risk of complica-
tions in patients with type 2 diabetes mellitus in China baseline
questionnaire.”
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RF random forest

RFE recursive feature elimination
ROC receiver operating characteristic curve

SMOTE synthetic minority oversampling technique
SVM support vector machine

T2DM type 2 diabetes mellitus

APPENDIX: STATISTICAL ANALYSIS OF NUMERICAL
AND NOMINAL ATTRIBUTES IN A DIABETIC
POPULATION

Numerical attributes statistical description. Nominal attributes
statistical analysis.

REFERENCES
1WHO, see https://www.who.int/news-room/fact-sheets/detail/diabetes for
“Diabetes WHO diabetes” (2022).
2IDF, see https://diabetesatlas.org/ for “Diabetes around the world in 2021 IDF
Diabetes Atlas” (2022).

3S. Demir, P. P. Nawroth, S. Herzig et al., “Emerging targets in type 2 diabetes
and diabetic complications,” Adv. Sci. 8(18), 2100275 (2021).

4N. Peer, Y. Balakrishna, and S. Durao, “Screening for type 2 diabetes mellitus,”
Cochrane Database Syst. Rev. 5(5), CD005266 (2020).

5K. Shaukat, S. Luo, V. Varadharajan et al., “Performance comparison and cur-
rent challenges of using machine learning techniques in cybersecurity,”
Energies 13, 2509 (2020).

6K. Shaukat, S. Luo, V. Varadharajan et al., “A survey on machine learning tech-
niques for cyber security in the last decade,” IEEE Access 8, 222310–222354
(2020).

7T. M. Alam, K. Shaukat, I. A. Hameed et al., “A novel framework for prognos-
tic factors identification of malignant mesothelioma through association rule
mining,” Biomed. Signal Process. Control 68, 102726 (2021).

8T. M. Alam, K. Shaukat, A. Khelifi et al., “A fuzzy inference-based decision
support system for disease diagnosis,” Comput. J. 66(9), 2169–2180 (2023).

9Computational Methods for Medical and Cyber Security, edited by S. Luo and
K. Shaukat (MDPI Books, 2022).

10M. R. Kumar, S. Vekkot, S. Lalitha et al., “Dementia detection from speech
using machine learning and deep learning architectures,” Sensors 22(23), 9311
(2022).

11A. Siddique, K. Shaukat, and T. Jan, “An intelligent mechanism to detect multi-
factor skin cancer,” Diagnostics 14(13), 1359 (2024).

APL Bioengineering ARTICLE pubs.aip.org/aip/apb

APL Bioeng. 8, 046111 (2024); doi: 10.1063/5.0207658 8, 046111-14

VC Author(s) 2024

https://doi.org/10.60893/figshare.apb.c.7528128
https://www.who.int/news-room/fact-sheets/detail/diabetes
https://diabetesatlas.org/
https://doi.org/10.1002/advs.202100275
https://doi.org/10.1002/14651858.CD005266.pub2
https://doi.org/10.3390/en13102509
https://doi.org/10.1109/ACCESS.2020.3041951
https://doi.org/10.1016/j.bspc.2021.102726
https://doi.org/10.1093/comjnl/bxac068
https://doi.org/10.3390/s22239311
https://doi.org/10.3390/diagnostics14131359
pubs.aip.org/aip/apb


12Srinivas, CK. S. N. P. and Zakariah, M et al., “Deep transfer learning approaches
in performance analysis of brain tumor classification using MRI images,”
J. Healthcare Eng. 2022(1), 3264367.

13M. G. Alsubaie, S. Luo, and K. Shaukat, “ConvADD: Exploring a novel CNN
architecture for Alzheimer’s disease detection,” Int. J. Adv. Comput. Sci. Appl.
15(4), 300–313 (2024).

14K. Shaukat, S. Luo, and V. Varadharajan, “A novel deep learning-based
approach for malware detection,” Eng. Appl. Artif. Intell. 122, 106030 (2023).

15K. Shaukat, S. Luo, and V. Varadharajan, “A novel machine learning approach
for detecting first-time-appeared malware,” Eng. Appl. Artif. Intell. 131, 107801
(2024).

16K. Shaukat, S. Luo, and V. Varadharajan, “A novel method for improving the
robustness of deep learning-based malware detectors against adversarial
attacks,” Eng. Appl. Artif. Intell. 116, 105461 (2022).

17F. Anwar, M. Y. Ejaz, and A. Mosavi, “A comparative analysis on diagnosis of
diabetes mellitus using different approaches–A survey,” Inf. Med. Unlocked 21,
100482 (2020).

18R. D. Joshi and C. K. Dhakal, “Predicting type 2 diabetes using logistic regres-
sion and machine learning approaches,” Int. J. Environ. Res. Public Health
18(14), 7346 (2021).

19V. Chang, J. Bailey, Q. A. Xu et al., “Pima Indians diabetes mellitus classifica-
tion based on machine learning (ML) algorithms,” Neural Comput. Appl.
35(22), 16157–16173 (2023).

20E. Adua, E. A. Kolog, E. Afrifa-Yamoah et al., “Predictive model and feature
importance for early detection of type II diabetes mellitus,” Transl. Med.
Commun. 6, 1–15 (2021).

21J. J. Khanam and S. Y. Foo, “A comparison of machine learning algorithms for
diabetes prediction,” Ict Express 7(4), 432–439 (2021).

22M. O. Edeh, O. I. Khalaf, C. A. Tavera et al., “A classification algorithm-based
hybrid diabetes prediction model,” Front. Public Health 10, 829519 (2022).

23Z. Xie, O. Nikolayeva, J. Luo, and D. Li, “Building risk prediction models for
type 2 diabetes using machine learning techniques,” Prev. Chronic Dis. 16,
E130 (2019).

24I. Goodfellow, Deep Learning (MIT Press, 2016).
25C. Zhang, S. Bengio, M. Hardt et al., “Understanding deep learning (still)
requires rethinking generalization,” Commun. ACM 64(3), 107–115 (2021).

26M. Khushi, K. Shaukat, T. M. Alam et al., “A comparative performance analysis
of data resampling methods on imbalance medical data,” IEEE Access 9,
109960–109975 (2021).

27T. M. Alam, K. Shaukat, W. A. Khan et al., “An efficient deep learning-based
skin cancer classifier for an imbalanced dataset,” Diagnostics 12(12(9), 2115
(2022).

28T. M. Alam, K. Shaukat, H. Mahboob et al., “A machine learning approach for
identification of malignant mesothelioma etiological factors in an imbalanced
dataset,” Comput. J. 65(7), 1740–1751 (2022).

29X. Yang, M. Khushi, and K. Shaukat, “Biomarker CA125 feature engineering
and class imbalance learning improves ovarian cancer prediction,” in 2020
IEEE Asia-Pacific Conference on Computer Science and Data Engineering
(CSDE) (IEEE, 2020), pp. 1–6.

30Z. Ali, M. F. Hayat, K. Shaukat et al., “A proposed framework for early predic-
tion of schistosomiasis,” Diagnostics 12(12), 3138 (2022).

31L. Devnath, S. Luo, P. Summons et al., “Deep ensemble learning for the auto-
matic detection of pneumoconiosis in coal worker’s chest X-ray radiography,”
J. Clin. Med. 11(18), 5342 (2022).

32Q. Liu, M. Zhang, Y. He et al., “Predicting the risk of incident type 2 diabetes
mellitus in Chinese elderly using machine learning techniques,” J. Pers. Med.
12(12(6), 905 (2022).

33H. Yang, Y. Luo, X. Ren et al., “Risk prediction of diabetes: Big data mining
with fusion of multifarious physical examination indicators,” Inf. Fusion 75,
140–149 (2021).

34M. Xue, Y. Su, C. Li et al., “Identification of potential type II diabetes in a large-
scale chinese population using a systematic machine learning framework,”
J. Diabetes Res. 2020(1), 6873891.

35Z. Dong, Q. Wang, Y. Ke, W. Zhang, Q. Hong, C. Liu et al., “Prediction of
3-year risk of diabetic kidney disease using machine learning based on elec-
tronic medical records,” J. Transl. Med. 20(1), 143 (2022).

36D. D. Rufo, T. G. Debelee, A. Ibenthal et al., “Diagnosis of diabetes mellitus
using gradient boosting machine (LightGBM),” Diagnostics 11(9), 1714
(2021).

37X. Xiong, R. Zhang, Y. Bi et al., “Machine learning models in type 2 diabetes
risk prediction: Results from a cross-sectional retrospective study in Chinese
adults,” Curr. Med. Sci. 39(4), 582–588 (2019).

38A. Sumathi and S. Meganathan, “Ensemble classifier technique to predict gesta-
tional diabetes mellitus (GDM),” Comput. Syst. Sci. Eng. 40(1), 313–325
(2022).

39H. M. Deberneh and I. Kim, “Prediction of type 2 diabetes based on machine
learning algorithm,” Int. J. Environ. Res. Public Health 18(6), 3317 (2021).

40M. Gollapalli, A. Alansari, H. Alkhorasani et al., “A novel stacking ensem-
ble for detecting three types of diabetes mellitus using a Saudi Arabian
dataset: Pre-diabetes, T1DM, and T2DM,” Comput. Biol. Med. 147,
105757 (2022).

41S. K. Kalagotla, S. V. Gangashetty, and K. Giridhar, “A novel stacking technique
for prediction of diabetes,” Comput. Biol. Med. 135, 104554 (2021).

42S. Chatterjee, K. Khunti, and M. J. Davies, “Type 2 diabetes,” Lancet
389(10085), 2239–2251 (2017).

43H. Cao, J. Ou, L. Chen, Y. Zhang, T. Szkudelski, D. Delmas et al., “Dietary poly-
phenols and type 2 diabetes: Human study and clinical trial,” Crit. Rev. Food
Sci. Nutr. 59(20), 3371–3379 (2019).

44W. Koch, “Dietary Polyphenols—Important non-nutrients in the prevention of
chronic noncommunicable diseases. A systematic review,” Nutrients 11(5),
1039 (2019).

45S. Colagiuri, C. M. Lee, T. Y. Wong, B. Balkau, J. E. Shaw, K. Borch-Johnsen
et al., “Glycemic thresholds for diabetes-specific retinopathy: Implications for
diagnostic criteria for diabetes,” Diabetes Care 34(1), 145–150 (2011).

46Chinese Elderly Type 2 Diabetes Prevention and Treatment of Clinical
Guidelines Writing Group; Geriatric Endocrinology and Metabolism Branch of
Chinese Geriatric Society; Geriatric Endocrinology and Metabolism Branch of
Chinese Geriatric Health Care Society; Geriatric Professional Committee of
Beijing Medical Award Foundation; National Clinical Medical Research Center
for Geriatric Diseases (PLA General Hospital), Zhonghua Nei Ke Za Zhi. 61(1),
12–50 (2022).

47K. J. Welsh, M. S. Kirkman, and D. B. Sacks, “Role of glycated proteins in the
diagnosis and management of diabetes: Research gaps and future directions,”
Diabetes Care 39(8), 1299 (2016).

48L. Ismail, H. Materwala, M. Tayefi, P. Ngo, and A. P. Karduck, “Type 2 diabetes
with artificial intelligence machine learning: Methods and evaluation,” Arch.
Comput. Methods Eng. 29(1), 313–333 (2022).

49K. Shaukat, S. Luo, S. Chen et al., “Cyber threat detection using machine learn-
ing techniques: A performance evaluation perspective,” in 2020 International
Conference on Cyber Warfare and Security (ICCWS) (IEEE, 2020), pp. 1–6.

50R. J. Little, R. D’agostino, M. L. Cohen et al., “The prevention and treatment of
missing data in clinical trials,” N. Engl. J. Med. 367(14), 1355–1360 (2012).

51S. C. K. T�ekouabou, I. Chabbar, H. Toulni et al., “Optimizing the early glau-
coma detection from visual fields by combining preprocessing techniques and
ensemble classifier with selection strategies,” Expert Syst. Appl. 189, 115975
(2022).

52X. Chen, C. Faviez, M. Vincent et al., “Patient-patient similarity-based screen-
ing of a clinical data warehouse to support ciliopathy diagnosis,” Front.
Pharmacol. 13, 786710 (2022).

53G. E. Batista, R. C. Prati, and M. C. Monard, “A study of the behavior of several
methods for balancing machine learning training data,” SIGKDD Explor.
Newsl. 6(1), 20–29 (2004).

54S. Maldonado, C. Vairetti, A. Fernandez et al., “FW-SMOTE: A feature-
weighted oversampling approach for imbalanced classification,” Pattern
Recognit. 124, 108511 (2022).

55J. Han, J. Pei, and H. Tong, “Data mining: Concepts and techniques”
(published online) (2022).

56R. Sheikhpour, M. A. Sarram, S. Gharaghani et al., “A survey on semi-
supervised feature selection methods,” Pattern Recognit. 64, 141–158 (2017).

57W. Liu and J. Wang, “Recursive elimination–election algorithms for wrapper
feature selection,” Appl. Soft Comput. 113, 107956 (2021).

APL Bioengineering ARTICLE pubs.aip.org/aip/apb

APL Bioeng. 8, 046111 (2024); doi: 10.1063/5.0207658 8, 046111-15

VC Author(s) 2024

https://doi.org/10.1155/2022/3264367
https://doi.org/10.14569/ijacsa.2024.0150431
https://doi.org/10.1016/j.engappai.2023.106030
https://doi.org/10.1016/j.engappai.2023.107801
https://doi.org/10.1016/j.engappai.2022.105461
https://doi.org/10.1016/j.imu.2020.100482
https://doi.org/10.3390/ijerph18147346
https://doi.org/10.1007/s00521-022-07049-z
https://doi.org/10.1186/s41231-021-00096-z
https://doi.org/10.1186/s41231-021-00096-z
https://doi.org/10.1016/j.icte.2021.02.004
https://doi.org/10.3389/fpubh.2022.829519
https://doi.org/10.5888/pcd16.190109
https://doi.org/10.1145/3446776
https://doi.org/10.1109/ACCESS.2021.3102399
https://doi.org/10.3390/diagnostics12092115
https://doi.org/10.1093/comjnl/bxab015
https://doi.org/10.3390/diagnostics12123138
https://doi.org/10.3390/jcm11185342
https://doi.org/10.3390/jpm12060905
https://doi.org/10.1016/j.inffus.2021.02.015
https://doi.org/10.1155/2020/6873891
https://doi.org/10.1186/s12967-022-03339-1
https://doi.org/10.3390/diagnostics11091714
https://doi.org/10.1007/s11596-019-2077-4
https://doi.org/10.32604/csse.2022.017484
https://doi.org/10.3390/ijerph18063317
https://doi.org/10.1016/j.compbiomed.2022.105757
https://doi.org/10.1016/j.compbiomed.2021.104554
https://doi.org/10.1016/S0140-6736(17)30058-2
https://doi.org/10.1080/10408398.2018.1492900
https://doi.org/10.1080/10408398.2018.1492900
https://doi.org/10.3390/nu11051039
https://doi.org/10.2337/dc10-1206
https://doi.org/10.3760/cma.j.cn112138-2021102700751
https://doi.org/10.2337/dc15-2727
https://doi.org/10.1007/s11831-021-09582-x
https://doi.org/10.1007/s11831-021-09582-x
https://doi.org/10.1056/NEJMsr1203730
https://doi.org/10.1016/j.eswa.2021.115975
https://doi.org/10.3389/fphar.2022.786710
https://doi.org/10.3389/fphar.2022.786710
https://doi.org/10.1145/1007730.1007735
https://doi.org/10.1145/1007730.1007735
https://doi.org/10.1016/j.patcog.2021.108511
https://doi.org/10.1016/j.patcog.2021.108511
https://doi.org/10.1016/C2013-0-18660-6
https://doi.org/10.1016/j.patcog.2016.11.003
https://doi.org/10.1016/j.asoc.2021.107956
pubs.aip.org/aip/apb

	s1
	s2
	s3
	s3A
	s3B
	s3C
	s3D
	s3E
	s4
	t1
	f1
	t2
	f2
	t3
	f3
	s5
	f4
	t4
	s6
	s6A
	s6B
	t5
	s6C
	f5
	s6D
	d1
	f6
	t6
	d2
	d3
	d4
	s6E
	t7
	t8
	t9
	f7
	s7
	l
	app1
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54
	c55
	c56
	c57

