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Abstract

Background: To accurately predict the prognosis of glioma patients.

Methods: A total of 541 samples from the TCGA cohort, 181 observations from the CGGA database and 91 samples
from our cohort were included in our study. Long non-coding RNAs (LncRNAs) associated with glioma WHO grade
were evaluated by weighted gene co-expression network analysis (WGCNA). Five lncRNA features were selected out
to construct prognostic signatures based on the Cox regression model.

Results: By weighted gene co-expression network analysis (WGCNA), 14 lncRNAs related to glioma grade were
identified. Using univariate and multivariate Cox analysis, five lncRNAs (CYTOR, MIR155HG, LINC00641, AC120036.4
and PWAR6) were selected to develop the prognostic signature. The Kaplan-Meier curve depicted that the patients
in high risk group had poor prognosis in all cohorts. The areas under the receiver operating characteristic curve of
the signature in predicting the survival of glioma patients at 1, 3, and 5 years were 0.84, 0.92, 0.90 in the CGGA
cohort; 0.8, 0.85 and 0.77 in the TCGA set and 0.72, 0.90 and 0.86 in our own cohort. Multivariate Cox analysis
demonstrated that the five-lncRNA signature was an independent prognostic indicator in the three sets (CGGA set:
HR = 2.002, p < 0.001; TCGA set: HR = 1.243, p = 0.007; Our cohort: HR = 4.457, p = 0.008, respectively). A nomogram
including the lncRNAs signature and clinical covariates was constructed and demonstrated high predictive accuracy
in predicting 1-, 3- and 5-year survival probability of glioma patients.

Conclusion: We established a five-lncRNA signature as a potentially reliable tool for survival prediction of glioma
patients.
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Background
Glioma is the most prevalent neoplasm in central ner-
vous system (CNS), with the highest malignancy and the
worst prognosis compared with other tumors in brain.
In spite of the fact that clinical interventions have been

improved dramatically, but the outcomes of glioma pa-
tients fail to satisfy the expected goals [1]. The main fac-
tors of the poor prognosis are due to the atypical
symptoms and the aggressiveness of glioma, resulting in
a large proportion of glioma patients diagnosed and
treated at the advanced grade [2]. Therefore, further ex-
ploration on the molecular mechanisms of tumorigenesis
and progression is crucial for improving diagnosis and
treatment and investigations into the novel biomarkers
are needed.
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The past few years witness the great accumulation of
evidence indicating the subtle and complex regulatory
process in tumor biological behaviors, insights into
which in all probability facilitate the development of
more effective treatment strategies and improvement in
clinical benefits [3]. High-throughput sequencing makes
it possible to comprehensively analyze the transcriptome
and genome, especially for long non-coding RNA
(lncRNA), mRNA, and others [4, 5]. LncRNA typically
has more than 200 nucleotides in length, disabling to en-
code proteins [6]. This type of RNA has been confirmed
to be involved in several biological functions including
transcription [7], RNA splicing [6], N6-methyladenosine
(m6A) [8] and others. The expression profiles of
lncRNAs are cell-specific and tumor-specific [9]. Mean-
while, there is mounting evidence that the dysregulated
lncRNAs act a pivotal part in many biological processes
of malignancy, demonstrating great potentiality as novel
diagnostic or prognostic molecular biomarkers [10, 11].
Regarding glioma, some lncRNAs are dysregulated and
implicated in cell growth, apoptosis, invasion and angio-
genesis. LncRNA-MALAT1 has been considered as a
tumor suppressor and down expression of MALAT1 to
cause remarkable promotion of invasion and prolifera-
tion of the glioma cells [12]. LncRNA-NEAT1 has been
revealed to be modulated by the epidermal growth factor
receptor (EGFR) pathway, leading to glioblastoma multi-
form progression by the WNT/β-Catenin Pathway by
Scaffolding enhancer of zeste homolog 2 (EZH2) [13].
Nevertheless, the molecular functions and mechanisms
of the great majority of lncRNAs remain ill-defined and
the research concerning lncRNAs with diagnosis or
prognosis potentiality in glioma is still in the initial
stage.
In this study, we used the univariate and multivariate

Cox regression analysis to develop a prognostic pre-
dictor based on multiple lncRNAs for glioma patients.
The prognosis prediction accuracy of the signature was
evaluated in the CGGA, TCGA and our own cohorts.

Materials
Data obtaining
Two sets of data were included in our study. The both
lncRNA-sequencing data were downloaded from the
TANRIC database [14], meanwhile, the corresponding
clinical information were separately obtained from two
databases, including the Chinese Glioma Genome Atlas
(CGGA, http://www.cgga.org.cn/) and The Cancer Gen-
ome Atlas (TCGA, https://portal.gdc.cancer.gov/). The
CGGA dataset consisting of 89 LGG and 92 GBM tissue
samples, acting as a training set, was used to establish a
multi-lncRNA signature. The TCGA dataset, consisting
of 405 LGG and 136 GBM observations, and our cohort
including 38 LGG and 53 GBM patients were treated as

testing and validation sets to examine the statistical sig-
nificance of the signature. The clinical characteristics of
glioma patients in the training, testing and validation
sets were shown in Table S1. MRNA expression data of
139 GBM and 181 LGG patients and miRNA microarray
data of 101 LGG and 97 GBM samples were downloaded
from the CGGA database.

Weighted gene co-expression network analysis (WGCNA)
The top 35% most variant genes (4455 genes) were sub-
ject for WCGNA step by analyzing variance in CGGA
set. The process of WGCNA included the construction
of gene expression similarity matrix, adjacency matrix,
and then co-expression network [15]. The power value
of the soft threshold β of the adjacency matrix was set as
6 through the R function pickSoftThreshold. And then
we used the ScaleFree plot to evaluate whether the net-
work met the criterion of the scale-free topology net-
work. The hierarchical clustering method on the basis of
average-linkage, was adopted to define modules. When
clustering, we used the smallest module size of 30. The
Pearson correlation coefficients between modules and
clinical variables were calculated. The module with abso-
lute value of the correlation coefficient > 0.5 and p < 0.01
was worth further analysis.

Survival analysis
The association between the hub lncRNAs and overall
survival (OS) were first calculated using univariate Cox
analysis. The lncRNAs with p < 0.05 were chosen to
carry out multivariate Cox regression analysis and step-
wise regression method was used to select variables to
construct prognostic model on the basis of the Akaike
information criterion (AIC). Then, risk score was
obtained based on coefficients (β) from multivariate cox
analysis and expression data of lncRNAs (EXPi). The
detailed formula was as follows: risk score = EXP1 * β1
+ EXP2 * β2 +……+ EXPi * βi. In the light of the median
values of the risk scores in training and validation
cohorts, patients with glioma were separated into high
and low risk groups, respectively. To analyze whether
the survival time of the patients in two risk groups was
significantly different, Kaplan-Meier (KM) curve was
used and visualized by R package survival. To evaluate
the predicting accuracy of the established model,
receiver operating characteristic (ROC) curve was
conducted.

Construction of Nomogram survival model
Nomogram could illustrate the relationship between
different variables in a graphical way [16]. Meanwhile,
the advantage of nomogram is that it can personally cal-
culate the survival rate of specific tumor patients, so it
has great value in clinical application [16]. To assess the
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probabilities of overall survival at 1, 3, and 5 years for
glioma patients, a nomogram was constructed here, con-
sisting of risk score, 1p19q status and glioma WHO
grading. In addition, calibration curve was used to assess
the degree to which actual results were consistent with
the predicted results of nomogram. Areas under the
ROC curve were used to making a comparison between
the predictive reliability of the nomogram and clinical
variables.

Differential expression analysis
LncRNA, miRNA, and mRNA expression data were all log2
transformed using R project (version 4.0.1). We first
normalize the log2-transformed data into distribution of
mean value and sent which to conduct differential
expression between LGG and GBM samples using the
Bayesian test from limma package [17]. T-test and Benjamini
& Hochberg (BH) method were used to obtain the adjusted
p value. RNAs with |Log2FC| > 1 and adjusted p value< 0.05
were considered expression significantly changed.

Construction of ceRNA regulatory network and functional
annotations
Several lncRNAs have recently been observed to
participate in the regulation of gene expression,
through the absorption of miRNAs, resulting in the
occurrence and development of malignant tumors
[18]. Through the starBase v2.0 database [19], we first
predicted the hub lncRNA-DEmiRNA interactions.
Three online tools, including miRTarBase [20],
TargetScan [21] and miRDB [22] were used to
explore the targets of the DEmiRNAs and the over-
lapped genes with differential expression in the three
databases were chosen as candidates for ceRNA
network. Visualization of ceRNA regulatory network
was accomplished by software cytoscape (https://
cytoscape.org/). The mRNAs in the ceRNA network
were subject to enrichment analysis by the R package
clusterProfiler [23] in R project (v4.0.1). Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis results
with p < 0.05 were considered significant.

Fig. 1 Weighted gene co-expression analysis (WGCNA) of lncRNA expression profiles in the training set. (a) Heatmap of Pearson correlation
analysis of modules and the clinical trait of glioma. Rows represent module eigengenes and columns traits. (b) Barplot of average gene
significance in eight modules. The green, yellow and brown modules were worth analyzing. (c-e) Scatter plot of module eigengenes in brown,
green, and yellow modules
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Tumor specimens
Tumor samples were obtained during operation and
stored in liquid nitrogen immediately after isolation
before use. The pathological grades were identified
according to WHO classification and there were 38
samples classified into WHO II-III glioma and 53 into
WHO IV glioma. All methods were performed in
accordance with the guideline approved by Ethics
Committee of Renmin Hospital of Wuhan University
[approval number: 2012LKSZ (010) H].

Quantitative RT-PCR
Total RNA was extracted from tumor samples using
PrimeScriptTM RT Reagent Kit with a gDNA Eraser
(Takara Bio Inc., Japan) according to manufacturer
protocol and transcribed into cDNA. QRT-PCR was
carried out by SYBR Premix Ex Taq (Takara Bio Inc.,
Japan). The expression levels of lncRNAs were normal-
ized to GAPDH and calculated by the 2−ΔΔCt method.
Sequences of the primers and conditions of amplification
were shown in Table S2.

Results
Co-expression network construction
Through conjoint analysis of co-expression network and
clinical features, modules with biological significance can
be confirmed in this step [15]. When the value of β was

chosen as 6, the scale-free topology fit index reached
0.98, meeting the standard of approximate scale-free
topology (Fig. S1). LncRNAs with similar expression
patterns were divided into the same module by cluster
dendrogram trees and eight modules were obtained here.
The results of the investigation into the relationships
between modules and glioma WHO grading were pre-
sented in Fig. 1a. By setting the threshold values as
Pearson correlation coefficient > |0.5| and p < 0.01 to
select the significant modules, and by inquiring into
mean gene significance across all genes in one module,
the brown, green and yellow module were considered to
be closely related to the WHO grade of glioma (Fig. 1b).
Meanwhile, the module membership (MM) vs. gene sig-
nificance (GS) analysis of the brown, green and yellow
modules showed that the three were endowed with
higher correlation between MM and GS (Fig. 1c-e).
Within these three modules, we obtained 14 hub
lncRNAs in total, by selecting lncRNAs with |GS| > 0.85
and |MM| > 0.65.

Survival analysis of risk score and clinical features
Survival analysis had been firstly performed on the train-
ing set of 181 glioma patients. From the univariate Cox
analysis, 14 hub lncRNAs detected in the step of
WGCNA were considered to be statistically connected
with the clinical outcomes of gliomas (Fig. 2), and 5 of

Fig. 2 Forest plot of univariate Cox regression analysis of the 14 candidate lncRNAs with overall survival of glioma patients. Abbreviations: HR,
hazard ratio; CI, confidence interval
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which were selected to establish prognostic model based
on step-wise Cox analysis (Table S3). Subsequently, the
risk score system based on the step regression Cox
analysis was constructed, and the following formula was
adopted here: risk score = CYTOR * 0.3447 +MIR155HG
* -0.8509 + LINC00641 * -0.7135 + AC120036.4 *
-0.5505 + PWAR6 * -0.5748. The median risk scores of
samples was calculated separately in the training, testing
and validation sets, and set as cutoffs in risk stratifica-
tion for glioma patients (Fig. 3a-f). And the expression
profiles of the five lncRNAs were visualized by heat map
in the training (Fig. 3g), testing (Fig. 3h) and validation
(Fig. 3i) datasets. Moreover, we used the K-M curve
evaluated whether there were significant survival time
differences for glioma patients after risk stratification.
The results showed the mortality of patients in the high-
risk group was significantly higher than that in the low-
risk group (Fig. 4a-c). The values of AUC of the signa-
ture at 1-, 3-, and 5-year OS were 0.84, 0.92 and 0.90 in
the training set; 0.8, 0.85 and 0.77 in the testing

cohort and 0.72, 0.90 and 0.86 in validation cohort,
demonstrating the great reliability of the prognosis
signature (Fig. 4d-f). Univariate Cox regression
analysis suggested that risk score, 1p19q status and
WHO grading had prognostic values (p < 0.05) in the
three sets, while age and sex not. Then, in multivari-
ate Cox regression analysis of risk score and clinico-
pathological risk variables, risk score was still an
independent and powerful prognosis-predicting factor
(training set: HR = 2.002, 95%CI [1.584–2.530], p <
0.001; testing set: HR = 1.243, 95%CI [1.063–1.469],
p = 0.007; validation set: HR = 4.457, 95%CI [1.472–
13.491], p = 0.008) (Table 1).

Nomogram construction and accuracy assessment
To facilitate the clinical prognosis assessment for glioma
patients, we established a nomogram to perform the pre-
diction of the overall survival probability at 1-, 3-, and 5-
year in the training, testing, validation cohorts (Fig. 5a
and Fig. S2A-B). The observed and predicted

Fig. 3 Patients were grouped according to the median risk score in training, testing and validation sets. Scatter plot of distribution of risk scores
(a-c), survival state of glioma patients (d-f) and heatmap of five hub lncRNAs expression profiles in training, testing and validation (g-i) cohorts

Zhang et al. BMC Cancer          (2021) 21:251 Page 5 of 11



probabilities for the specific observations decrease along
the diagonal line in calibration plot (Fig. 5b-d). To meas-
ure the predictive accuracy of the merged nomogram
and the clinical risk factors at 1-, 3- and 5-year OS, the
values of the area under the ROC curve were calculated.
The 1-year AUC was 0.87 for nomogram, 0.80 for
glioma WHO grading, 0.38 for 1p19q status (Fig. 5e). In
assessing the predicting efficacy at 3-year OS, AUC was
0.94 for nomograph, 0.89 for glioma WHO grading, 0.37
for 1p19q status (Fig. 5f). Furthermore, the 5-year AUC
was 0.93 for alignment chart, 0.86 for glioma WHO
grading, and 0.33 for 1p19q status (Fig. 5g).

Differential expression analysis of RNAs
We confirmed that the 5 hub lncRNAs were expression-
dysregulated between LGG and GBM tissues. In com-
parison with expression levels of lncRNAs in low grade
glioma, CYTOR and MIR155HG were significantly over-
expressed in GBM tissues, while three lncRNAs
(LINC00641, AC120036.4, PWAR6) were remarkably

down-regulated in GBM samples (Fig. S3A-C). Mean-
while, there were 1801 mRNAs and 93 miRNAs upregu-
lated; and 1287 mRNAs and 91 miRNAs downregulated
in GBM samples (Fig. S3D, E).

Construction of ceRNA regulation network and
enrichment analysis
A competing endogenous RNA (ceRNA) regulation
network was constructed and visualized by Cytoscape
software (Fig. 6a). And in the network, there were 61
miRNAs, 182 mRNAs, 5 lncRNAs, and 512 edges. More-
over, we explored the possible biological mechanisms of
the hub lncRNAs related to glioma. By applying R pack-
age clusterProfiler, mRNAs in the network were subject
to function annotation analysis. It indicated that the
mRNAs regulated by the hub lncRNAs were mainly
involved in regulation of cell cycle process, regulation of
cellular senescence and in cell−matrix adhesion. More-
over, pathways analysis of target mRNAs showed a sta-
tistically significant association with glioma and p53

Fig. 4 Survival analysis and predictive accuracy assessment of the five-lncRNA signature. Kaplan-Meier curve demonstrated significant survival
differences between high and low groups in the training (a), testing (b) and validation (c) sets. Receiver operating characteristic (ROC) curve
showed the great predictive accuracy of the signature in the training (d), testing (e) and validation (f) sets
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signaling pathway, confirming potential roles in cancer
development of the hub lncRNAs (Fig. 6b, c).

Discussion
Recent research demonstrates multiple biomarkers inte-
grated into a single model can greatly improve the prog-
nostic value of a single model [24]. Glioma patients are
rather heterogeneous. Even in the same pathological
grade, there are considerable differences in their clinical
outcomes [1]. The present study was designed to detect
and validate a signature containing multiple markers to
improve the prognostic accuracy for gliomas.
In particular, we applied WGCNA to glioma pa-

tients with RNA-seq lncRNA expression data, which
has been extensively utilized in exploring biomarkers
in cancers such as pancreatic carcinoma and breast
cancer [25, 26]. In our research, through the con-
struction of a lncRNA co-expression network with
data available at the TANRIC database, three
modules-green, yellow and brown associated with gli-
oma WHO grading were identified using the
WGCNA algorithm. Total 14 hub lncRNAs with
|GS| > 0.85 and |MM| > 0.65 were selected from the
three modules. Then, univariate Cox analysis of the
hub lncRNAs and overall survival was firstly con-
ducted and demonstrated all the variates having out-
standing statistical significance. In multivariate Cox

analysis, stepwise regression was used to select
markers and a risk model to was constructed to pre-
dict glioma prognosis. Finally, five lncRNAs (CYTOR,
MIR155HG, LINC00641, AC120036.4 and PWAR6)
were chosen to establish a risk score system for pre-
diction the prognosis of gliomas. The signature
remained a strong and independent prognostic indica-
tor for OS in the training, testing and validation co-
hort by inclusion of statistically significant clinical
factors determined by univariate Cox regression ana-
lysis and the risk signature into multivariate Cox re-
gression analysis. In assessing of model predictive
performance, the 1-year, 3-year, and 5-year AUC
values in the training and validation cohort were all
more than 0.75. Several previous studies associated
with construction of prognostic model for glioma pa-
tients provided the AUC values of the model. Wang
et al. established prognostic model for glioma, and
the AUC values in predicting 1-year survival for gli-
oma were TCGA: 0.623 and CGGA: 0.607; and 3-year
survival: TCGA: 0.735 and CGGA: 0.803 [27]. Lin
et al. used four genes (TAGLN2, PDPN, TIMP1,
EMP3) to build prognostic model for glioma and its
AUC values were 0.80 in TCGA cohort and 0.72 in
CGGA cohort [28].
The results indicated that our predictor has higher

accuracy in predicting the prognosis of glioma

Table 1 Univariate and multivariate Cox regression analysis of the risk score, clinical variables, and survival in the training, testing
and validation cohorts

Variates Univariate Cox analysis Multivariate Cox analysis

HR 95%CI P HR 95%CI P

CGGA glioma training set (n = 181)

Grade (ref. WHO IV) 0.101 0.070–0.171 < 0.001 0.377 0.208–0.682 0.001

Sex (ref. Female) 0.966 0.664–1.404 0.854

Age (median years, ref. < 42) 1.91 1.310–2.786 < 0.001 0.937 0.633–1.387 0.746

1p19q status (ref. codeletion) 5.442 2.901–10.206 < 0.001 2.6 1.337–5.048 0.005

Risk score (continuous) 2.718 2.269–3.256 < 0.001 2.002 1.584–2.530 < 0.001

TCGA glioma testing set (n = 541)

Grade (ref. WHO IV) 0.106 0.079–0.143 < 0.001 0.327 0.204–0.500 < 0.001

Sex (ref. Female) 1.129 0.854–1.495 0.394

Age (median, ref. < 42) 5.25 3.654–7.544 < 0.001 3.954 2.005–4.163 < 0.001

1p19q status (ref. codeletion) 4.793 2.951–7.785 < 0.001 3.166 1.873–5.352 < 0.001

Risk score (continuous) 2.076 1.853–2.325 < 0.001 1.243 1.063–1.469 0.007

Our glioma validation set (n = 91)

Grade (ref. WHO IV) 0.062 0.028–0.136 < 0.001 0.057 0.021–0.155 < 0.001

Sex (ref. Female) 0.685 0.419–1.12 0.131

Age (median, ref. < 42) 1.026 0.628–1.677 0.917

1p19q status (ref. codeletion) 2.033 1.002–4.125 0.049 2.758 1.275–5.969 0.009

Risk score (continuous) 18.376 6.881–49.075 < 0.001 4.457 1.472–13.491 0.008

Abbreviations: HR hazard ratio; CI confidence interval
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Fig. 5 Nomogram construction. A nomogram predicted the survival possibility of gliomas in the training set (a). Calibration plot for the
nomogram demonstrated the observed and predicted OS probabilities were highly consistent (b-d). ROC curve assessed the prognosis prediction
accuracy of the nomogram at 1-, 3- and 5-year overall survival (e-g). Abbreviations: OS, overall survival; AUC, area under curve
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patients at three prediction time points. Nomogram
has been widely applied in cancer prognosis assess-
ment for providing an opportunity of predicting in-
dividual survival probability. Here, we constructed a
robust nomogram composed of risk score, grade and
1p19q status to predict the prognosis of glioma pa-
tients. In addition, the AUC values of the integrated
nomogram at 1 year, 3 years and 5 years were greater
than the AUC values of grade, 1p19q status and the
five-lncRNA signature. The calibration curves dem-
onstrated that the predicted and observed probabil-
ities shown great consistency with each other. These
results revealed that the nomogram performed well
in predicting the prognosis of glioma patients.

In the TCGA, CGGA and Our datasets, differential
expression analysis showed that CYTOR and MIR155HG
were significantly overexpressed in GBM compared to
LGG samples, while AC120036.4, LINC00641 and PWAR6
showed an inverse expression pattern in glioma samples.
Insights into the molecular function of lncRNAs in glioma
would accelerate their clinical research and practice.
Among the hub lncRNAs, some have been proven to be re-
lated to glioma. Recent research reveals overexpression of
CYTOR in glioma tissues correlated with metastasis and
knockdown of CYTOR can attenuate the tumor cell prolif-
eration and invasion [29]. MIR155HG has been considered
to be significantly upregulated in GBM samples in compari-
son with LGG tissues [30]. The expression of MIR155HG

Fig. 6 The ceRNA network construction and function annotation. The ceRNA regulatory network contained 61 miRNAs, 182 mRNAs, and 5
lncRNAs (a). Nodes represented RNAs and lines interactions between RNAs. GO enrichment analysis of mRNAs in ceRNA network (b). Pathway
enrichment analysis of mRNAs in ceRNA network (c). Abbreviations: ceRNA, competing endogenous RNA; GO, gene ontology; BP,
biological process
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has been found to be positively correlated with tumor grade
and prognosis of glioma patients. Meanwhile, MIR155HG
knockdown decreases glioma cell proliferation both in vitro
and in vivo [30]. Recent study demonstrates MIR155HG is
highly expressed in mesenchymal GBM tissues and sup-
pression of MIR155HG can decrease expression of mesen-
chymal transition-associated proteins, such as β-catenin, N-
cadherin, suggesting a function as a regulator in mesenchy-
mal transition progression [31]. Identical to our research,
recent bioinformatics analysis reveals PWAR6 and
LINC00641 are expression-dysregulated in glioma tissues
[32–34]. Meanwhile, PWAR6 has also been considered as a
modulator of tumor immunoreaction and epithelial-
mesenchymal transition (EMT) [32]. For LINC00641 in gli-
oma, recent research suggested LINC00641 act as an in-
hibitor of glioma cell proliferation by targeting miR-4262/
NRGN axis [35]. However, the in-depth analysis of mecha-
nisms of AC120036.4 has not been identified in glioma.
A huge number of putative lncRNAs have been

predicted or validated in human. However, the
functions or molecular mechanisms of the great part
of lncRNAs remain unclear. To infer the potential
roles of the hub lncRNAs with dysregulated expres-
sion levels, we constructed a lncRNA-miRNA-mRNA
regulatory network. We found that several miRNAs
in our ceRNA regulatory network are mainly
involved in glioma pathway. Namely miR-155 and
miR-107 are associated with poor prognosis in gli-
oma patients and involved in cell proliferation by
changing the tumor cell cycle [36, 37]. And the
target genes such as WEE1 (WEE1 G2 checkpoint
kinase) and CDK6 (cyclin-dependent kinase 6) in our
ceRNA network have been considered as key regula-
tors in cell cycle and proliferation [38, 39]. Mean-
while, based on the mRNAs in the network, we
carried out the enrichment analysis. Pathway enrich-
ment analysis indicated that the genes were mainly
enriched in p53 signaling pathway, which play a
sophisticated role in the progression of glioma [40],
demonstrating the hub lncRNAs were expected to be
involved in the glioma biogenesis and development.

Conclusion
In summary, the current study utilized comprehensive
bioinformatics analysis to determine a risk signature
based on lncRNAs, providing a potential tool for assess-
ment of clinical prognosis of patients with glioma.

Abbreviations

LGG: low grade glioma; GBM: glioblastoma multiforme; lncRNAs: long non-
coding RNAs; CGGA: Chinese Glioma Genome Atlas; TCGA: The Cancer
Genome Atlas; TANRIC: The Atlas of Noncoding RNAs in Cancer;
ROC: calibration; AUC: area under curve; WGCNA: Weighted gene co-
expression network analysis; OS: overall survival; HR: hazard ratio;
CI: confidence interval; DEmRNA: differential expressed mRNA;

DEmiRNA: differential expressed miRNA; GO: Gene Ontology; KEGG: Kyoto
Encyclopedia of Genes and Genomes; ceRNA: competing endogenous RNA;
EMT: epithelial-mesenchymal transition

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12885-021-07972-9.

Additional file 1 Table S1. Demographics and clinical characteristics of
glioma patients in the training, testing and validation cohorts.

Additional file 2 Table S2. Primers for qRT-PCR.

Additional file 3 Table S3. The results of multivariate Cox analysis in
the training set.

Additional file 4 Fig. S1. As shown in the plots, the approximate scale-
free topology was obtained when the soft threshold power was about 6.

Additional file 5 Fig. S2. A nomogram predicted the survival possibility
of gliomas in the TCGA testing (A) and Our validation (B) cohorts.

Additional file 6 Fig. S3. Differential expression analysis of the five hub
lncRNAs in the CGGA (A) and TCGA (B) and our cohorts (C). Differential
expression analysis of mRNAs (D) and miRNAs (E) in CGGA set. (n.s, p >
0.05; *, p < 0.05; **, p < 0.01; and ***, p < 0.001).

Acknowledgments
We sincerely appreciate valuable advice and support from Dr. Jinping Zhang.

Authors’ contributions
L W and BH L collected the data. CY Z and YQ T designed the research and
conducted statistical analyses. PF X and HT L searched the relevant literature.
CY Z drafted the manuscript, QX C and DF T revised the manuscript. All
authors have read and approved the manuscript.

Funding
This study was supported by Hubei Province Health and Family Planning
Scientific Research Project (WJ2017M019). The funding bodies did not have
any influence on the design of the study, collection, analysis, interpretation
of data or writing of manuscript.

Availability of data and materials
The data that support the findings of this study are available in TCGA
database at https://portal.gdc.cancer.gov/, at TANRIC database https://
bioinformatics.mdanderson.org/public-datasets/, and at CGGA database
http://www.cgga.org.cn/.

Declarations

Ethics approval and consent to participate
The research involving human participants was approved by Ethics
Committee of Renmin Hospital of Wuhan University and written informed
consent were obtained from the patients.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests in this research.

Author details
1Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan
430060, Hubei Province, People’s Republic of China. 2Department of
Cardiothoracic Surgery, The First Affiliated Hospital of Jiaxing University,
Jiaxing 314001, Zhejiang Province, People’s Republic of China. 3Sun Yat-sen
University, The Seventh Affiliated Hospital, Shenzhen 518000, Guangdong
Province, People’s Republic of China.

Zhang et al. BMC Cancer          (2021) 21:251 Page 10 of 11

https://doi.org/10.1186/s12885-021-07972-9
https://doi.org/10.1186/s12885-021-07972-9
https://portal.gdc.cancer.gov/
https://bioinformatics.mdanderson.org/public-datasets/
https://bioinformatics.mdanderson.org/public-datasets/
http://www.cgga.org.cn/


Received: 1 September 2020 Accepted: 25 February 2021

References
1. Weller M, Wick W, Aldape K, Brada M, Berger M, Pfister SM, Nishikawa R,

Rosenthal M, Wen PY, Stupp R, et al. Glioma. Nat Rev Dis Primers. 2015;16:1–
15017.

2. Lapointe S, Perry A, Butowski NA: Primary brain tumours in adults. Lancet
(London, England) 2018, 392(10145):432–446.

3. Aldape K, Brindle KM, Chesler L, Chopra R, Gajjar A, Gilbert MR, Gottardo N,
Gutmann DH, Hargrave D, Holland EC, et al. Challenges to curing primary
brain tumours. Nat Rev Clin Oncol. 2019;6:509–20.

4. Sultan M, Marcel H. Schulz2, Richard2 H, Magen1 a, Klingenhoff4 a, Scherf
M: a global view of gene activity and alternative splicing by deep
sequencing of the human transcriptome. Science. 2008;321(5891):956–60.

5. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and
quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):
621–8.

6. Peng Z, Liu C, Wu M. New insights into long noncoding RNAs and their
roles in glioma. Mol Cancer. 2018;17(1):61.

7. Long Y, Wang X, Youmans DT, Cech TR: How do lncRNAs regulate
transcription? Sci Adv 2017, 3(9):eaao2110.

8. Yang D, Qiao J, Wang G, Lan Y, Li G, Guo X, Xi J, Ye D, Zhu S, Chen W, et al.
N6-Methyladenosine modification of lincRNA 1281 is critically required for
mESC differentiation potential. Nucleic Acids Res. 2018;46(8):3906–20.

9. Arun G, Diermeier SD, Spector DL. Therapeutic targeting of Long non-
coding RNAs in Cancer. Trends Mol Med. 2018;24(3):257–77.

10. Jiao ZY, Tian Q, Li N, Wang HB, Li KZ. Plasma long non-coding RNAs
(lncRNAs) serve as potential biomarkers for predicting breast cancer. Eur Rev
Med Pharmacol Sci. 2018;22(7):1994–9.

11. Dastmalchi N, Safaralizadeh R, Nargesi MM. LncRNAs: potential novel
prognostic and diagnostic biomarkers in colorectal Cancer. Curr Med Chem.
2019.

12. Han Y, Wu Z, Wu T, Huang Y, Cheng Z, Li X, Sun T, Xie X, Zhou Y, Du Z.
Tumor-suppressive function of long noncoding RNA MALAT1 in glioma
cells by downregulation of MMP2 and inactivation of ERK/MAPK signaling.
Cell Death Dis. 2016;7:e2123.

13. Chen Q, Cai J, Wang Q, Wang Y, Liu M, Yang J, Zhou J, Kang C, Li M, Jiang
C. Long Noncoding RNA, Regulated by the EGFR Pathway, Contributes to
Glioblastoma Progression Through the WNT/−Catenin Pathway by
Scaffolding EZH2. Clin Cancer Res. 2018;24(3):684–95.

14. Li J, Han L, Roebuck P, Diao L, Liu L, Yuan Y, Weinstein JN, Liang H. TANRIC:
an interactive open platform to explore the function of lncRNAs in Cancer.
Cancer Res. 2015;75(18):3728–37.

15. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation
network analysis. BMC bioinformatics. 2008;9:559.

16. Park SY. Nomogram: an analogue tool to deliver digital knowledge. J Thorac
Cardiovasc Surg. 2018;155(4):1793.

17. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma
powers differential expression analyses for RNA-sequencing and microarray
studies. Nucleic Acids Res. 2015;43(7):e47.

18. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the
Rosetta stone of a hidden RNA language? Cell. 2011;146(3):353–8.

19. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA,
miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-
Seq data. Nucleic Acids Res. 2014;42(Database issue):D92–7.

20. Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, Liao KW, Huang WC, Sun
TH, Tu SJ, Lee WH, et al. miRTarBase update 2018: a resource for
experimentally validated microRNA-target interactions. Nucleic Acids Res.
2018;46(D1):D296–d302.

21. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target
sites in mammalian mRNAs. eLife. 2015;4.

22. Liu W, Wang X. Prediction of functional microRNA targets by integrative
modeling of microRNA binding and target expression data. Genome Biol.
2019;20(1):18.

23. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing
biological themes among gene clusters. Omics. 2012;16(5):284–7.

24. Zhang J-X, Song W, Chen Z-H, Wei J-H, Liao Y-J, Lei J, Hu M, Chen G-Z, Liao
B, Lu J, et al. Prognostic and predictive value of a microRNA signature in
stage II colon cancer: a microRNA expression analysis. The Lancet Oncol.
2013;14(13):1295–306.

25. Zhou Z, Cheng Y, Jiang Y, Liu S, Zhang M, Liu J, Zhao Q. Ten hub genes
associated with progression and prognosis of pancreatic carcinoma
identified by co-expression analysis. Int J Biol Sci. 2018;14(2):124–36.

26. Guo X, Xiao H, Guo S, Dong L, Chen J. Identification of breast cancer
mechanism based on weighted gene coexpression network analysis. Cancer
Gene Ther. 2017;24(8):333–41.

27. Wang Z, Tang W, Yuan J, Qiang B, Han W, Peng X. Integrated Analysis of
RNA-Binding Proteins in Glioma. Cancers. 2020:12(4).

28. Lin S, Xu H, Zhang A, Ni Y, Xu Y, Meng T, Wang M, Lou M. Prognosis
analysis and validation of mA signature and tumor immune
microenvironment in Glioma. Front Oncol. 2020;10:541401.

29. Zou SF, Yang XY, Li JB, Ding H, Bao YY, Xu J. UPF1 alleviates the progression
of glioma via targeting lncRNA CYTOR. Eur Rev Med Pharmacol Sci. 2019;
23(22):10005–12.

30. Wu X, Wang Y, Yu T, Nie E, Hu Q, Wu W, Zhi T, Jiang K, Wang X, Lu X, et al.
Blocking MIR155HG/miR-155 axis inhibits mesenchymal transition in glioma.
Neuro-oncology. 2017;19(9):1195–205.

31. Balasubramaniyan V, Bhat KP. Targeting MIR155HG in glioma: a novel
approach. Neuro-oncology. 2017;19(9):1152–3.

32. Lin X, Jiang T, Bai J, Li J, Wang T, Xiao J, Tian Y, Jin X, Shao T, Xu J, et al.
Characterization of Transcriptome transition associates Long noncoding
RNAs with Glioma progression. Mol Ther Nucleic Acids. 2018;13:620–32.

33. Kiran M, Chatrath A, Tang X, Keenan DM, Dutta A. A prognostic signature
for lower grade Gliomas based on expression of Long non-coding RNAs.
Mol Neurobiol. 2019;56(7):4786–98.

34. Liang R, Zhi Y, Zheng G, Zhang B, Zhu H, Wang M. Analysis of long non-
coding RNAs in glioblastoma for prognosis prediction using weighted gene
co-expression network analysis, cox regression, and L1-LASSO penalization.
Onco Targets Ther. 2019;12:157–68.

35. Yang J, Yu D, Liu X, Changyong E, Yu S. LINC00641/miR-4262/NRGN axis
confines cell proliferation in glioma. Cancer Biol Ther. 2020;21(8):758–66.

36. Chen L, Chen X-R, Chen F-F, Liu Y, Li P, Zhang R, Yan K, Yi Y-J, Xu Z-M, Jiang
X-D. MicroRNA-107 inhibits U87 glioma stem cells growth and invasion. Cell
Mol Neurobiol. 2013;33(5):651–7.

37. Yang L, Li C, Liang F, Fan Y, Zhang S. MiRNA-155 promotes proliferation by
targeting caudal-type homeobox 1 (CDX1) in glioma cells. Biomed
Pharmacother. 2017;95:1759–64.

38. Yang X, Xiao Z, Du X, Huang L, Du G. Silencing of the long non-coding RNA
NEAT1 suppresses glioma stem-like properties through modulation of the
miR-107/CDK6 pathway. Oncol Rep. 2017;37(1):555–62.

39. Kratassiouk G, Pritchard LL, Cuvellier S, Vislovukh A, Meng Q, Groisman R,
Degerny C, Deforzh E, Harel-Bellan A, Groisman I: The WEE1 regulators
CPEB1 and miR-15b switch from inhibitor to activators at G2/M. Cell cycle
(Georgetown, Tex) 2016, 15(5):667–677.

40. Ohgaki H, Kleihues P. Genetic alterations and signaling pathways in the
evolution of gliomas. Cancer Sci. 2009;100(12):2235–41.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Zhang et al. BMC Cancer          (2021) 21:251 Page 11 of 11


	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Materials
	Data obtaining
	Weighted gene co-expression network analysis (WGCNA)
	Survival analysis
	Construction of Nomogram survival model
	Differential expression analysis
	Construction of ceRNA regulatory network and functional annotations
	Tumor specimens
	Quantitative RT-PCR

	Results
	Co-expression network construction
	Survival analysis of risk score and clinical features
	Nomogram construction and accuracy assessment
	Differential expression analysis of RNAs
	Construction of ceRNA regulation network and enrichment analysis

	Discussion
	Conclusion
	Abbreviations
	Supplementary Information
	Acknowledgments
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

