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Abstract

Inflammation and implant loosening are major concerns when using titanium implants for

hard tissue engineering applications. Surface modification is one of the promising tools to

enhance tissue-material integration in metallic implants. Here, we used anodization tech-

nique to modify the surface of commercially pure titanium (CP-Ti) and titanium alloy (Ti-6Al-

4V) samples. Our results show that electrolyte composition, anodization time and voltage

dictated the formation of well-organized nanotubes. Although electrolyte containing HF in

water resulted in nanotube formation on Ti, the presence of NH4F and ethylene glycol was

necessary for successful nanotube formation on Ti-6Al-4V. Upon examination of the interac-

tion of bone marrow stromal cells (BMSCs) with the modified samples, we found that Ti-6Al-

4V without nanotubes induced cell proliferation and cluster of differentiation 40 ligand

(CD40L) expression which facilitates B-cell activation to promote early bone healing. How-

ever, the expression of glioma associated protein 2 (GLI2), which regulates CD40L, was

reduced in Ti-6Al-4V and the presence of nanotubes further reduced its expression. The

inflammatory cytokine interleukin-6 (IL-6) expression was reduced by nanotube presence

on Ti. These results suggest that Ti-6Al-4V with nanotubes may be suitable implants

because they have no effect on BMSC growth and inflammation.

Introduction

Commercially pure titanium (CP-Ti) and titanium alloy (Ti-6Al-4V) are widely used as dental

and orthopedic implants due to their biocompatibility, excellent corrosion resistance and

desired mechanical properties. This includes properties such as low Young’s modulus, low

density and fatigue resistance [1–3]. However, the formation of a fibrous capsule around tita-

nium implants and the resultant implant loosening can cause severe pain for patients, which

often requires revision surgery [4]. Surface modification techniques such as applying an osteo-

conductive coating, alkali treatment, acidic treatment, and electrochemical anodization are

promising tools to enhance osseointegration of Ti implants [5]. Among the various techniques,
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introducing TiO2 nanotubes on the surface of Ti through anodization has gained attention as

it is a simple, cost efficient and well controlled methodology. However, parameters such as

electrolyte composition, voltage and the duration of anodization have been shown to alter the

morphology of the surface [6,7]. In the current study, we used five different conditions to

investigate and compare the effects of substrate composition and anodization parameters on

successful formation of nanotubes on both CP-Ti and Ti-6Al-4V [8,9]. We hypothesized that

different conditions are needed to achieve well-formed nanotubes on CP-Ti and Ti-6Al-4V.

Several studies reported the efficiency of TiO2 nanotubular layer on in vitro cell adhesion

and proliferation, protein adsorption, and on in vivo osseointegration [10–13]. The presence

of nanotubes not only enhances the surface roughness and hydrophilicity, but also activates

angiogenic factors [12]. In addition, nanotube incorporation increases in vivo collagen and

osteocalcin expression, and bone-implant interfacial strength which further improves osseoin-

tegration [13]. However, the interaction between nanotubes and bone marrow stromal cells

(BMSCs) is less understood and the resultant inflammatory response has not been reported.

BMSCs play an important role in blood and stem cell development and differentiation [14,15].

These cells can also differentiate into osteoblasts or adipocytes under the proper cell culture

conditions [16], or depending on the type of biomaterial they are cultured on [17]. Therefore,

understanding the nature of the interaction between BMSCs and titanium as a function of

composition and surface roughness is necessary to predict blood cell development and bone

healing.

In this study, we investigated the effects of substrate composition, electrolyte, voltage and

anodization time on successful nanotube arrangement and studied the effects of titanium com-

position and nanotube presence on their interaction with human BMSCs. Nanotube micro-

structures were evaluated using scanning electron microscopy (SEM) and well-formed

structures were used to investigate early proliferation of BMSCs and their inflammatory

responses.

Materials and methods

Sample preparation

Grade 2 CP-Ti sheets were purchased from President Titanium, MA, USA. Ti-6Al-4V cylin-

ders were formed using an additive manufacturing technique (LENS) with laser power of 645

W and travel speed of 60 inch/min. These cylinders were then machined and cut into Ti-6Al-

4V discs. CP-Ti and Ti-6Al-4V substrates with a diameter of 11 mm and a thickness of 2 mm

were grinded using silicon carbide papers from 320 to 800 grit, followed by polishing using a

MasterTex polishing cloth. Samples were then cleaned in DI water and acetone, and then air

dried. The titanium anode and a platinum foil cathode (Alfa Aesar, Tewksbury, MA,USA)

were connected to a DC power supply (Agilent E3612A) and suspended in a beaker containing

the electrolyte with different compositions as indicated in Table 1. After anodization, the

Table 1. Anodization process conditions.

Condition Electrolyte Voltage (V) Time (min)

A 1 vol. % HF in DI water 20 45

B 1 vol. % HF in DI water 20 60

C 1 vol. % HF in DI water 30 60

D 1 vol. % HF, 0.5 wt. % NH4F, 10 vol. % DI water in Ethylene Glycol

medium

40 60

E 0.25 wt. % NH4F, 2 vol. % DI Water in Ethylene Glycol Medium 30 180

https://doi.org/10.1371/journal.pone.0216087.t001
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samples were rinsed with DI water and then air dried. The conditions outlined below were

selected as previously described [8,9].

Characterization

Surface morphology was evaluated using field emission scanning electron microscope

(FESEM; Hitachi S-4500, NY, USA) and elemental analysis was carried out using energy

dispersive spectroscopy (EDS, Oxford Instruments, MA, USA). The surface roughness was

performed on an 840.6 μm X 840.6 μm area using an optical profiler (Nexview, Zygo Corpora-

tion, Middlefield, Connecticut, USA). The contact angle measurements were performed by

sessile drop method using a contact angle measurement system (VCA optima, AST Products,

Inc., MA, USA). A 2 μl distilled water droplet was used for the test and the contact angle

between the droplet and the substrate surface was calculated. The mean and SDs were calcu-

lated for both surface roughness and contact angle.

Cell culture

The human bone marrow-derived mesenchymal stromal cell (BMSC) line Saka-T (referred to

as Saka cells) was generously provided by Dr. David Roodman (University of Pittsburgh, PA,

USA). Cells were cultured in MEM-α supplemented with 10% fetal bovine serum (FBS) and

antibiotics/antimycotics (anti-anti) as previously published [18]. Cells were used for experi-

ments when they reached approximately 80–90% confluency.

Proliferation assay, cellular morphology and quantitative reverse-

transcription PCR (qRT-PCR)

Cells were seeded at density of 25x103 and 1x106 to each Ti disc in triplicate wells in 24-well

plate for proliferation assay and qRT-PCR, respectively. Cells were allowed to adhere for

approximately 30 minutes and 400 μl of media were carefully added from the side of each well

followed by incubation at 37˚C. After 3 days, cell culture media was removed and 700 μl of

DPBS (Fisher Scientific, Waltham, MA, USA) were used to carefully wash cells without dis-

turbing cells. Ti discs were then placed into a new 24-well plate and 400 μl of DPBS were

added to each well followed by 100 μl of XTT working solution (Trevigen, Gaithersburg, MD,

USA) was added to each well and incubated at 37˚C for 3 hours, followed by data acquisition

on an Epoch plate reader (BioTek, Winooski, VT, USA).

For qRT-PCR, 1x106 cells were used for each Ti disc in triplicate wells in 24-well plate as

indicated above. After 24 hours, cell culture media was aspirated, and cells were lysed using 1

ml TRIzol reagent (Life Technologies, Grand Island, NY, USA). Total RNA was isolated fol-

lowing manufacturer’s protocol. Reverse transcription reactions were conducted using Molo-

ney murine leukemia virus (M-MLV) reverse transcriptase (Promega, Madison, WI, USA)

and qRT-PCR was performed using SYBR Green methodologies a ViiA7 real-time PCR instru-

ment (Life Technologies, Grand Island, NY, USA). To quantify gene expression, GAPDH was

used as a housekeeping gene and the following primers were used: GAPDH, 5’-CTCGACTT
CAACAGCGACA- 3’ (forward) and 5’-GTAGCCAAATTCGTTGTCATACC-3’ (reverse);

IL-6, 5’-TCCAAAGATGTAGCCGCCC-3’ (forward) and 5’-CAGTGCCTCTTTGCTGCTTT
C-3’ (reverse); GLI2, 5’-CTCCGAGAAGCAAGAAGCCA- 3’ (forward) and 5’-GATGCTG
CGGCACTCCTT- 3’ (reverse), CD40L, 5’-AACATCTGTGTTACAGTGGGCT- 3’ (for-

ward) and 5’-AACGGTCAGCTGTTTCCCAT- 3’ (reverse); alkaline phosphatase-1 (ALP-1),

5’-CCTACCAGCTCATGCATAACA-3’ (forward) and 5’-GGCTTTCTCGTCACTCTCATA
C-3’ (reverse); collagen A-1 (COLA-1), 5’-CGATGGATTCCAGTTCGAGTATG-3’ (for-

ward) and 5’-CGATGGATTCCAGTTCGAGTATG-3’ (reverse); and osteocalcin (OCN),
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5’-CAGGCGC TACCTGTATCAAT-3’ (forward) and 5’-CGATGTGGTCAGCCAACT-3’
(reverse).

Cell morphology was examined using FESEM. After 3 days of culture, samples were

removed from culture and fixed with 2% paraformaldehyde/2% glutaraldehyde in 0.1 M phos-

phate buffer overnight at 4 ˚C. Samples were rinsed with 0.1 M phosphate buffer (three times,

followed by fixation with 2% osmium tetroxide (OsO4) for 2 h at room temperature. Samples

were then rinsed again with 0.1 M phosphate buffer three times and dehydrated in ethanol

series (30, 50, 70, 95, and 100% (three times for 100% ethanol), followed by dehydration using

hexamethyldisilane (HDMS; Fisher Scientific, Waltham, MA, USA).

Statistical analysis

A one-way analysis of variance (ANOVA) was used to analyze data. A p value <0.05 was con-

sidered significant. Statistical analysis was performed using GraphPad Prism software (San

Diego, CA, USA).

Results

Anodization and sample characterization

Surface morphology of the anodized CP-Ti samples is presented in Fig 1a–1e. Uniform nano-

tubes with a diameter of ~100 ± 10 nm were generated by using the HF in aqueous electrolyte

for 45 min (Fig 1a) and as shown in Fig 1b, increasing the time to 60 min did not affect the

morphology. Increasing the voltage to 30 V resulted in formation of random porous struc-

tures (Fig 1c). Furthermore, nanotubes with broken structures were formed by having a mix-

ture of NH4F and HF in as an electrolyte (Fig 1d). Interestingly, as shown in Fig 1e, changing

the electrolyte and having NH4F as the only fluoride ion source in ethylene glycol medium

resulted in formation of nanograss-like tubular structures. Nanograss are close-packed clus-

ters of nanotubes on top of nanotubes [9]. Similar anodization parameters were used to

investigate the role of time, voltage and electrolyte composition on morphology of samples.

As illustrated in Fig 1f and 1g, nanotubes were not completely formed in aqueous electrolytes.

While nanotubes had a non-uniform structure at lower voltage and anodization time, a ran-

domly porous structure was obtained by increasing time and voltage (Fig 1h). However, uni-

form nanotubes on Ti-6Al-4V samples with diameter of ~100 ± 15 nm were achieved using a

combination of HF and NH4F in ethylene glycol (Fig 1i). As shown in Fig 1j, the absence

of HF and extended duration time resulted in the formation of nanograss. Taken together,

these results indicate that a successful anodization process and uniform nanotube formation

depend not only on the anodization parameters, but also on the composition of the Ti

substrate.

The optimized anodization conditions that result in well-formed nanotubes on CP-Ti and

Ti-6Al-4V were conditions A and D, respectively (referred to as Ti-NT and Ti-6Al-4V -NT,

respectively from now on). The surface composition of Ti-NT and Ti-6Al-4V -NT was deter-

mined using an EDS detector and the obtained spectrum and elemental analysis are shown in

Fig 2. The surface roughness parameters of Ti, Ti-NT, Ti-6Al-4V and Ti-6Al-4V–NT are pre-

sented in Table 2 and Fig 3. We found that Ti-NT have a higher surface roughness compared

to Ti while no significant change was observed between Ti-6Al-4V and Ti-6Al-4V-NT. Con-

tact angles of samples with water are shown in Fig 4. The contact angles of Ti and Ti-6Al-4V

were 44.1˚±4 and 48.9˚±2, respectively. Formation of nanotubes reduced the contact angles to

20.73˚±5 and 14.85˚±5 for Ti-NT and Ti-6Al-4V-NT, respectively which suggests enhanced

hydrophilicity after anodization.

Titanium surface modification and interaction with stromal cells
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Adhesion of bone marrow stromal cells (BMSCs) on Ti substrates

The effects of Ti substrate composition and the presence of nanotubes on BMSC attachment

and cellular morphology after 3 days of culture were investigated by SEM and the results are

shown in Fig 5A. Regardless of composition and surface morphology, BMSCs attached to Ti

and Ti-6Al-4V samples and demonstrated well-spread morphologies. We also investigated

BMSC adhesion to Ti substrates at earlier times (6 hours following seeding) and assed cell

Fig 1. Effect of anodization parameters on surface morphology. Anodization was performed with five different

conditions and their effect on nanotubes formation were observed on Cp-Ti (a-e) and Ti-6Al-4V (f-j) using a FESEM.

Uniform nanotubes were observed on Ti (a&b) and Ti-6Al-4V (i). Other anodization conditions resulted in

nonuniform distribution and/or distortion in structure of nanotubes (c, d, f, g, h) and formation of nanograss (e and j).

https://doi.org/10.1371/journal.pone.0216087.g001
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adhesion by XTT assay. We found no differences in cell adhesion between the different sub-

strates compared to adhesion of BMSCs on CP-Ti (p = 0.6056)(Fig 5B).

Assessment of cell growth, differentiation and inflammatory gene

expression on Ti substrates

The effect of composition and surface treatment on cell proliferation was investigated using

XTT assay and results are presented in Fig 6. As compared to Ti, BMSC proliferation was sig-

nificantly higher on Ti-6Al-4V (p = 0.0203). However, the incorporation of nanotubes to Ti-

Fig 2. Elemental analysis of Ti substrates. The EDS elemental analysis of (a) Ti-NT and (b) Ti-6Al-4V-NT showing

presence of only Ti and O in Ti-NT, while Ti, Al, V and O are found in Ti-6Al-4V.

https://doi.org/10.1371/journal.pone.0216087.g002

Table 2. Surface roughness parameters of the Ti substrates.

Sample Sa (nm) Sq (nm) Sz (nm)

Ti 32±2 39.75±2 342.25±87

Ti-NT 196±18 255.9±28 2605.25±113

Ti-6Al-4V 36.25±2 46.5±3 419±72

Ti-6Al-4V-NT 40.25±6 50.5±8 633±83

https://doi.org/10.1371/journal.pone.0216087.t002
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Fig 3. Surface roughness of Ti substrates. Surface roughness of the Ti substrates (a) Ti (b) Ti-NT (c) Ti-6Al-4V (d)

Ti-6Al-4V-NT, was determined by an optical profiler. Shows increase in roughness of samples after anodization.

https://doi.org/10.1371/journal.pone.0216087.g003

Fig 4. Anodization increases hydrophilicity. Contact angle of (a) Ti (b) Ti-NT (c) Ti-6Al-4V (d) Ti-6Al-4V-NT.

Contact angles in anodized samples (b and d) are significantly less that untreated samples showing the effective role of

anodization on increasing hydrophilicity.

https://doi.org/10.1371/journal.pone.0216087.g004
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Fig 5. Cellular morphology on Ti substrates. a) Saka cells were grown on Ti discs as indicated in materials and methods followed

by examination of cellular morphology using FESEM. b) Saka cells were allowed to adhere to Ti discs for 6 hours followed by

investigation of cell adhesion by XTT assay.

https://doi.org/10.1371/journal.pone.0216087.g005
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Fig 6. Effect of composition and surface morphology on growth of BMSCs and inflammation. a) Saka cells were

allowed to adhere on material as indicated in methods for 3 days followed by XTT assay to determine cell proliferation.

qRT-PCR for the inflammatory markers b) GLI2, c) CD40L and d) IL-6. E) Saka cells were allowed to adhere A similar

experiment was performed to determine the expression of differentiation markers alkaline phosphatase 1 (ALP-1),

Collagen A-1 (COLA-1) and osteocalcin (OCN) on the different substrates by qRT-PCR. Data are presented as

averages of 2 independent experiments, each performed in triplicate and the bars represent means ± SEM.

https://doi.org/10.1371/journal.pone.0216087.g006
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6Al-4V (Ti-6Al-4V -NT) reduced the proliferation of BMSC compared with Ti-6Al-4V, sug-

gesting that the incorporation of nanotubes may provide therapeutic efficacy by promoting

bone formation [19] but not BMSC growth. We have previously reported that the glioma-asso-

ciated protein 2 (GLI2) is expressed by BMSCs and modulates inflammatory genes [18,20,21].

Therefore, we examined the expression of GLI2 in BMSCs grown on Ti and Ti-6Al-4V in the

presence or absence of nanotubes. We found a decrease in GLI2 expression by BMSCs grown

on Ti-NT compared with CP-Ti (Fig 6b) suggesting that downstream inflammatory genes may

be reduced. Although Ti-6Al-4V induced BMSC growth, it resulted in a reduction in GLI2

expression (Fig 6b). Furthermore, Ti-6Al-4V-NT had significantly lower GLI2 expression

compared with Ti alone. We have previously reported that GLI2 can regulate the expression of

CD40 ligand (CD40L) in BMSCs [18]. CD40L expression was increased in BMSCs grown on

Ti-6Al-4V but not Ti-6Al-4V -NT (Fig 6c). This pattern of CD40L expression is consistent

with the pattern of cell proliferation shown in Fig 6a. We further examined the expression of

the pleiotropic cytokine interleukin-6 (IL-6), which is regulated, in part, by GLI2 [20].

Although Ti-6Al-4V induced BMSC proliferation, this did not increase IL-6 expression (Fig

6d). Additionally, Ti-NT, but not Ti-6Al-4V-NT, reduced IL-6 expression. Taken together,

these results suggest that the incorporation of NT on Ti-6Al-4V may be therapeutically benefi-

cial by promoting osteoblast attachment as previously reported [22], without inducing BMSC

growth, while not altering the inflammatory response required to facilitate healing. Interest-

ingly, BMSCs cultured on CP-Ti and Ti-6Al-4V did not express osteoblast differentiation

markers alkaline phosphatase-1 (ALP-1), collagen A-1 (COLA-1) or osteocalcin (OCN) sug-

gesting that the different Ti substrates and the presence of nanotubes did not affect BMSC dif-

ferentiation (Fig 6e).

Discussion

TiO2 nanotubes are of great interest due to their excellent physical, mechanical and biological

properties. Previous studies have reported that nanotubes enhance the protein adsorption and

osteoblast cell attachment which improves bioactivity [23,24]. In this study, we fabricated

nanotubes on the surface of both CP-Ti and Ti-6Al-4V using experimental different condi-

tions. These conditions were selected based on previous work for different types of titanium

alloys [8,9]. We found that formation of nanotubes depends on both anodization parameters

and substrate composition. This is in line with the literature where formation of nanotubes

was confirmed on IMI834 titanium alloy using H3PO4+HF electrolyte, whereas no nanotube

was found on CP-Ti and Ti-6Al-4V substrates using the same anodization conditions, showing

the dependency of the successful anodization on phase composition of Ti and its alloys [6].

Nanotubes formed by anodization are usually referred to as TiO2 nanotubes. However, pure

TiO2 nanotubes are formed only on CP-Ti while the presence of Al and V in Ti-6Al-4V results

in formation of Ti-Al-V-O nanotubes. High amounts of Al decrease the dissolution rate, while

the presence of V increases the dissolution rate which affect nanotube formation [25]. Similar

to Al and V, increase in Zr content in Ti-alloy increases interspace between TiO2 nanotubes

[26]. However, regardless of Ti composition, the presence of fluoride ions appears crucial for

the growth of TiO2 nanotubes, as F- helps in the chemical dissolution of the oxide layer. In

addition to F-, water content and the viscosity of ethylene glycol (EG) alter nanotube forma-

tion as they alter the rate of oxidation and diffusion of ions in the electrolyte, respectively

[27,28].

The EDS results confirm the presence of oxygen on both Ti-NT and Ti-6Al-4V -NT which

was 23.30 and 26.57 wt% respectively while no fluorine was detected (Fig 2). They also confirm

the presence of Al and V on Ti-6Al-4V -NT with a percentage of 4.01% and 3.46% respectively

Titanium surface modification and interaction with stromal cells
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(Fig 2). Surface roughness and wettability are the most important factors that influence cell

attachment [29,30]. It was reported that the presence nanotubes increases the surface rough-

ness which further improves osseointegration [31]. Our results (Fig 3) are in agreement with

the studies with one exception. The presence of nanotubes on Ti increased the surface rough-

ness while no significant change was observed in surface roughness of Ti-6Al-4V with and

without nanotubes (Fig 3). This might be due to the presence of porosity in LENS processed

Ti-6Al-4V. On the other hand, the results of wettability are in line with the studies reporting

the presence of nanotubes reduces the contact angle and increases the hydrophilicity of the

surface [32]. Both Ti-NT and Ti-6Al-4V-NT showed improved surface hydrophilicity (Fig 4).

Highly hydrophilic surfaces increase cell attachment and improve bioactivity due to enhanced

interaction between cells and material [33–35].

We report that in the presence of nanotubes, BMSCs showed well-spread cellular morphol-

ogy (Fig 5) which may be related to enhanced hydrophilicity in the presence of nanotubes

[12]. In addition to morphology, SEM images show the ability of BMSCs to attach and spread

on both CP-Ti and Ti-6Al-4V in the presence and absence of nanotubes (Fig 5). Our results

also show that the presence of nanotubes reduced proliferation of BMSC which suggests that

nanotubes may provide therapeutic efficacy by promoting bone formation as described in ear-

lier in vivo studies [19] but not BMSC growth or their differentiation into osteoblasts (Fig 6).

Furthermore, when we investigated inflammatory gene expression, we found a reduction in

GLI2 expression with Ti-NT and Ti-6Al-4V-NT compared to Ti and Ti-6Al-4V suggesting

that downstream inflammatory genes that are regulated by this protein may also be reduced.

We previously showed that GLI2 can regulate the expression of CD40 ligand (CD40L) in

BMSCs [18]. CD40L is a protein that is expressed on the surface of various cells including stro-

mal cells [18] and plays a role in B-cell activation. Recruitment of B-cells and other immune

cells has been shown to promote early bone healing [36]. These results suggest that formation

of well-organized nanotubes depend on titanium composition and anodization parameters

and Ti-6Al-4V -NT may provide a benefit by maintaining IL-6 expression to allow an initial

inflammatory response to mediate healing while not inducing prolonged activation of other

immune cells.

Conclusion

In this study, we investigated the effects of substrate composition, electrolyte, voltage and

anodization time on successful nanotube arrangement on Ti substrate and found both sub-

strate composition and anodization parameters effect the formation of nanotubes. We also

studied the effects of titanium composition and nanotube presence on their interaction with

human BMSCs. For bone tissue engineering applications, the incorporation of NT on Ti-6Al-

4V may be therapeutically beneficial due to the ease of manufacturing. Furthermore, this will

promote osteoblast attachment [22], without inducing BMSC growth, or altering the inflam-

matory response required to facilitate healing.
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