
Mesoscopic Inhomogeneities in Concentrated Electrolytes
Oksana Patsahan* and Alina Ciach

Cite This: ACS Omega 2022, 7, 6655−6664 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: A mesoscopic theory for water-in-salt electrolytes combining
density functional and field-theoretic methods is developed in order to explain
the unexpectedly large period of the oscillatory decay of the disjoining pressure
observed in recent experiments for the lithium bis(trifluoromethylsulfonyl)-
imide (LiTFSI) salt [T. S. Groves et al., J. Phys. Chem. Lett. 2021, 12, 1702]. We
assumed spherical ions with different diameters and implicit solvent, inducing
strong, short-range attraction between ions of the same sign. For this highly
simplified model, we calculated correlation functions. Our results indicate that
mesoscopic inhomogeneities can occur when the sum of the Coulomb and the
water-mediated interactions between like ions is attractive at short and repulsive
at large distances. We adjusted the attractive part of the potential to the water-in-LiTFSI electrolyte and obtained both the period
and the decay rate of the correlations, in semiquantitative agreement with the experiment. In particular, the decay length of the
correlations increases nearly linearly with the volume fraction of ions.

1. INTRODUCTION

For many years it was commonly assumed that dilute
electrolytes, very well described by the Debye−Hückel (DH)
theory, are more suitable for electrochemical devices than the
concentrated ones. For this reason, neither experimentalists
nor theoreticians paid much attention to the concentrated
electrolytes. Recently, however, it was noted that the
concentrated electrolytes have advantages such as a large
electrochemical stability window, and they may find
applications in electrochemical devices, for example, in
lithium-ion batteries.1−4 These observations motivated in-
tensive experimental studies. On one hand, lithium salt/ionic
liquid mixtures have been studied intensely because their
unique properties of ionic liquids (IL) such as low volatility,
low flammability, and high chemical and thermal stability make
them attractive for technological applications as electrolytes.
However, recent electrophoretic NMR measurements detected
a negative alkali cation contribution to the total conductivity in
a number of this type of mixture.5,6 The experimental results
were explained by the theory7 and computer simulations.8,9 On
the other hand, water-in-salt electrolytes draw increasing
attention as promising candidates for replacing current
lithium-ion technology in state-of-the-art lithium-ion bat-
teries.1,2 It was found that when the concentration of ions, ρ,
increases the deviation between experimental results and
predictions of the DH theory becomes very large. Even
qualitative trends well documented for the dilute electrolytes,
such as decreasing screening length with increasing ρ, are
opposite in concentrated electrolytes and IL solutions. Recent
surface-force balance (SFB) experiments show that in the
above systems the screening length λs is proportional to ρ,
while the Debye screening length λD perfectly describing the

dilute electrolytes is proportional to ρ1/ . The scaling
behavior λs/λD ∼ (a/λD)

3, where a is the average diameter
of the ions, was found for a number of concentrated solutions
of simple salts in water, IL solutions, and alkali halide
solutions.10−12 This universal behavior suggests that the
observed decay of the disjoining pressure depends not on
specific interactions but only on the Coulomb potential that is
common for all the studied systems.
The strong disagreement of experimental results for

concentrated electrolytes with DH theory predictions attracted
the attention of theoreticians, but despite significant effort in
theoretical and simulation studies, the experimental results are
not fully explained yet.13−22 In several theories and simulation
studies, the scaling behavior λs/λD ∼ (a/λD)

α was found, but
the scaling exponent as well as λs in these studies were
significantly smaller than in the experiments.15−19,21,22 Correct
scaling for the charge−charge correlation length (that should
be equal to λs) was obtained in ref 23, where it was shown that
the variance of the local charge density plays a significant role
for large concentrations of ions. However, oscillatory decay
obtained in theory is at variance with the asymptotic
monotonic decay of the disjoining pressure observed in the
experiments.4,10−12

Theoretical studies of ionic systems are very often based on
the restricted primitive model (RPM) .24,25 In the RPM, the
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ions are treated as charged hard spheres with the same
diameter, and the Coulomb potential between the ions is
assumed. The solvent, however, is treated as a dielectric
continuum. Theoretical results for the RPM26−28 show that
when the density of ions is very low and the temperature is
very high the charge−charge correlations exhibit exponential
decay with the decay length λs = λD, signaling that the ions
behave as point charges and the DH theory is valid. For
increasing ρ and/or decreasing T, however, the sizes of the
ions become more and more important, and λs deviates more
and more from λD. Moreover, a second exponential term with a
decay length smaller than λs and an amplitude with opposite
sign becomes relevant. The two decay lengths merge at the
Kirkwood line29 on the (ρ, T) diagram. At the large-density,
low-temperature side of the Kirkwood line, the charge−charge
correlation function exhibits an oscillatory decay with the
period ∼2a.26,27 The neighborhood of opposite charges is
more probable than the neighborhood of like charges, and at
the Kirkwood line the density is large enough and the
temperature is low enough to allow for formation of clusters
with oppositely charged nearest neighbors, where the repeat
unit is 2a. The predictions concerning the period of the
damped oscillations of the correlation function were verified by
simulations and experiments.11,12,22,30−32 The decay length of
the correlations in the RPM, however, depends on the
approximation used in theoretical studies and remains a
question of a debate.23,26,28

For the charge density profile near a planar electrode, as well
as for the disjoining pressure between parallel planar
electrodes, the decay length and the period of oscillations are
expected to be the same as the corresponding length in the
charge−charge correlation function in the bulk electrolyte at
the same thermodynamic state. In the SFB experiments, the
oscillatory decay of the disjoining pressure was observed up to
some distance between the crossed mica cylinders, but the
asymptotic decay at larger distances was monotonic.10−12

Strong disagreement with the RPM predictions was
observed in recent SFB experiments for concentrated lithium
bis(trifluoromethylsulfonyl)-imide (LiTFSI) in water.4 It was
found that the period of oscillations of the disjoining pressure
was twice as large as the sum of diameters of the cation and the
anion, observed previously in many concentrated electrolytes
and predicted by the RPM. The same length scale of
inhomogeneities in the bulk was observed in scattering
experiments for concentrated LiTFSI.3 At large distances, the
decay of the disjoining pressure changes from oscillatory to
monotonic, as found before for the other systems. Importantly,
the decay length increases with increasing salt concentration
and is of the same order of magnitude as observed previously
in various concentrated electrolytes.4

In the LiTFSI salt, the size and the chemical properties of
the TFSI− and Li+ ions are significantly different.3 The TFSI−

ion is not spherical and is much larger than the Li+ ion.
Moreover, the Li+ ions are very well solvated in water, in
contrast to the hydrophobic TFSI− ions. Based on the above
observations, we conclude that in the above water-in-salt
electrolyte the size difference between the ions and/or the
specific non-Coulombic interactions must play a significant
role and cannot be neglected.
The effect of specific interactions was studied in the RPM

supplemented with additional short-range (SR) interactions in
ref 33. On the other hand, the size difference between the ions
with neglected SR (primitive model (PM)) was studied in refs

34−37. It was found that the length scale of inhomogeneities
depended on the strength of the SR interactions and on the
size asymmetry. These general predictions were not verified by
experiments, however. In the particular case of LiTFSI, the
question of the origin of the scale of inhomogeneities and of
the range of correlations is open.
In this work, we develop a minimal model for the water-in-

salt electrolyte and fit the parameters to the particular case of
the LiTFSI salt. The minimal model can allow us to see which
details of the system properties can be neglected without
changing the key features of the decay of the correlations. The
important questions are: (i) To what extent can properties of
the systems with large size asymmetry of ions and with strong
specific interactions depend on details of the interactions and
on the geometry of the ions? (ii) Can the solvent be treated as
a dielectric continuum that mediates effective ion−ion
interactions, or must it be taken into account explicitly? (iii)
What types of approximations should be used to compute the
correlation functions reproducing the qualitative trends found
in experiments?
In our model, we assume that both the size difference and

the effective SR interactions between the ions must be taken
into account. The solvent, however, can be treated as a
dielectric continuum. We further assume that water induces
effective ion−ion interactions of a range much shorter than the
range of the Coulomb potential. The model is introduced in
Section 2. In Section 3, we develop an approximate form of the
grand thermodynamic potential functional of local ionic
densities that allows us to obtain correlation functions. In
Section 4, we calculate the correlation functions first in mean-
field approximation (MF) (Section 4.1) and next beyond the
MF, using the procedure developed in refs 38 and 39 (Section
4.2). We obtain a semiquantitative agreement with experiment
when we assume strong water-induced, short-range attraction
between the cations. The last section contains the discussion
and summary.

2. CONSTRUCTION OF THE THEORETICAL MODEL
In this section, we describe the assumptions and the
approximations leading to the effective specific interactions
between the ions in the LiTFSI salt dissolved in water. We take
into account the ionic sizes reported in ref 4. In addition, we
develop the approximation for the SR interactions based on the
requirement that the model predicts inhomogeneities at the
length scale ∼2(σ+ + σ−) = 4a, where σ± denotes the diameter
of the corresponding ion. Once the form of the SR interactions
is assumed, we calculate the correlation functions for different
volume fractions of ions without further fitting of any
parameters, using the method summarized in Section 3.
We first consider the excluded-volume interactions. The

TFSI− ions are much bigger than the Li+ ions and have a shape
of an ellipsoid. We assume that the size difference is more
important than the nonspherical shape and assume that the Li+

and TFSI− ions can be modeled as charged hard spheres with
the diameter σ+ = 0.2 nm and σ− = 0.6 nm, respectively.
From the previous studies,3 we know that the Li+ ions are

strongly hydrophilic, while the TFSI− ions are strongly
hydrophobic. The Li+ ions are solvated by water, and the
TFSI− ions are not. This means that the short-range non-
Coulombic forces have a strong effect on the distribution of
the ions and cannot be neglected. Even though the water−Li+
interactions play an important role, we assume that water can
be treated as a dielectric continuum, as in the PM and the
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classical DH theory. We assume, however, that water
molecules mediate effective interactions between the Li+ ions
and that these solvent-induced effective interactions are short-
ranged (compared to the Coulomb potential) but strong. In
addition, we assume short-range interactions between the
TFSI− ions but neglect the interactions between the Li+ and
TFSI− ions other than the Coulomb potential. We do not
attempt to determine the precise shape of these interactions
because the correlations at large distances depend only on
some gross features of the potentials, such as their range and
strength. This is because in collective phenomena involving
many ions and solvent molecules many details are washed out
by averaging over all distributions of the ions and the solvent
molecules.
With the above assumptions, we model the aqueous

electrolyte solution as a binary mixture of oppositely charged
hard spheres of different diameters (σ+ ≠ σ−) immersed in a
structureless dielectric medium with the dielectric constant ε.
We limit ourselves to the model with monovalent ions (z+ = z−
= 1). The presence of the solvent is taken into account through
the solvent-induced effective short-range attractive interactions
between the ions of the same sign. Therefore, we assume that
the pair interaction potentials between two ions for r > σαβ =
(σα + σβ)/2, with α = +, − and β = +, − , can be presented in
the form

= +αβ αβ αβU r U r U r( ) ( ) ( )C A
(1)

Here, Uαβ
C (r) are the Coulomb potentials between the ions

with the signs α and β. As a length unit we choose the sum of
radii, a = (σ+ + σ−)/2. The Coulomb potentials for r* ≡ r/a
are

β
θ* =

* −
*++

+U r
l r a

r
( )

( )C B

(2)

β
θ* =

* −
*−−

−U r
l r a

r
( )

( )C B

(3)

β
θ* = −

* −
*+−U r

l r
r

( )
( 1)C B

(4)

where a± = σ±/a

β
ε

= * = =l
T

E E
e
a

1
,B C C

2

(5)

and β = 1/kBT with kB and T denoting the Boltzmann constant
and temperature, respectively. lB is the Bjerrum length in a
units; EC is the electrostatic potential of the pair of oppositely
charged ions at contact; and the reduced temperature T* is in
units of EC. The unit step function θ(x) = 1 for x > 0 and θ(x)
= 0 for x < 0 prevents contributions to the electrostatic energy
of the pair of ions that would come from the forbidden overlap
of the hard cores.
For Uαα

A (r), we assume a short-range attractive potential.
The form of the sum of the direct (van der Waals type) and
solvent-induced interactions is unknown, but we assume that
its detailed shape is not necessary for studies of the collective
phenomena such as the long-distance correlations. For
simplicity of calculations, we assume the attractive Yukawa
potentials for Uαα

A (r)

β θ α* = − ϵ* *
* − = + −αα αα α α

− * *−α α

U r l a
e

r
r a( ) ( ), ,

z r a
A

B

( )

(6)

where zα* is in the a−1 units, and we assume that z+* = z−* = z =
1.8 to ensure fast decay of these interactions. ϵαα* measures the
strength of the effective non-Coulombic interactions in units of
EC. Introducing the size-asymmetry parameter

δ
σ σ
σ σ

=
−
+

− +

− + (7)

we get a± = 1 ∓ δ.
We assume that for the TFSI− ions ϵ−−* = 1 and treat ϵ++* as a

fitting parameter. In order to find the best approximation for
the Li+ ions in water, we calculate the length scale of
inhomogeneities for arbitrary ϵ++* in Section 4.1. We find that
ϵ++* = 5 leads to a satisfactory agreement of the length scale of
inhomogeneities with the experimental results. Based on this
observation, we assume ϵ++* = 5 for the considered system.
Note that the second important length scale, λs, will be
determined for several concentrations of ions without
additional fitting.
In Figure 1(a) the potentials Uαβ(r) normalized by EC =

e2/(aε) are shown for the model with ϵ++* = 5, ϵ−−* = 1, and δ =
0.5. For the chosen parameters, the interaction potentials
between like ions consist of short-range attraction (SA) and
electrostatic long-range repulsion (LR). Competing interaction
potentials of this kind are also known as SALR potentials. In
one-component systems, the SALR-type interactions can lead
to spontaneously formed stable aggregates of particles, such as

Figure 1. Interaction potentials Uij(r) (eqs 1−6) for the model with δ = 0.5, ϵ++* = 5, and ϵ−−* = 1 in real space (a) and in Fourier representation
(b). Uij are in units of EC. EC and δ are defined in eqs 5 and 7. r and k are in a and a−1 units, respectively, where a = (σ+ + σ−)/2.
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spherical or elongated clusters, networks, or layers.40−42 The
Fourier transforms of the potentials Uαβ(r)/Ec for the above-
mentioned model are shown in Figure 1(b), and the
corresponding expressions are given in the Supporting
Information. It is seen that Ũ++(k) and Ũ−−(k) take minima
at k ≠ 0 which are rather close to each other. Ũαα(k) < 0
means that the density wave of the α ions with the wavelength
2π/k leads to the energy lower than in the homogeneous state,
signaling a high probability of such waves.

3. THEORETICAL FORMALISM: A BRIEF SUMMARY

In this section, we present a brief description of the
mesoscopic theory for inhomogeneous mixtures.38,43 In this
theory, we divide the system into subsystems having
mesoscopic sizes and consider the local volume fraction of
the anions and the cations in each subsystem. Thus, our
approach with the focus on each mesoscopic part of the system
and its state differs from the approach with the focus on the
ions and their states. The linear size of the mesoscopic
subsystems should not be larger than the scale of the
inhomogeneities. The local volume fraction of the ions with
the α sign in the mesoscopic subsystem with the center at r is
denoted by ζα(r). By analogy with the macroscopic volume
fraction, ζα(r) denotes the fraction of the volume of the
mesoscopic region that is occupied by the α-sign ions. For a
given macroscopic volume fraction, there are plenty of
microscopic states with different positions of the ions.
Likewise, for the given ζα(r), the positions of the ions can
be different. The functions ζα(r) can be considered as
constraints imposed on the microscopic states. This constraint
imposed on a particular subsystem at r is analogous to the
constraint of a fixed number of ions in the whole system in the
canonical ensemble. The canonical and grand canonical
ensembles are equivalent in the thermodynamic limit because
the variance of the number of ions, σN = ⟨Nα

2⟩−⟨Nα⟩
2, is

proportional to Nα, and σ ∝ →α αN N/ 1/ 0N for Nα →∞.
When mesoscopic inhomogeneities spontaneously appear in
the fluid phase, however, the fluctuations of the local volume
fraction, i.e., the local deviations of the volume fraction from its
average value ζα̅, cannot be neglected. The local volume
fraction is larger or smaller than ζα̅ when the cluster enters or
leaves the considered region, and the states with ζα(r) larger or
smaller than ζα̅ give more important contributions to the grand
potential of the whole system as inhomogeneity gets stronger.
The strength of the inhomogeneity can be measured by the
variance ⟨(ζα(r) − ζα̅)

2⟩ of the local volume fraction. The
linear extent of the inhomogeneity is determined by the
wavelength of the density waves that gives the largest decrease
of the system energy compared to the homogeneous state and
depends on the interaction potentials.
Let us first consider our system with a particular distribution

of the local volume fractions and with frozen fluctuations. Such
a system for a given ζα(r) represents a set of subsystems such
that the exchange of the ions between different subsystems is
forbidden, and the grand potential is Ωco = −kBT ln Ξco, with
Ξco denoting the summation of exp(−βH), where H is the
microscopic Hamiltonian, over the microscopic states compat-
ible with ζα(r). Because of the frozen mesoscopic fluctuations,
our “locally canonical” ensemble can be reasonably well
described within the MF approximation.

The grand thermodynamic potential in the presence of the
above mesoscopic constraints (frozen mesoscopic fluctuations)
can be written in the form

∫ζ ζ ζ ζ ζ ζ μ ζΩ [ ] = [ ] − [ ] − α α+ − + − + −U TS r r, , , d ( )co co

where Uco, S, and μα are the internal energy, the entropy, and
the chemical potential of the species α, respectively. Hereafter,
the summation convention for repeated indices is used. We
make the approximation −TS = ∫ drf h(ζ+(r), ζ−(r)), where
f h(ζ+(r), ζ−(r)) is the free-energy density of the hard-core
reference system in the local-density approximation

β ρ ρ ρ ρ β= + ++ + − −f fln lnh hs

where the first two terms come from the entropy of mixing,
and f hs is the contribution to the free energy density associated
with packing of hard spheres with two different diameters. The
expression for f hs in the Carnahan−Starling approximation44 is
given in the Supporting Information. Since we are interested in
correlations between local fluctuations in regions separated by
large distances, more accurate forms of the contribution to the
entropy associated with packing of hard spheres, such as in ref
45, are an unnecessary complication.
In MF, the internal energy Uco is given by the expression

∫ ∫ζ ζ ζ ζ[ ] = | − |αβ α β+ −U Vr r r r r r,
1
2

d d ( ) ( ) ( )co 1 2 1 2 1 2

Because ζα = πρασα
3/6 is used in the above definition, we have

rescaled the interaction potential, Vαβ(r) = Uαβ(r)/(vαvβ),
where vα = πσα

3/6.
When the constraints imposed on the microscopic states by

ζα̅ are released and the ions can move from one subsystem to
the other, the microscopic states incompatible with ζα̅ can
appear. The average volume fractions can remain equal to ζα̅
when the fluctuations Δζα(r) = ζα(r) − ζα̅ cancel one another,
but the grand potential contains the fluctuation contribution
and has the form43

∫ ∫β ζ ζ β ζ ζ ζ ζΩ[ ] = Ω [ ] − Δ Δ β
+ − + − + −

−
Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑD D e, , ln H

co
fluc

(8)

In eq 8, ∫ DΔζα denotes the functional integral over the
mesoscopic fluctuations Δζα that according to the Landau
theory46 appear with the probability proportional to the
Boltzmann factor exp(−βHfluc), with

ζ ζ ζ ζ ζ ζ= Ω [ + Δ + Δ ] − Ω [ ]+ + − − + −H , ,fluc co co

denoting the change of Ωco when the fluctuation Δζα appears.
Thus, in our theory the contributions to the grand potential
from the microscopic and the mesoscopic degrees of freedom
are given in the first and second terms in eq 8, respectively. In
MF, i.e., with frozen mesoscopic fluctuations, the second term
on the RHS of eq 8 is neglected.
We are interested in the correlation functions in the

disordered phase

ζ ζ α β= ⟨Δ Δ + ⟩ = + −αβ α βG r r r r( ) ( ) ( ) , , ,0 0 (9)

where the averaging is with the probability proportional to
exp(−βHfluc). The matrix G with the elements defined in eq 9
satisfies the analogue of the Ornstein−Zernike equation, G =
C−1, where the inverse correlation functions C̃αβ are the second
functional derivatives of βΩ[ζ+, ζ−] with respect to ζα and ζβ.43
In the lowest-order nontrivial approximation beyond MF38,43

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c06013
ACS Omega 2022, 7, 6655−6664

6658

https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c06013/suppl_file/ao1c06013_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c06013/suppl_file/ao1c06013_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c06013/suppl_file/ao1c06013_si_001.pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c06013?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


β̃ = ̃ + +αβ αβ αβ
αβγδ

γδC k V k A
A

( ) ( )
2 (10)

where f(̃k) denotes the function f in Fourier representation. In
the above equation

β ζ ζ
ζ ζ

=
∂

∂ ∂α α
α α

+ −A
f ( , )

...

j

...
h

j
j

1
1 (11)

with αi = +, −. Note that in this approximation the dependence
of C̃αβ(k) on k comes only from βṼαβ(k). The last term in eq
10 is the fluctuation contribution and comes from the last term
in eq 8. In the Brazovskii-type approximation47

∫ζ ζ
π

= ⟨Δ Δ ⟩ = ̃γδ γ δ γδG kr r
k

( ) ( )
d

(2 )
( )3 (12)

Note that ζ ζ= ⟨Δ Δ ⟩αα α αr r( ) ( ) is the local variance of ζα;

i.e., αα is the standard deviation from the space-averaged
value of the local volume fraction of the α-ions. The larger αα
is, the stronger the mesoscopic inhomogeneity and the less
accurate the MF approximation. Equations 10−12 have to be
solved self-consistently. In general, it is a nontrivial task.
We focus on the disordered inhomogeneous phase and

assume that the inhomogeneity occurs on a well-defined length
scale corresponding to the largest decrease of the energy and is
quite strong, as in the case of ref 4. Because of this assumption,
our considerations from now on are limited to the
thermodynamic states where strong inhomogeneity at well-
defined length scales is present. For weaker inhomogeneity, the
set of the integrals, eqs 10−12, and G = C−1 must be solved. In
our case, the peak of G̃γδ(k) (proportional to the structure
factor) is high and narrow. For functions with a high, narrow
peak, the main contribution to the integral comes from the
vicinity of the maximum. We assume that the maximum of all
the integrands in eq 12 is very close to the minimum at k = k0
of det C̃(k), and we make the approximation

= [ ̃ ]αβ αβC k( )0 (13)

where [C̃αα(k)] = C̃ββ(k) and [C̃αβ(k)] = −C̃αβ(k) for α ≠ β
and

∫
π

= ∼ k
k

C
d

(2 )
1

det ( )3
(14)

Near the minimum at k0, we have the approximation

β̃ = +
̃ ″

− +k D
W k

k kCdet ( )
( )

2
( ) ...0

0
0

2
(15)

where D0 = det C̃(k0) and βW″(k0) is the second-order
derivative of det C̃(k) with respect to the wavenumber k at k =
k0. From the approximations 15 and 14, we obtain43,48

π β
≈

̃ ″
k

W k D2 ( )
0
2

0 0

With all the above assumptions, the problem reduces to
determination of the minimum of det C̃(k) and to a solution of
three algebraic equations for C̃αβ(k0) (see eqs 10 and 13)
because

β α β̃ = ̃ + Δ ̃ = + −αβ αβ αβC k C k V k( ) ( ) ( ), , ,0 (16)

where

Δ ̃ = ̃ − ̃ ≈
″

−αβ αβ αβ
αβV k V k V k

V k

k
k k( ) ( ) ( )

( )

8
( )0

0

0
2

2
0
2 2

(17)

The last approximation is valid for k ≈ k0.
It should be noted that the results obtained within the

framework of this theory for several models of inhomogeneos
mixtures were verified by simulations.38,39,49

4. RESULTS
4.1. MF Approximation. In MF, we neglect the last term

in eq 10 and easily obtain explicit expressions for the matrix
C̃MF(k) inverse to the matrix of correlations. These expressions
are shown in the Supporting Information. In MF, the
disordered phase becomes unstable with respect to oscillatory
modulations of the volume fractions of the ions at the so-called
λ-line on the (ζ,̅T*) diagram. The λ-line marks the boundary
of stability of the disordered phase with respect to mesoscopic
fluctuations of the volume fractions and separates the phase
space into regions corresponding to the homogeneous and
inhomogeneous (on the mesoscopic length scale) phases.
Thus, in MF the λ-line is interpreted as a continuous order−
disorder transition. In order to get the λ-line, one should solve
the system of equations

∼ =

∼
=

=

k

d
dk

C

C

det ( ) 0,

det
0

k k

MF
0

MF

0 (18)

When the λ-line is crossed, the inhomogeneities in the
distribution of ions occur on the length scale 2π/k0. In our
model, k0 depends in particular on ϵ++* that we left as a free
parameter. In order to fit ϵ++* to our water-in-salt system, we
need to have 2π/k0 ≈ 4 in a units (k0 ≈ 1.6 in a−1 units), for
the molarity M ∼ 3−5 for which the experimental data were
obtained. The volume fraction of the spherical ions with σ+ =
0.2 nm and σ− = 0.6 nm is related to the molarity M by
ζ ̅ = +π −M N/ (0.2 0.6 )10

6
3 3 24

A , where NA is the Avogadro

number. We get ζ ̅ ≈ 0.27 and ζ ̅ ≈ 0.32 for the 3.8 M and 4.6
M systems, respectively. However, the above formula is a very
rough estimation for ζ/̅M in view of the strong dependence of
ζ ̅ on the diameter of the ions and the ellipsoidal shape of the
TFSI− anions, and it only gives the order of magnitude of M in
the experimental system for the given ζ ̅ in our theory. Thus, in
our semiquantitative analysis, we will consider volume fractions
up to ζ ̅ = 0.55.
The plot of k0 as a function of ϵ++* for ϵ−−* = 1, δ = 0.5, and ζ ̅

= 0.45 is shown in Figure 2. We can see that for ϵ++* = 5 the
length scale of inhomogeneities is 2π/k0 ≈ 3.9 (in a-units),
which for a = 0.4 nm gives 1.56 nm, which is close to the
experimental result of 1.4 nm. We thus choose ϵ++* = 5 in our
further calculations.
Figure 3 shows the λ-line in the ζ̅T* (panel a) and ζ̅k0

(panel b) coordinates for the model with δ = 0.5, ϵ++* = 5, and
ϵ−−* = 1. For the thermodynamic states below the λ-line, the
waves with the wavelength 2π/k0 are more probable than the
constant volume fractions. For our model, the emergence of
the inhomogeneous structure for det C̃MF(k0) < 0 may be
associated with the formation of aggregates such as clusters or
layers, rather than with a phase transition. For such
thermodynamic states, the fluctuations dominating on the
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mesoscopic length scale should be taken into account in order
to restore the stability of the disordered phase. As found in
different systems with spontaneously appearing mesoscopic
inhomogeneities, fluctuations induce a change of the
continuous transition found in MF to the first-order
crystallization that is also shifted to higher volume fractions.
Because of the instability of the disordered phase for T* < Tλ*
in MF, the asymptotic decay of the correlation functions
Gαβ
MF(r) can be analyzed only for T* > Tλ*.
In general, the long-range behavior (r ≫ 1) of Gαβ(r) is

described by the function50

α θ= +αβ αβ
α

αβ
−G r e r r( ) sin( )/r

1
0

(19)

In eq 19, α0 = 1/λs and α1 = 2π/λ are the imaginary and real
parts of the leading order pole of G̃αβ(q) in the complex q-
plane, which is determined as the complex root q = iα0 ± α1 of
the equation det C̃(q) = 0 having the smallest imaginary part.
Since all G̃αβ(q) have a common denominator det C̃(q), they
exhibit the same pole structure and have the same exponential
contributions. Only the amplitudes αβ and the phases θαβ
differ for different αβ combinations.
We calculate α0 and α1 for our model in MF from the

equation det C̃MF(q) = 0. The ζ-̅dependence of both the decay
length λs = α0

−1 and the period of oscillations λ = 2π/α1 of the
correlation functions Gαβ(r) is presented in Figure 4 for two

values of the reduced temperature, T* = 1.5 and T* = 1.6 (T*
> Tλ*). Note that the decay length α0

−1 tends to ∞ (α0 → 0),
and simultaneously the period of oscillations λ tends to 2π/k0
≈ 4a when T* → Tλ*. More precisely, we get λ = 3.96 a for T*
= 1.5, ζ ̅ = 0.5 and λ = 3.98 a for T* = 1.6, ζ ̅ = 0.55.
There is a very small difference between the values of λ

obtained for the two temperatures, and the difference
decreases with an increase of ζ.̅ Moreover, for ζ ̅ > 0.3 the
dependence of λ on ζ ̅ is weak, as in ref 4.
The values of the reduced temperature T* > Tλ* for large ζ,̅

however, are too high when compared to room temperature. A
rough estimate of the reduced temperature that corresponds to
the conditions for the LiTFSI salt in water at room
temperature (T = 300 °C and ε = 80) is about 0.5. Assuming
that the dielectric constant of bulk water is decreased
proportionally to the ion concentration, we should consider
T* < 0.5.

4.2. Beyond the MF Approximation. In order to
calculate the fluctuation contribution to the inverse correlation
functions C̃αβ(k) in the Brazovskii-type approximation, we take
into account the last term in eq 10 and solve the closed set of
four equations for the unknowns k0 and C̃αβ(k0). The explicit
forms of these equations are given in the Supporting
Information. Once k0 and C̃αβ(k0) are determined, the inverse

Figure 2. Wavenumber of the density waves k0 (in a−1 units) as a
function of ϵ++* for ϵ−−* = 1, δ = 0.5, and the volume fraction of ions ζ ̅ =
0.45. ϵαα* describes the strength of the non-Coulombic interactions
(see eq 6), and the size asymmetry δ is defined in eq 7. For the
considered system, a = (σ+ + σ−)/2 ≈ 0.4nm.

Figure 3. λ-line in ζ̅T* (panel a) and ζ̅k0 (panel b) coordinates for the model with δ = 0.5, ϵ++* =5.0, and ϵ−−* =1.0. T* and δ are defined in eq 5
and eq 7, respectively. ζ ̅ = ζ+̅+ζ−̅ is the total volume fraction of ions, ζα̅ = πρασα

3/6, k0 is in the a−1 units, a = (σ+ + σ−)/2 ≈ 0.4nm.

Figure 4. Model with δ = 0.5, ϵ++* = 5.0, and ϵ−−* = 1.0. The decay
length λs = α0

−1 and the period of oscillations λ = 2π/α1 of the
correlation functions Gαβ(r) as a function of the total volume fraction
of ions ζ ̅ for T* = 1.5 (solid line) and T* = 1.6 (dash-dotted line) in
the MF approximation. α0 and α1 are in the a−1 units, with a = (σ+ +
σ−)/2 ≈ 0.4 nm.
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correlation functions C̃αβ(k) can be obtained from eqs 16 and
17.
From G = C−1, one can calculate the correlation functions in

Fourier representation. In Figure 5, we show the reduced
correlation functions in Fourier representation G̃αβ* (k) =
G̃αβ(k)/ζα̅ζβ̅ for the fixed total volume fraction ζ ̅ = 0.55 and
for two temperatures, T* = 0.25 (panel a) and T* = 0.2 (panel
b). The three correlation functions G̃αβ* (k) have sharp maxima
for k = k0 ≃ 1.58. For both temperatures, the height of the
G̃++* (k) maximum is about 100 times higher than the maximum
of G̃−−* (k). It should be noted that the dependence of k0 on T*
for the fixed ζ ̅ is negligible, especially in the range T* = 0.2−
0.3 (see Table 1).

The reduced correlation functions in real-space representa-
tion, Gαβ* (r) = Gαβ(r)/ζα̅ζβ̅, are obtained from the inverse
Fourier transformation of G̃αβ* (k). They are shown in Figure 6
for T* = 0.25, ζ ̅ = 0.55 (panel a) and for T* = 0.2, ζ ̅ = 0.55
(panel b). As seen, Gαβ* (r) shows exponentially damped
oscillatory behavior, as described by eq 19. The period of
damped oscillations is about 4a. We study the asymptotic
decay of the correlation functions Gαβ(r) using the pole
analysis. The results of this numerical analysis for T* = 0.2,
0.25, 0.3, and 0.4 and for ζ ̅ = 0.45, 0.5, and 0.55 are

summarized in Table 1. For the fixed volume fraction, the
period λ = 2π/α1 coincides with 2π/k0 and is rather kept
constant for T* ≤ 0.3. For the fixed temperature, λ is a weakly
increasing function of ζ. It should be noted that the period of
damped oscillations obtained with the effect of fluctuations
taken into account is very close to the period obtained in MF
for the higher temperature. By contrast, the decay length α0

−1

noticeably increases with an increase of ζ ̅ for the fixed
temperature, and this increase is more rapid for lower
temperatures. In Figure 7, we present the decay length α0

−1

as a function of the total volume fraction of ions ζ ̅ for fixed
temperatures (panel a) and as a function of the Bjerrum length
lB for fixed volume fractions (panel b). One can observe that
α0
−1 has a nearly linear dependence on the volume fraction for

fixed T*, with the slope decreasing with T* and a nearly linear
dependence on lB for fixed ζ,̅ with the slope increasing with ζ.̅

5. DISCUSSION
We have developed a highly simplified model for water-in-salt
electrolytes and focused on the salt LiTFSI that was a subject
of recent experiments.3,4 In our model, the ions are treated as
charged hard spheres with different diameters, and we assumed
additional, water-mediated specific interactions between the
ions of the same sign. We assumed that the solvent influences
the distribution of the ions mainly by inducing effective
interactions between them, and otherwise the solvent can be
neglected. Next, we assumed that the detailed shape of the
specific interactions is not important, as long as these
interactions are strongly attractive but of a short range. We
chose the Yukawa potentials for the specific interactions and
adjusted the parameters to the LiTFSI by requiring the same
scale of inhomogeneities as found experimentally. Importantly,
the obtained sum of the Coulomb and specific interactions for
both the anions and the cations is attractive at short distances
and repulsive at large distances.
For this model, we calculated correlation functions for

concentrated electrolytes for reduced temperatures close to
room temperature, using our theory for binary mixtures with
competing interactions.38,39,43 There is no unique way of
relating the volume fraction in the approximate theory to
experimental molarity since we assumed spherical rather than
ellipsoidal anions, and the values of the ion diameters in the
theory are not precise. We considered volume fractions 0.45 ≤
ζ ̅ ≤ 0.55 somewhat larger than in the experiment but of the
same order of magnitude (the molarity 0.38−0.46 considered

Figure 5. Correlation functions in Fourier representation with the effect of fluctuations taken into account for T* = 0.25, ζ ̅ = 0.55 (panel a) and for
T* = 0.2, ζ ̅ = 0.55 (panel b). G̃αβ* = G̃αβ/ζα̅ζβ̅, ζα̅ = πρασα

3/6, and the wavenumber k is in a−1 units with a = (σ+ + σ−)/2. The results are for the
model with δ = 0.5, ϵ++* = 5, and ϵ++* = 1. In the insets, we show sharp peaks of G̃−−* (k).

Table 1. Wave Number k0, the Decay Length λs = α0
−1, and

the Period of Oscillations λ = 2π/α1 of the Pair Correlation
Functions Gαβ(r) Depending on the Total Number Density
ζ ̅ for Fixed Values of Temperature T*a

T* ζ ̅ k0 α0 α1 α0
−1 2π/α1

0.4 0.45 1.597 0.225 1.613 4.444 3.895
0.4 0.5 1.591 0.163 1.599 6.151 3.930
0.4 0.55 1.582 0.119 1.587 8.424 3.959
0.3 0.45 1.602 0.124 1.607 8.042 3.910
0.3 0.5 1.593 0.088 1.595 11.426 3.939
0.3 0.55 1.584 0.063 1.585 15.796 3.964
0.25 0.45 1.605 0.084 1.607 11.852 3.911
0.25 0.5 1.594 0.059 1.595 16.920 3.939
0.25 0.55 1.584 0.043 1.585 23.411 3.964
0.2 0.45 1.607 0.053 1.608 19.016 3.907
0.2 0.5 1.595 0.037 1.596 27.191 3.937
0.2 0.55 1.585 0.027 1.585 37.610 3.963

aT* is defined in eq 5, ζ ̅ = ζ+̅ + ζ−̅, ζα̅ = πρασα
3/6, and k0, α0, and α1

are in a−1 units.
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in ref 4 for spherical ions of our sizes gives 0.27 ≤ ζ ̅ ≤ 0.32).
We obtained exponentially damped oscillations for the
correlation functions with the period λ ≈ 4 in a ≈ 0.4 nm
units (in the experiment,3,4 λ ≈ 1.4 nm), very weakly
depending on ζ ̅ in the considered range of concentrations.
In MF, λ decreases a bit. When the fluctuations are taken into
account, λ increases with ζ.̅ Interestingly, λ slightly decreases,
increases, or does not change with increasing ζ,̅ depending on
the method of determining it in the experiment.4

We found that the decay length of the correlations, λs,
increases almost linearly with ζ ̅ for fixed reduced temperature
T*. It increases also with the Bjerrum length for temperatures
of the order of room temperature. In particular, for the reduced
temperature T* = 0.3 (Bjerrum length lB = 3.3 in a ≈ 0.4 nm
units), we obtain λs ≈ 3.2−6 nm, and for T* = 0.2 (Bjerrum
length lB = 5) we obtain λs ≈ 8−15 nm for ζ ̅ = 0.45−0.55.
These values are in semiquantitative agreement with the
experimental decay lengths, λs = 8.3−11.5 nm, for the molarity
3.8−4.6 M (ζ ̅ = 0.27−0.32).
The approximate relation λs ∼ lBρ was discovered earlier for

concentrated simple salts in water, ILs, and alkali halide
solutions12 and confirmed theoretically for the RPM (charged
hard spheres with equal diameters and positive and negative
charges of the same magnitude).23 Our present results show
that this relation is valid when ions with significantly different
sizes interact with additional strong short-range potentials as
well. It means that the dependence of λs on lBρ does not

depend on the length scale of inhomogeneity, at least in the
range 2a − 4a.
The very weak dependence of λ on ζ ̅ and the semi-

quantitative agreement of the decay length with the
experimental results indicate that the properties of the
correlation functions do not depend sensitively on the details
of the interactions. The ellipsoidal anions are approximated by
the spherical ones; implicit solvent-inducing effective anion−
anion and cation−cation interactions are assumed; and we
neglected fluctuations of the dielectric constant induced by the
concentration fluctuations. The dependence of the reduced
temperature on ζ ̅ (through the dependence of ϵ on ζ)̅ was
disregarded as well. The latter dependence for the rather
narrow range of ζ ̅ is not very strong, however. Finally, we
rather arbitrarily assumed the shape of the specific interactions.
With the above simplifications, we got semiquantitative
agreement with experiments. It means that the above features
are important only on the quantitative level.
We conclude that the key property determining the

inhomogeneities on the mesoscopic length scale is the shape
of the sum of the Coulomb and the solvent-induced specific
interactions. In order to induce mesoscopic inhomogeneities,
this sum should be attractive at short and repulsive at large
distances, with the ranges and strengths of the attractive and
repulsive parts determined by the properties of the ions and
the solvent. If these anion−anion and cation−cation potentials
have a negative minimum followed by a positive maximum,
then layers of ions of the same sign and of the thickness

Figure 6. Correlation functions in real space with the effect of fluctuations taken into account for ζ ̅ = 0.55, T* = 0.25 (panel a) and T* = 0.2 (panel
b). Gαβ* = Gαβ/ζα̅ζβ̅, ζα̅ = πρασα

3/6, and r is in a units with a = (σ+ + σ−)/2. The results are for the model with δ = 0.5, ϵ++* = 5, and ϵ++* = 1.

Figure 7. Decay length λs = α0
−1 of the correlation functions Gαβ(r) as a function of the total volume fraction of ions ζ ̅ for T* = 0.2, 0.25, 0.3, and

0.4 (from the top to the bottom line) (panel a) and as a function of the Bjerrum length lB for ζ ̅ = 0.45, 0.5, and 0.55 (from the bottom to the top
line) (panel b). 1/α0 and lb are in a units, a = (σ+ + σ−)/2 ≈ 0.4 nm. The results are for the model with δ = 0.5, ϵ++* = 5, and ϵ++* = 1.
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determined by the width and depth of the attractive well can
be formed. We believe that this conclusion is not restricted to
the particular case of the water-in-LiTFSI but applies to
concentrated solutions of salts with significantly different
solubility of cations and anions in charge-neutral solvents, such
that the effective interactions have the form similar to the one
shown in Figure 1. Hydrophilic cations and hydrophobic
anions are present in the so-called “antagonistic salts”, such as
for example sodium tetraphenylborate (NaBPh4). This salt
induces strong mesoscopic inhomogenity on the length scale
10 nm in the D2O/3-methylpyridine (3MP) mixture.51−54 In
concentrated solutions in water of this and some other
antagonistic salts, mesoscopic charged regions correlated over
large distances may be present. On the other hand, we expect
that for a more complex anion structure than the structure of
TFSI− the approximation of the anion shape by a sphere
cannot be sufficient that it, in turn, can worsen the agreement
between theoretical and experimental results. In particular,
more elongated shape may lead to orientational ordering of the
anions.
It is worth noting that our theory is formulated for the case

when the valences of the cation and the anion are equal in
magnitude but not necessarily equal to 1. Our theory can be
extended to the case of unequal valences by changing the
parameters in the Coulomb potentials 2−4. In principle, the
theory could be extended to lithium salt/IL mixtures, but in a
minimal model at least two types of cations and one type of
anion, i.e., a three-component mixture, should be considered.
Finally, we have shown that the self-consistent theory with

the local fluctuations of the volume fractions taken into
account38,39 can predict the structure with local inhomogene-
ities on a semiquantitative level.
There remains one unsolved problemnamely, the

experimental disjoining pressure between crossed mica
cylinders decays monotonically at large distances,4 whereas
our theory predicts the oscillatory decay. The same problem
concerns simple salts and some other ILs modeled by the
RPM.
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