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Prognostic significance of copy
number variation in B-cell acute
lymphoblastic leukemia
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Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases
Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
Copy number variations (CNVs) are widespread in both pediatric and adult

cases of B-cell acute lymphoblastic leukemia (B-ALL); however, their clinical

significance remains unclear. This review primarily discusses the most

prevalent CNVs in B-ALL to elucidate their clinical value and further

personalized management of this population. The discovery of the molecular

mechanism of gene deletion and the development of targeted drugs will

further enhance the clinical prognosis of B-ALL.
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Introduction

B cell acute lymphoblastic leukemia (B-ALL) is a heterogeneous and invasive

hematological malignancy with the accretion of genetic lesions (1, 2). Recent research

has comprehensively investigated the genetic landscape of both adult and pediatric B-

ALL (3–5). Over 90% of pediatric patients with B-ALL can attain complete remission

(CR), 20% relapse, and 10% remain incurable (6). The conventional approach for

pediatric B-ALL remission-induction chemotherapy drugs mainly consists of

glucocorticoid, vincristine, asparaginase and/or anthracycline (7). With the first course

of induction therapy administration for 4-6 weeks, the CR rate population of pediatric B-

ALL may reach 98% (7).

The genomic pattern of adult B-ALL might differ from pediatric cases, accompanied

by more devastating clinical outcomes (8). However, chances of newly emerged drugs,

chimeric antigen receptor T cell therapy, and hematopoietic stem cell transplantation

(HSCT) improved the clinical response of specific subtypes of B-ALL patients remarkably

(9–12). Nevertheless, 40% of adult patients with B-ALL relapsed at a median duration of

13 months (28 days to 12 years) (13). In this population, around 30%-40% of relapsed

and refractory B-ALL cases can attain complete remission by first salvage chemotherapy.

Besides, the long-term survival, that is, the 5-year survival rate, of patients with B-ALL
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remains at 20% only (14, 15). Hence, it is imperative to find a

nove l b iomarke r tha t cou ld he lp de t e rmine the

characteristics and prognosis of newly diagnosed B-ALL (16, 17).

Copy number variations (CNV; a.k.a. copy number

aberrations [CNAs]) are a specific type of genetic abnormality

with a high incidence in B-ALL (1, 14, 18), ranging from 1 Kb to

less than 5 Mb (19). CNVs denote the deletion, insertion,

replication, and multipoint variants of DNA fragments.

Previously, the initial cognition of CNV was found in healthy

people and correlated with neuropsychiatric disorders. Today,

CNV is broadly recognized as a major cause of various solid

tumors (20) and acute myeloid leukemia (21). This review

primarily focuses on the CNV biomarker analysis in B-ALL

and their prognostic significance.
CNV detection method

As CNVs are challenging to detect by karyotype analysis,

fluorescence in situ hybridization (FISH), and PCR

amplification; besides, their research and application are

limited to some extent (22, 23). Indeed, FISH is traditionally

used in CNV research but is limited to the imbalance design of

both satisfying multi-genes location and the FISH gene-specific

probes. With the advent of various sequencing technologies,

array-based CNV analysis was commonly used for detecting

genomic DNA fragments. For example, CNV can be recognized

by array comparative genomic hybridization and single-

nucleotide polymorphism arrays; however, the high cost and

complex process of these techniques hinder their widespread use

in clinical practice. In 2002, Schouten established multiplex

ligation-dependent probe amplification (MLPA) assay to

analyze the CNV spectrum; this technology is a fast and

reliable gene CNV detection method that can detect the copy

number changes of 45 gene probes simultaneously with high

specificity and at a low cost (24). Kiss R et al. (25) proposed the

digital MLPA-based approach based on the next-generation

sequencing technology to detect hundreds of exon-positions

CNV panels at the same time. The next-generation sequencing

method can simultaneously detect sequence variation of a single

base, insertion, or deletion of short fragments and CNV (19).

To date, many studies have investigated various software

projects to examine copy number changes (26). Zhou B et al.

(23) compared different sequencing depths (1×, 3×, and 5×

coverages) using whole-genome sequencing by different

sequencing libraries (short/3 kb/5 kb); they recommended that

the gold standard for CNV detection was under the large library

and low sequencing depth. Optical genome mapping is a new

whole-genome sequencing method in which each DNA

molecule is linearized and unfolded by nano-microfluidic

CHIP with high-resolution fluorescence imaging (27, 28).
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All structural variations and CNVs can be detected by

providing original DNA information for downstream

applications of genomics. Unlike other traditional cytogenetic

methods, optical genome mapping has a full coverage of all types

of mutations, detects small tumor-related mutations, and has

high consistency in detecting hematological malignancies–

related chromosomal and DNA abnormalities. In addition,

LüHMANN JL et al. (29) established that optical genome

mapping was superior to any other traditional method in the

area of detecting the classical gene deletions (e.g., IKZF1) and

gene losses that were previously undetected (e.g., SETD2).

Owing to the insensitivity of whole-genome sequencing

hybridization and capture, the reads captured in an exon

fragment vary markedly from sample to sample. Thus, new

technologies emerged gradually, such as noninvasive prenatal

testing technology, which could detect CNVs in tumor

circulating free DNA of 7 MB size with >95% sensitivity and

specificity (30).

Reportedly, RNA-seq is limited to detect CNVs in ALL as a

result of mismatching B-allele frequency. BAŘINKA et.al (31).

developed a robust tool RNAseqCNV package based on the

normalized gene expression and minor allele frequency to

classify arm-level CNVs. In addition, InferCNV was applied

widely to identify large-scale chromosomal CNVs in tumor

single-cell RNA sequencing (scRNA-seq) data. The basic idea

is to compare the gene expression of each tumor cell with the

average expression or “normal” reference cell gene expression in

the whole genome to determine its expression intensity (32).

However, the genomic location of specific CNVs is not available

to precisely classify tumor and normal cells copy number

spectrum. Considering the critical need for distinguishing

normal cell types from malignant cells in the tumor

microenvironment, copy number karyotype of tuments

(CopyKAT), as an integrated Bayesian segmentation method,

was developed to estimate the CNV spectrum, with an average

genome resolution of 5 MB from the reading depth of high-

throughput scRNA-seq data (33).
CNV prevalence in B-ALL

CNVs are frequently detected in B-ALL with considerable

heterogeneity distribution (34). Overall, about 40%–49% of B-

ALL carried gene CNVs that regulate early B-line cell

differentiation and development-related genes (e.g., PAX5,

IKZF1, and EBF1) and about 60% carry deletions of cell-cycle

regulatory genes (e.g., CDKN2A/B and RB1) (5, 14). Broadly,

CNVs occurred in 65% of pediatric B-ALL cases (35). Table 1

summarizes the incidence of common CNVs (including IKZF1,

CDKN2A/B, and PAX5 genes) detected using MLPA from

multiple cohorts (5, 18, 36–46); these occurred in the order of
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IKZF1, CDKN2A/B, and PAX5. In adult B-ALL cases, deletions

of these genes were markedly enriched in the Philadelphia

chromosome-positive (Ph+) B-ALL group than in the Ph− B-

ALL group (82.4% vs. 58.7%, P<0.01) (18). Furthermore, Ribera

J et al. (47) detected CNAs of 12 genetic regions in 142

adolescents and adults with de-novo precursor B-ALL using

MLPA; CDKN2A/B deletion occurred in 59/142 (42%) cases,

while IKZF1 deletion occurred in 49/142 (35%) cases.

Nevertheless, the research on CNV clones in relapsed B-ALL

is limited. Despite being the preferred and widely used method

for detecting CNVs in the related literature, MLPA might not be

able to detect CNVs in samples presenting a low leukemia

burden (carried <25% CNV clone). Moreover, CNVs in

relapsed B-ALL remain unclear owing to limited paired B-ALL

(newly diagnosed and relapsed) samples. The CNVs of relapsed

B-ALL evolved from the diagnosis for examining specific gene

content and clone size. By comparing the first-relapsed B-ALL to

the newly diagnosed stage. RIBERA J et al. (48) established that

CDKN2A/B, PAX5, and IKZF1 deletions were more frequent at

relapse. Mullighan CG et al. (49) performed the genome-wide

CNV and LOH analyses on matched diagnostic and relapse bone
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marrow samples from 61 pediatric patients with ALL, and

identified a mean of 10.8 somatic CNV per B-ALL case and

7.1 CNVs per T-ALL case at diagnosis. In addition, they

observed a significant increase in the mean number of CNVs

per case in relapsed B-ALL samples (10.8 at diagnosis vs. 14.0 at

relapse, P = 0.0005); however, no significant changes were

observed in the lesion frequency in T-ALL. The majority

(88.5%) of relapse samples harbored at least some of the

CNAs present in the matched diagnosis sample, suggesting a

common clonal origin, although 91.8% of samples showed a

change in the pattern of CNVs from diagnosis to relapse. Of

these cases, 34% acquired new CNVs, 12% exhibited loss of

lesions present at diagnosis, and 46% both acquired new lesions

and lost lesions present at diagnosis. Moreover, Ribera (48)

compared CNVs at diagnosis and relapse, observing the trend to

acquire homozygous CDKN2A/B deletions and a considerable

increase in CNVs from diagnosis to the first relapse. Besides,

evolution from an ancestral clone was the main pattern of clonal

evolution. When focusing on the acquired CNVs in relapsed

clones, gene alterations mostly correlated with proliferation and

drug resistance.
TABLE 1 CNVs in frequent genes in different B-ALL cohort.

Author/
Group

Subtype Patient
number

B-ALL
status

IKZF1
N (%)

CDKN2A/
2B N (%)

PAX5 IKZF1
plus(%)

No
Del(%)

Reference
N (%)

Pediatrics ALL IC-BFM
2009

Whole
series

88 ND 16(18.2%) 23(26.1%) (30.7%) (12.5%) (35%) (18)

(25%)

UKALL14 Whole
series

437 ND 170
(38.9%)

162(37.1%) 93
(21.2%)

– 167
(38%)

(36)

MIGICCL study Whole
series

63 ND 17(27%) 20(31.7%) 10
(15.9%)

– 25
(39.7%)

(37)

18(28.6%)

Hamadeh L et al. Whole
series

3239 ND 12% 30% 20% – 42% (38)

NOPHO
protocols

Ph- 116 ND 19(16%) 47(41%) 40 (35%) – – (39)

Gupta SK et al. Ph- 320 ND 47(14.7%) 103(32.2%) 82
(25.6%)

32(10%) 141
(44%)

(40)

Adult Pfeifer H et al. Ph+ 97 ND 72(74%) 41(42%) 39(40%) – – (41)

GIMEMA
protocols

Ph+ 116 ND 97(84%) 30(32%) 43
(36.2%)

45
(46.4%)

– (42)

Chiaretti S et al. Ph+ 60 ND 84.6% 33.3% 38.5% – 21% (43)

Fang Q et al. Ph+ 85 ND 65.9% 28.2% 27.1% 30.5% 17.6% (5)

Ph- 126 ND 20.6% 42.1% 23.8% 15.08% 41.3%

Dirse V et al. Whole
series

66 ND 4(6%) 19(29%) 4(6%) – – (44)

18(27%)

Roberts KG et al. Ph like 165 ND 120(73%) 84(51%) 62(38%) 14% (45)

GIMEMA
LAL1913

Non-Ph
like

48 ND 12(25%) 23(47.9%) 11
(22.9%)

7(14.6%) – (46)

Ph like 22 ND 14(63.6%) 7(31.8%) 7(31.8%) 10
(45.5%)

–

fro
Annotation: ND, newly diagnosis.
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Clinical significance of recurrent
CNV genes in B-ALL
IKZF1 gene deletions

The Ikaros Zinc Finger 1 (IKZF1) gene, located at 7p12.2,

encodes 519 amino acids by 8 full-length exons (50). Exons are

essential for Ikaros gene functions, except for exon 1 (which does

not participate in transcription) and exons 2, 3, and 7

(undetermined significance). IKZF1 deletions in both coding

and noncoding regions might interfere with the gene activity and

promote B-ALL progression through specific targets. For

example, EBF1, MSH2, and MCL1 genes, as the target genes of

IKZF1, play a vital role in affecting B-cell differentiation (EBF1

gene), DNA repair (MSH2 gene), and anti-apoptosis (MCL1

gene). The primary functions of the IKZF1 gene include B-cell

differentiation blocking, metabolic reprogramming, leukemia

microenvironment adhesion, disease relapse, and drug

resistance (51).

Increasing evidence indicated that IKZF1 deletions mediate

cellular drug resistance and relapse. For example, Rogers et.al

(52) established that the IKZF1 deletion was resistant to

dexamethasone, asparaginase, and daunorubicin by

upregulating the JAK/STAT pathway. In addition, the IKZF1

deletion affects sensitivity to cytarabine by downregulating the

SAMHD1 pathway (52); STEEGHS et. al (14) suggested that the

loss of IKZF1 caused prednisolone resistance by elevating

intracellular ATP and glucose levels, whereas drug sensitivity

was recovered by inhibition of glycolysis. Moreover, IKZF1

deletion events, accompanied by CREBBP deletion or

mutation, were common in relapsed pediatric B-ALL patients,

which could correlate with the selective pressure of

chemotherapeutic drugs on tumor cells (8).

Notably, IKZF1 gene deletions comprise localized large

fragment deletions, single exon deletions, and other

nonlocalized deletions, among which localized large fragment

deletions are the most common. The loss of IKZF1 can be

separated depending on its functional effect. While IK1–IK3 is

considered a functional subtype, other subtypes are dominant-

negative isoforms (DN isoforms), that is, functional defect

subtype. In addition, IK6, often located in the cytoplasm, is a

functional defect subtype with the complete loss of N-terminal

zinc finger structure due to exon 4–7 deletion. IK6 functions as

DN effects by isolating normal cytoplasmic proteins (53). Loss-

of-function was designated as the total allelic inactivation. The

loss of haploid dysfunction due to exon 2 deletion can decrease

the Ikaros protein level.

Some studies reported IKZF1 deletions in around 15% of

pediatric B-ALL cases and 30%–40% of adult B-ALL cases (40,

54). Perhaps, IKZF1 deletions in pediatric B-ALL are a hallmark
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of high-risk stratification and relapse independently carried by

70% of high-risk pediatric B-ALL (45, 55, 56).

In adult B-ALL, IKZF1 deletions were detected about 70% of

Ph+ B-ALL cases (4, 5), around 15%–30% of Ph− B-ALL (53),

and 40% of Ph-like B-ALL cases (13). In a study, IKZF1 deletions

were mostly enriched in the adult Ph+ B-ALL group than in the

Ph− B-ALL group (65.9% vs. 20.6%, P < 0.01) (5). Ribera

reported that IKZF1 deletions were more prevalent in Ph+ B-

ALL (52%) and correlated with advanced age and high white

blood cell count (47, 57). Another study reported that IKZF1

deletions correlated with the CALF2 gene overexpression

(P = 0.001), particularly in DN isoforms (P = 0.006),

regardless of age (54). Furthermore, IKZF1 deletions with

CRLF2 overexpression indicated a poor prognosis in both

adult and pediatric B-ALL patients (54).

The prognostic impact of IKZF1 alterations in B-ALL

remains debatable (58).

Kobitzsch (53) reported that loss-of-function not DN

intragenic IKZF1 deletions correlated with an adverse

prognosis in adult BCR-ABL-negative ABL. Yeoh AEJ et al.

(59) compared the 5-year cumulative incidence of relapse (CIR)

of Malaysia–Singapore MS2003 (n = 507) and MS2010 (n = 316)

of pediatric B-ALL; the findings revealed that the loss of IKZF1

strongly correlated with a higher 5-year CIR (20.5% vs. 8.0%,

P = 0.01) in MS2003. However, the treatment of IKZF1

deletion patients was intensified in MS2010, and the 5-year

CIR presented no more significant difference in pediatric Ph− B-

ALL (11.4% vs. 4.4%, P = 0.09). In addition, Ribera reported that

IKZF1 deletions conferred a higher relapse incidence (40% vs.

58%, P = 0.048) and worse 5-year overall survival (OS; 29% vs.

50%, P = 0.023) than IKZF1 undeleted in Ph− B-ALL (47).

Zhang W et al. (58) conducted a meta-analysis of the correlation

between IKZF1 deletion and survival; IKZF1 lesions could

independently predict unfavorable OS (hazard ratio [HR] 1.60,

95% confidence interval [CI] 1.25–2.06) and event-free survival

(EFS; HR 1.67, 95% CI: 1.28–2.17) in Ph− B-ALL. In the

EsPhALL cohort (pediatric BCR-ABL1-positive), IKZF1

deletions correlated with an unfavorable prognosis (4-year

Disease Free Survival [DFS] of 51.9% ± 8.8% for IKZF1-

deleted vs. 78.6% ± 13.9% for IKZF1 wild-type; P = 0.03). The

massive analysis of IKZF1-loss patients demonstrated that it

played a crucial role in Ph-like B-ALL. In ALL-BFM protocols,

IKZF1 deletions acted as an independent risk factor, with the

lower 5-year EFS than wild-type IKZF1 (0.69% vs. 0.85%, P <

0.0001) (51). Furthermore, IKZF1 deletions in Ph-like B-ALL

multivariate models could precast EFS and OS (60, 61).

The response of early chemotherapy induction in patients

with IKZF1 deletions was disappointing over the whole series.

Several studies established that patients with IKZF1 lesions

exhibited a high minimal residual disease (MRD) level (51, 60,

62). Reportedly, these patients could benefit more from
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intensive/alternate therapy than standard ones (4). Reportedly,

the combination of vincristine and steroids in patients with

IKZF1 deletions during maintenance treatment could be an

effective and reasonable approach to prevent relapse. Dhédin

N et al. (63) demonstrated that patients with IKZF1 deletions

were likely to benefit from allogeneic HSCT (allo-HSCT) in

terms of EFS (HR 0.42, 95% CI: 0.18–1.07, P = 0.025) and OS

(HR 0.35, 95% CI: 0.16–0.75, P = 0.007), compared with non-

IKZF1 alteration groups in adult Ph− B-ALL populations.

However, whether the poor prognosis of IKZF1 overcame by

stem cell transplantation warrants further investigation.
CDKN2A/CDKN2B gene deletion

Cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) is a

common deletion in pediatric and adult B-ALL CNV profiles (1,

57, 64), as well as a major proposition of E2A-PBX1–positive B-

ALL, but limited in MLL-rearranged patients (P = 0.005) (65).

CDKN2A/B deletion is the major suppressor gene CNV in

chromosome 9p21 (66). Compared with children, the

CDKN2A/B incidence rate is marginally higher in adults

(P = 0.002) (67). Moreover, 24.6% (14/57) of Ph-like patients

present with enriched biallelic loss of CDKN2A/B (68).

Reportedly, this lesion was highly representative of high white

blood cell count, older age at initial diagnosis, and often

accompanied by IKZF1 deletions (called I&C) (36, 69).

Remarkably, clones with CDKN2A/B deletions detected in the

initial diagnosis always persisted in relapse cases. Furthermore,

CDKN2A/B presented a notable increase in the CNVs of relapse

B-ALL (48).

In some studies, pediatric B-ALL patients with CDKN2A/

B deletions exhibited a trend of shorter relapse time and EFS (35,

67), although the OS rate remains debatable. Kathiravan et. al

(35) indicated that the 28-month EFS of CDKN2A/B lesions in

ICICLE (Indian adaption of UKMRC2007 protocol) was notably

decreased (42% vs. 90%, P = 0.0004) compared with non-

CDKN2A/B deletions. Moreover, Braun M et al. (69) proved

that CDKN2A deletions decreased the RFS significantly (HR

2.21, P = 0.028). No evidence indicates that loss of CDKN2A/B

affected the prognosis in pediatric EORTC trials (70).

Conversely, Feng J et al. (71) suggested that CDKN2A/B

delet ions inferred the 3-year EFS rate (69.8% vs.

89.2%, P = 0.000) and 3-year OS rate (89.4% vs.

94.7%, P = 0.037).

The frequency of adult CDKN2A/B deletions in the Ph-B-

ALL group was much higher than in the Ph+ B-ALL group

(39.7% vs. 24.7%, P = 0.041) (5). The prognostic value of

CDKN2A/B in adults has been debated previously (35, 41, 44).

Most studies emphasized that CDKN2A/B did not affect EFS and

OS of adult patients with B-ALL. Only a few studies emphasized
Frontiers in Oncology 05
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Fang et. al (72). reported that CDKN2A/B is the vital relapsing

and inferior prognostic marker for adult Ph− B-ALL (2-year OS:

38.2% vs. 80.3%, P = 0.002; 2-year RFS: 44% vs. 88.9%,

P = 0.006). Messina M et al. (73) enrolled B-ALL-negative

patients for BCR-ABL1 (Ph− B-ALL) population, including

children, adolescents, and adults; the CDKN2A/B/RB1 deletion

was reported as the negative prognostic factor (HR 2.12, P =

0.048) regardless of age. Pfeifer H et al. (41) suggested that

CDKN2A/B deletions played an independent prognostic role in

predicting the risk of relapse (DFS HR 2.621, P = 0.0054) and OS

(HR 2.162, P = 0.014) in the adult Ph+ B-ALL population.

Moreover, Dirse et. al (44). reported that CDKN2A/B decreased

the EFS (multivariate HR 2.607, P = 0.034) in the whole series of

adult B-ALL.
PAX5 gene deletion

The transcription factor paired box domain gene 5 (PAX5)

was considered to regulate B-cell lineage differentiation and

contribute to leukemogenesis in B-ALL (74, 75). PAX5 acts on

the downstream transcription factors E2A and EBF1 and is

crucial for B-line differentiation (76). In PAX5-deficient mice,

the development of B cells in the bone marrow was blocked in

the early Pro-B stage (77). The alterations of PAX5 comprise

partial exon deletion on chromosome 9 (14%) and amplification

of exon 2 or 5, resulting in frameshift mutation (7%). PAX5

deletions might increase genetic instability. Consequently, the

probability of a secondary strike markedly increases and induces

the recurrence and development of leukemia. In a study, PAX5

deletions decreased leukemia cell viability by inducing apoptotic

cell death using a new ribozyme-derived isotype-specific

knockdown system in the B-ALL cel l model (77).

Furthermore, transplantation experiments and exhaustive

sequencing validated that PAX5 deletion made it sensitive to

malignant transformation by forming an abnormal progenitor

cell population (78).

As shown in Table 1, PAX5 deletions occurred in 15.9%–

31.7% of pediatric Ph− B-ALL, 33% of pediatric Ph+ B-ALL (14),

27.1%–40% of adult Ph+ B-ALL, and 22.9%–23.8% of adult Ph-

B-ALL (31.8%–38% Ph-like ALL) cases. No statistical difference

has been reported between adult Ph− B-ALL and Ph+ B-ALL

(27.1% vs. 27.8%, P = 0.549) cases (5). Most PAX5 deletions

coexisted with CDKN2A/B deletions (83.3% of children and

100.0% of adults) and were commonly deleted in ETV6-RUNX1

B-ALL. The prognostic significance of PAX5 deletions in adult

B-ALL also remains debatable. BHANDARI P et al. (64) claimed

that PAX5 deletions were unsuitable for an independent

prognostic marker for predicting prognosis because of no

significant influence of RFS among B-ALL subgroups
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(P = 0.6839). Moreover, Iacobucci I et al. (79) reported no

correlation between PAX5 deletions and OS (P = 0.3294) or DFS

(P = 0.9249) in adult Ph+ B-ALL. In contrast, FEDULLO AL

et al. (42) suggested that adult Ph+ B-ALL with PAX5 deletions

showed shortened DFS (24.9% vs. 43.3%; P = 0.026).

In pediatric B-ALL groups, the prognosis of PAX5 deletion

was strongly dependent on IKZF1 codeletion (61, 80). However,

no significant prognostic correlation was observed in PAX5

deletions alone in children (74). In other words, the PAX5

-loss group presented no relapsing risk after excluding IKZF1

deletions. Indeed, double deletion of PAX5 and IKZF1 was

improved by treatment intensification in MS2010, with 0% 5-

year CIR than 80.0% in MS2003 (P = 0.05).
Prognostic relevance of integrated
CNV profiling

Extensive research integrated gene CNV profile into

pediatric B-ALL risk stratification (17). Moorman AV et al.

(34) identified an 8-gene CNV panel, including IKZF1,

CDKN2A/B, PAR1, BTG1, EBF1, PAX5, ETV6, and RB1, for

stratifying the pediatric B-ALL risk level known as the UKALL-

CNV classifier (Table 2). This tool has robust decision-making

ability in intermediate-risk cytogenetics subgroups and even

patients with different leukemia protocols baseline (37, 38).

Besides, the UKALL-CNV classifier can refine the established

cytogenetic risk groups.

Based on the Moorman’s criteria, Gupta SK et al. (83)

subgrouped the MRD-negative intermediate-risk pediatric Ph−

B-ALL into two subgroups with different EFS (77% vs. 38%,

P = 0.045) and OS (90% vs. 30%, P = 0.037), whereas the criteria

had no classifying power in MRD-positive groups (OS 75% vs.

57%, P = 0.293). A total of 3239 pediatric B-ALL cases were

applied to validate the UKALL classifier (38). By integrating

CNV and cytogenetic data, Hamadeh revised the overall genetic

classification by defining four risk groups with distinct EFS rates

(P < 0.001)—very good (91%), good (81%), intermediate (73%),

and poor (54%). Stanulla M et al. (81) proposed a very-poor

prognostic subtype defined as IKZF1plus subtype: IKZF1

occurred with additional mutations, containing CDKN2A,

CDKN2B, PAX5, or PAR1 deletions simultaneously but

without ERG deletions (Table 2). Besides, the IKZF1plus 5-year

EFS rate in pediatrics was 53% ± 6% compared with 79% ± 5% in

adults (P < 0.001).

In adult Ph+ B-ALL, IKZF1plus negatively affected the

survival outcome than IKZF1 alone (DFS: 43.3% vs. 24.9%,

P = 0.026; OS: 62.6% vs. 40.2%, P = 0.02) (42). Reportedly,

IKZF1plus patients had been under similar conditions in the

GIMEMA LAL2116 cohort (DFS: 84.5% vs. 54.5%, P = 0.026)

and GIMEMA LAL1509 protocol (DFS: 0% vs. 60%, P = 0.0008;

OS: 20% vs. 69.5%, P = 0.0068) (43, 82). However, the prognostic
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significance of IKZF1 plus in adult Ph+ B-ALL was not detected

(5). Likewise, Chiaretti S et al. (46) reported no statistical

correlation between IKZF1plus in adult Ph-like B-ALL (HR

1.869, 95% CI: 0.49–6.67, P = 0.339). In addition, GUPTA SK

et al. (40) proposed the “MRplus” risk score system by

integrating IKZF1plus and the UKALL-CNV classifier

subtyping to better classify pediatric Ph− B-ALL prognosis.

The 0, 1, 2 groups defined by MR plus system markedly

discriminated postinduction remission response and 4-year

OS (Table 2).

Considering the primary chromosomal abnormalities

significantly correlate with the CNV frequency, Moorman AV

et al. (36) revised the stratification by adding cytogenetic risk

factors, like KMT2A fusions, complex karyotype and low

hypodiploidy/near-triploidy. The new risk system could

predict the 3-year OS (64% vs. 47%; HR 1.65 95% CI:

1.27–2.12, P < 0.001).
Future perspectives

Many studies have proved that CNV is a common molecular

abnormality in the development of B-ALL (48). Current

evidence suggests that the CNV pattern of adult and pediatric

B-ALL has a different cytogenetic abnormality and pathological

significances. Moreover, growing evidence indicates that high

number and diverse CNVs observed are acquired in the process

of disease relapsing (37). This study mainly discussed the clinical

significance of the CNV spectrum, which has been well

recognized in patients with B-ALL. Among them, IKZF1,

CDKN2A/B, and PAX5 are the leading prevalent gene

alterations in B-ALL (47). Moreover, these CNVs in Ph-like

and Ph+ B-ALL remain equally frequent (68). However, some

research of gene prognostic value is inconsistent, which could be

because of difference in enrolled patients and treatment regimen.

Undoubtedly, CNVs guided the risk of relapsing and survival

outcome of both pediatric and adult B-ALL (84). Intensive

chemotherapy combined with allo-HSCT is expected to

overcome the adverse impact of CNVs. Perhaps, the

combination of intensive chemotherapy and allo-HSCT could

overcome the adverse impact of CNVs.

Typically, the risk stratification of B-ALL based on the CNV

profiles is largely limited to the pediatric population (36).

Currently, the IKZF1plus and UKALL-CNV classifier are

broadly promoted in the adult B-ALL classification (5, 37, 43).

Considering the different cytogenetic patterns of adults and

children, the risk system in adults warrants revision in future.

With the new exploration of new targets of rearrangement in B-

ALL (e.g., DUX4, ZNF384, and MEF2D), the survival risk

stratification system will be consistently updated in the future.

Besides, further research will help identify new prognostic

indicators and potential therapeutic targets.
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TABLE 2 Current stratification classifier of pediatric B-ALL CNV profile.

Classifier Group Content Survival

Moorman risk criteria
(UKALL2003) (34)

CNV Good Risk
(CNV-GR)

Isolated allelic losses of ETV6, PAX5, BTG1
ETV6 deletions with a single additional loss of BTG1, PAX5, CDKN2A/B; Absence of
any deletion of IKZF1/CDKN2A/B/PAX5/ETV6/BTG1/EBF1/RB1/PAR1.

MIGICCL Study (37)
DFS (82% vs. 33% vs.
38%, p <0.0001)
OS (65% vs. 5% vs. 44%,
P = 0.005)

CNV Poor Risk
(CNV-PR)

Any single deletion in IKZF1, RB1, PAR1 or EBF1; the combined loss of IKZF1/PAX5/
CDKN2A/B.

CNV Intermediate
Risk (CNV-IR)

Patients with none of those and/or another alteration profile.

Hamadeh L et al. (38) Gen-VGR Cyto-GR+ CNV-GR EFS (91% vs. 81% vs.
73% vs. 54%, P < 0.001)

Gen-GR Cyto-IR+CNV-GR; Cyto- GR+ CNV- IR

Gen-IR Cyto-IR+CNV-IR/CNV-PR; Cyto-GR+CNV-PR

Gen-PR Cyto-HR, regardless of CNV

IKZF1 plus (STANULLA M
et al.)

IKZF1plus present IKZF1 deletion + any deletion of CDKN2A, CDKN2B, PAX5 or PAR1(score IKplus1) 5-year EFS (53 ± 6% vs.
79 ± 5%, P < 0.001)

(81) IKZF1plus absent IKZF1plus absent (score IKplus0) Adult GIMEMA
LAL2116 protocol (82)
DFS (84.5% vs. 54.5%, P
= 0.026)
Adult GIMEMA
LAL1509 protocol (43)
DFS (0% vs. 60% P =
0.0008);
OS (20% vs. 69.5%, P =
0.0068)

MRplus
(40)

Good-risk MRplus0= score M0 + score IKplus0 Post-induction remission
response
(90.7% vs. 77.8% vs.
73.9%, p = 0.004)

Intermediate- risk MRplus1= scoreM1+score IKplus0 EFS (56% vs. 34% vs.
19%, p < 0.001)

Poor-risk MRplus2= score M1+ score IKplus1

Moorman Revised
(UKALL14)
(36)

Very high risk
(VHR)

CK, HoTr or JAK-STAT abnormalities OS
VHR vs. SR 27% vs.64%,
P<0.001
HR vs. SR 45% vs.64%, P
= 0.013
TKA vs. SR 57% vs. 64%,
P = 0.107

High risk
(HR)

KMT2A fusions (KMT2A-AFF1) EFS

Standard risk
(SR)

BCR-ABL1 and ABL class fusion VHR vs. SR 23% vs.58%,
P<0.001
HR vs. SR 37% vs.58%, P
= 0.008
TKA vs. SR 47% vs. 58%,
P = 0.005

Tyrosine kinase
activating
(TKA)

All other patients
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Annotation: Cyto-GR includes ETV6-RUNX1 and high hyperdiploidy (51-65 chromosomes); Cyto-PR includes t(9;22)(q34;q11.2)/BCR-ABL1, MLL translocations, near haploidy (<30
chromosomes), low hypodiploidy (30-39 chromosomes), intrachromosomal amplification of chromosome 21 (iAMP21), or t(17;19)(q23;p13)/HLF-TCF3; Cyto-IR includes all other cases
with abnormal or normal cytogenetics.
VER, very early relapsed; HR, Hazard Ratio.
The definition of CNV-GR, CNV-IR and CNV-PR was equal to the Moorman risk criteria content respectively. Gen-VGR, Gene very good risk; Gen-GR, gene good risk; Gen-IR, gene. Cyto
GR, cytogenetic good risk; Cyto IR, cytogenetic intermediate risk; Cyto PR, cytogenetic poor risk.
The definition of score M0 in MRplus refers to the Low genetic risk in Moorman risk criteria score. Score M1 refers to the High genetic risk and Intermediate genetic risk in Moorman risk
criteria score.
The definition of score IKplus0 and IKplus1 in MRplus refers to the IKZF1 plus absent and IKZF1 plus absent respectively. In Moorman Revised UKALL14, HoTr, low hypodiploidy/near
triploidy; CK, complex karyotype ≥5 chromosomal abnormalities.
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In conclusion, this review characterizes B-ALL–related copy

number events, which is valuable for precise patient subgroup

stratification. In addition, this study provides insights into the

new immunotherapy-based approaches and tailored treatment

strategies for patients with B-ALL. Nevertheless, additional

multicenter survival data will be needed for further verification

in the future.
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