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Abstract

Background We developed an artificial intelligence (Al)-
based endoscopic ultrasonography (EUS) system for diag-
nosing the invasion depth of early gastric cancer (EGC), and
we evaluated the performance of this system.

Methods A total of 8280 EUS images from 559 EGC cases
were collected from 11 institutions. Within this dataset, 3451
images (285 cases) from one institution were used as a devel-
opment dataset. The Al model consisted of segmentation
and classification steps, followed by the CycleGAN method
to bridge differences in EUS images captured by different
equipment. Al model performance was evaluated using an
internal validation dataset collected from the same institu-
tion as the development dataset (1726 images, 135 cases).
External validation was conducted using images collected
from the other 10 institutions (3103 images, 139 cases).
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Results The area under the curve (AUC) of the AI model
in the internal validation dataset was 0.870 (95% CI:
0.796-0.944). Regarding diagnostic performance, the accu-
racy/sensitivity/specificity values of the Al model, experts
(n=06), and nonexperts (n=38) were 82.2/63.4/90.4%,
81.9/66.3/88.7%, and 68.3/60.9/71.5%, respectively. The
AUC of the Al model in the external validation dataset was
0.815 (95% CI: 0.743-0.886). The accuracy/sensitivity/
specificity values of the Al model (74.1/73.1/75.0%) and
the real-time diagnoses of experts (75.5/79.1/72.2%) in the
external validation dataset were comparable.

Conclusions Our Al model demonstrated a diagnostic per-
formance equivalent to that of experts.
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Introduction

Gastric cancer is a leading cause of death in the Asian region
and ranks fifth in incidence and fourth in mortality world-
wide [1]. The treatment strategy for early gastric cancer (EGC)
patients is mainly determined by the depth of cancer invasion.
Specifically, lymph node metastasis is infrequent in EGC with
mucosal (M) or slight submucosal (SM) invasion (<500 pm
from the muscularis mucosae); thus, endoscopic submucosal
dissection (ESD) can be indicated as the treatment [2]. There-
fore, evaluating the depth of invasion into the SM layer is cru-
cial, and endoscopic ultrasonography (EUS) is widely used
for depth assessment.

EUS is used for the T staging of EGC, as it provides infor-
mation about the deeper layers of the gastric wall [3]. In par-
ticular, EUS using miniature probes is widely used to deter-
mine the invasion depth of EGC [4]. We have previously
reported a combination strategy consisting of conventional
endoscopy (CE) and EUS, in which EUS is performed only
on patients with suspected deep SM invasion during CE [5],
and we have also reported the clinical usefulness of EUS in
a prospective study [6]. Although the diagnostic accuracy of
EUS has been reported to be approximately 70-90% [5-12],
some studies have shown a high accuracy of over 90% [13,
14], while others have reported a low accuracy of less than
70% [15, 16], indicating inconsistency. This is attributed to
the fact that EUS depends heavily on the diagnostic skill of
the physician. To obtain an accurate diagnosis by EUS, suf-
ficient experience and knowledge of EUS images of gastric
cancer are necessary [17]. To compensate for this extensive
experience and knowledge, the development of computer-
aided diagnostic systems for EUS has been desired.

In recent years, artificial intelligence (Al) utilizing deep
learning [18] has made remarkable progress in the medical
field. In the field of gastric cancer, there have been several
reports of the use of Al for detecting lesions [19-21], differ-
entiating between cancer and noncancer [22, 23], delineating
lateral cancer margins [24, 25], and diagnosing the invasion
depth [26-28]. However, there have been no reports on the
application of Al in diagnostic EUS. The aim of this study
was to develop an Al system for diagnosing EGC using EUS
and to verify its effectiveness.

Methods

Study design and patients

We identified consecutive cases of EGC in which EUS was
performed using a miniature probe at Osaka University
between June 2009 and December 2019 to create a data-

set for developing and validating the Al system. The exclu-
sion criteria were as follows: (1) no endoscopic or surgical
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resection performed; (2) absence of evaluable images; (3)
images from second or subsequent EUS examinations of the
same lesion; (4) no evidence of cancer in the resected speci-
men; and (5) difficulty determining corresponding lesions in
cases of multiple lesions.

As an external validation cohort, we used EUS images
from EGC patients prospectively enrolled between May
2017 and January 2021 at 11 institutions from our previous
study (UMIN000025862) [6]. In that study, EGC patients
with suspected SM invasion on screening endoscopy were
enrolled, and the exclusion criteria were as follows: (1) pre-
vious gastrectomy or esophagectomy, (2) suspected local
recurrence, (3) suspected special histological type of EGC,
such as neuroendocrine carcinoma, GC with lymphoid
stroma, or GC of fundic gland type, (4) no expected treat-
ment within 8 weeks of diagnosis, and (5) serious complica-
tions or multiple active cancers for whom EGC treatment is
impractical. Among the enrolled patients, those who met the
following criteria were excluded from the present study: (1)
examination performed at Osaka University; (2) no endo-
scopic or surgical resection performed; and (3) inability to
collect EUS images. We excluded cases from Osaka Univer-
sity because some of them were included in the development
and internal validation datasets. EUS images of all eligible
cases were retrospectively collected and used for external
validation.

This study was approved by the ethics committee of
Osaka University (No. 20324 and No. 22028) and performed
in accordance with the Declaration of Helsinki guidelines.
The requirement of informed consent was waived for this
study, and all participants were given the opportunity to
refuse participation using an opt-out method on the website
of each institute.

EUS procedure and diagnosis

Following the diagnostic procedure by CE, EUS was
performed using miniature probes with a frequency
of 20 MHz or 12 MHz (UM-2R, frequency 12 MHz,
UM-3R, frequency 20 MHz, or UM-DP20-25R, fre-
quency 20 MHz: Olympus Corporation; P-2226-12,
frequency 12 MHz or P-2226-20, frequency 20 MHz:
Fujifilm Corporation) and an ultrasound system (EU-
M2000 or EU-MEI1 or EU-ME2: Olympus Corporation;
SP-702 or SP-900: Fujifilm Corporation). In principle,
the examination was ordinarily performed with a 20 MHz
probe; only when detailed observation was difficult, it
was performed with a 12 MHz probe. Lesions with the
third layer of the five separated layers showing invagina-
tion, thinning, or complete destruction were diagnosed
as SM2 (SM2; >500 um SM invasion from the muscu-
laris mucosae) or deeper. Otherwise, lesions were diag-
nosed as M-SM1 (SM1; <500 pm SM invasion from the
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muscularis mucosae) because the differentiation between
M and SM1 is difficult with EUS. As a result, all lesions
were classified as “M-SM1” or “SM2 or deeper.”

Construction of the dataset

The images collected at Osaka University were divided by
period and used as the development and internal valida-
tion datasets. We excluded images that depicted lesions
other than the target lesion, noisy or blurred images, and
images with annotations such as arrows and text. We used
all remaining images, including images that appeared to
have captured normal mucosa around the target lesion and
low-quality images that were inappropriate for diagnosis.

Subsequently, all EUS images in the development data-
set were scored by an expert gastroenterologist based on
the histological invasion depth. Due to substantial vari-
ability in EUS images regarding the suspicion of inva-
sion and their suitability for diagnosis, it is not feasible
to assess them with a simple binary value of presence
or absence of invasion. Therefore, we utilized a three-
vector scoring system as described below: quality score
(the quality of visualization, such as layer separation),
noninvasion score (the possibility of no SM invasion), and
invasion score (the possibility of SM invasion) (Fig. 1a,
b). Specifically, the quality was scored as O (favorable),
1 (intermediate), or 2 (poor) based on the quality of layer
separation (Fig. 1a). The possibility of SM invasion was
evaluated based on the degree of destruction of the sub-
mucosal layer as follows: no destruction of the submu-
cosal layer and no suspicion of invasion, M-SM1 (nonin-
vasion score: 2, invasion score: 0); slight destruction with
possible invasion, M-SM1 > SM2 or deeper (noninvasion
score: 1, invasion score: 0); moderate destruction with
suspected invasion, M-SM1 < SM2 or deeper (noninva-
sion score: 0, invasion score: 1); and severe destruction
with obvious invasion, SM2 or deeper (noninvasion score:
0, invasion score: 2) (Fig. 1b). However, in images where
the quality of layer separation was poor (quality score: 2),
it was difficult to evaluate invasion; therefore, the scores
were both set to 0 (noninvasion score: 0, invasion score:
0). All combinations of scores used in this study are
shown in Fig. lc. For some of the images in the develop-
ment dataset, we manually segmented the tumor, submu-
cosal layer, and muscular layer to train the segmentation
model. For the internal and external validation datasets,
we merely labeled the depth information of the lesions
without performing image-level labeling or segmentation.

Development of the AI system

We utilized PyTorch (https://pytorch.org/), a deep learn-
ing framework, to develop the Al system. In this study,
we constructed the Al system as a two-step diagnostic
system using convolutional neural networks (Fig. 1d).
The first step consisted of a segmentation model that
mapped the tumor, submucosal layer, and muscular layer
in EUS images. The network of the segmentation model
used UNET with ResNet34 as the backbone. The input
image was resized to a square of 512 x 512 pixels, and we
trained the model to maximize the Dice coefficient using
the Adam optimizer. To prevent overfitting, we trained the
model with data augmentation techniques such as Horizon-
talFlip, ShiftScaleRotate, and RandomBrightnessContrast.
The map images output from UNET were mixed with the
original EUS images at a ratio of 1.0:0.2 and then used as
input for the following step. The parameters of the training
procedure are given in Supplementary Table 1. The output
images from the first step were resized to 224 X 224 pixels
and then input into the second step.

The second step consisted of a classification model that
simultaneously output the quality score (0-2), noninvasion
score (0-2), and invasion score (0-2). The network of the
classification model used a pretrained EfficientNetV2-L
model. We removed the original fully connected layer and
added a new fully connected layer that contained a hid-
den layer of 128 nodes. For parameter tuning, we split the
development dataset into 5 groups and performed fivefold
cross-validation. All original layers of EfficientNetV2-
L and the new fully connected layer were trained. We
trained the model to maximize the mean AUC of the three
scores using the rectified Adam (RAdam) optimizer and
root mean square error as the loss function. To prevent
overfitting, we trained the model with data augmenta-
tion techniques such as HorizontalFlip, ShiftScaleRotate,
and RandomBrightnessContrast. The parameters of the
training procedure are given in Supplementary Table 2.
Finally, we used an ensemble model that consisted of 5
models obtained from the fivefold cross-validation as our
Al model. Averaging was used as the ensemble technique.
Based on the data exploration in the development dataset,
the maximum invasion score for each lesion was found to
particularly contribute to the depth of invasion (see Sup-
plementary Method; Supplementary Fig. 1). Therefore,
only the invasion score was used for depth of invasion
diagnosis, and the other two scores were not utilized. All
training and inference were performed in a local environ-
ment using an Intel Core i9-12900K as the central process-
ing unit and a GeForce RTX3090 as the graphics process-
ing unit.
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a Assessment of the layer separation b Assessment of submucosal invasion
Detail Quality score Detail Noninvasion Invasion
score score
Clear separation of the No destruction of SM layer 2 0
layered structures 0 (M-SM1)
(favorable)
Mild destruction of SM layer 1 0
= >
Moderate separation of (M-SM1>SM2 or deeper)
the layered structures 1
(intermediate) % Moderate destruction of SM 0 1
layer (M-SM1<SM2 or deeper)
Unclear separation of
layered structures 2 Advanced destruction of SM 0 2
(poor) | layer (SM2 or deeper)

¢ Assessment of the layer separation devl-;g:?egn:z:::set
Favorable (0) Intermediate (1) Poor (2) 9
< M-SM1 -
5% (0,2,0) (1,2,0)
= g M-SM1>
%é SM2 or deeper (0,1,0) (1,1,0) (2.0.,0)
29 | M-SM1< 0.0,1 1.0 1
ﬁ é SM2 or deeper ( ) ( )
3 .
aSMZordeeper (0.0,2) (1,0,2) \:—/

( Quality score , Noninvasion score , Invasion score )

d

EUS images of EGCs
— Segmentation CNN

i

!

|Training

1st step (Segmentation model)

Merged image

Manually segmented images (497 EUS images)

Fig. 1 An overview of the labeling of the dataset and the Al model
used in this study. a Scoring of layer separation (quality score),
which was classified into three categories: favorable (0), intermedi-
ate (1), and poor (2). b Scoring of submucosal invasion (noninvasion
and invasion scores), which was categorized into four groups based
on the degree of destruction of the submucosal layer. If the quality
score was 2, it was difficult to evaluate invasion, and both the non-
invasion and invasion scores were set to 0. ¢ All combinations of the
scores used in this study. All EUS images in the development data-
set were labeled with one of these tags. d Overview of the Al sys-
tem developed in this study. The EUS images were first input into
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Manually labeled images (3451 EUS images)

2nd step (Classification model)

Classifier CNN o - :
(5 models ensemble) P 0.961

Quality 1.012

score

Noninvasion

score 1.197
- fem
Invasion

Max invasion score

Training

Diagnosis

the segmentation model (st step), which segmented the tumor, sub-
mucosal layer, and muscular layer. The output images were merged
with the original images and then input into the classification model
(2nd step), which provided the quality score, noninvasion score, and
invasion score for each image. The scores were output for all images
of each lesion, and the highest invasion score determined whether
the lesion was classified as “M-SM1” or “SM2 or deeper”. M-SM1,
mucosal cancer or cancer in the submucosa <500 pm from the mus-
cularis mucosae; SM2, cancer in the submucosa >500 pm from the
muscularis mucosae; EUS, endoscopic ultrasonography; EGC, early
gastric cancer; CNN, convolutional neural network
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Visualization of regions of interest (ROIs) for the Al
model using class activation mapping (CAM)

To investigate the ROI of the developed Al model, we per-
formed visualization using CAM. In this study, we employed
the Eigen-CAM method of CAM. We obtained the feature
maps corresponding to the output of each class and weighted
the output value by multiplying it by the class output. We
obtained these maps for each of the 5 models in the ensem-
ble model and averaged them to create a visualization map
for the input image. We implemented these codes using the
PyTorch-grad-cam library for PyTorch (https://github.com/
jacobgil/pytorch-grad-cam).

Training of CycleGAN model

We addressed the domain shift problem of the external vali-
dation dataset by using CycleGAN [29]. We used all EUS
images derived from the EU-M2000 system (Olympus) in
the development and internal validation datasets as well as
all EUS images derived from the EU-ME1 and EU-ME2
systems (Olympus) in the external validation dataset as the
training dataset for CycleGAN. We trained the model for a
total of 30 epochs, with each epoch consisting of the full
set of images. We implemented these codes using PyTorch-
CycleGAN-and-pix2pix (https://github.com/junyanz/pytor
ch-CycleGAN-and-pix2pix).

Outcome measures

The primary outcome was the diagnostic performance of the
developed Al system for the classification of “M-SM1” and
“SM2 or deeper” per lesion. As a secondary outcome, we
compared the diagnostic performance of the Al system with
that of gastroenterologists. In the internal validation dataset,
we compared the diagnostic abilities of the Al system, six
expert gastroenterologists, and eight nonexpert gastroenter-
ologists. The expert gastroenterologists were those who met
all of the following criteria: (1) more than 10 years of experi-
ence in gastrointestinal endoscopy, (2) experience with more
than 30 cases of EUS for EGC, and (3) board certification as
a fellow of the Japan Gastroenterological Endoscopy Soci-
ety. Nonexpert gastroenterologists were those who did not
meet at least one of these requirements. For internal valida-
tion, both expert and nonexpert gastroenterologists reviewed
only all EUS images of each lesion and classified each lesion
as either “M-SM1” or “SM2 or deeper.” When the diagnosis
differed between images, the diagnosis was based on the
image that appeared to reflect the deepest area of the lesion.
For external validation, real-time EUS diagnoses by expert
gastroenterologists at each institution were used.

In the Al system, an inference process was performed for
all images of each lesion using the developed model, and the

maximum invasion score was considered the score for that
lesion. The diagnosis of “M-SM1” or “SM2 or deeper” was
determined based on whether the score exceeded a thresh-
old value. We calculated the diagnostic performance for all
values of the invasion score and adopted the point closest to
the performance of the experts as the threshold value.

Statistical analysis

We compared the performance of the Al system and gastro-
enterologists by calculating the accuracy, sensitivity, speci-
ficity, positive predictive value (PPV), and negative predic-
tive value (NPV). The 95% confidence intervals (Cls) of
those indicators were also calculated. Pearson’s chi-square
test and the McNemar test were used to compare the diag-
nostic performance among evaluators. The receiver oper-
ating characteristic (ROC) curve and area under the curve
(AUC) were used to represent the classification performance
of our model using Python. A p value less than 0.05 was
considered statistically significant. All statistical analyses
were performed using JMP Pro version 16 (SAS Institute,
Inc., Cary, NC, USA) and R version 4.2.1 (The R Founda-
tion for Statistical Computing, Vienna, Austria).

Results
Patient and lesion characteristics

Figure 2 shows the patient flowchart. A total of 285 patients
with 3451 images were obtained as the development data-
set, and all images were scored using the aforementioned
criteria. Among these, manual mapping of the mucosal
layer, submucosal layer, and muscular layer in 497 images
was performed for segmentation model training. A total of
180 patients with 1726 images were obtained as the inter-
nal validation dataset. Regarding the external validation
dataset, among all 180 patients enrolled in the previously
reported prospective study, we used 3103 EUS images from
139 patients. Of the 9130 collected EUS images, 851 (9.3%)
images met the exclusion criteria and were excluded. The
clinical characteristics of the development dataset, the inter-
nal validation dataset, and the external validation dataset
are presented in Supplementary Table 3. The proportions of
lesions with SM2 or deeper in the training, internal valida-
tion, and external validation datasets were 24%, 28%, and
48%, respectively.

Internal validation
We present examples of the output data of our AI model for

the internal validation dataset in Fig. 3a. We computed the
maximum noninvasion score and invasion score for each
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473 EGCs underwent EUS between June 2009 and
December 2019 at Osaka University

180 EGCs enrolled in a previously reported prospective study
conducted at 11 institutions, including Osaka University

Excluded
29 No endoscopic or surgical resection performed
15 Absence of evaluable images
6 Second or subsequent EUS examinations of the same lesion
2 No evidence of cancer in the resected specimen
1 Difficulty determining corresponding lesions in case of multiple lesions

Excluded
33 Examination performed at Osaka University
5 No endoscopic or surgical resection performed
3 Inability to collect EUS images

420 EGCs 139 EGCs
3889 EUS images from 285 EGCs 1895 EUS images from 135 EGCs 3346 EUS images from 139 EGCs
Excluded Excluded Excluded

438 images which met
the exclusion criteria

169 images which met
the exclusion criteria

243 images which met
the exclusion criteria

3451 EUS images for development dataset

!

497 Manually segmented images

!

Developing the 1t step Al model
(Segmentation model)

[~

Automatic
segmentation

|

Developing the 2" step Al model
(Classification model)

}

1726 EUS images for
internal validation dataset

3103 EUS images for
external validation dataset

Integrated Al model (1t and 29 step)

Comparison of the performance of the Al model and gastroenterologists

Fig. 2 Patient flowchart of this study. EUS, endoscopic ultrasonography; EGC, early gastric cancer

lesion and showed the top five lesion images for each. The
Al model appropriately segmented the layered structure and
recognized sites where SM invasion was suspected. We also
presented an example of our model in the Supplementary
Video.

We applied the Al model to all images in the internal
validation dataset (n=135). The diagnostic performance of
the AI model was sufficient, with an AUC of 0.870 (95% CI.:
0.796-0.944) (Fig. 3b). We also evaluated the diagnostic
performance of a model trained solely on raw images with-
out segmented images. The model trained with segmented
images showed a significantly higher AUC than the model
trained without them (0.870 vs. 0.759, p <0.001, DeLong
test). Furthermore, the AI model outperformed all nonex-
perts and demonstrated diagnostic performance equivalent
to that of experts (Fig. 3b). The proportion of patients with
SM2 or deeper invasion increased with an increasing inva-
sion score (Fig. 3¢). When the invasion score threshold was
set to 0.3, the accuracy, sensitivity, and specificity of the
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Al system, experts, and nonexperts were 82.2/63.4/90.4%,
81.9/66.3/88.7%, and 68.3/60.9/71.5%, respectively
(Table 1). The Al model showed significantly higher accu-
racy than nonexperts, while no significant difference was
observed between the Al model and experts. The diagnostic
performance for all values of the invasion score is shown in
Supplementary Table 4.

External validation and domain adaptation
with CycleGAN

We validated the performance of the Al model in the
external validation dataset. Details of the EUS images col-
lected from each institute, such as EUS equipment, num-
ber of lesions, and image size, are shown in Supplementary
Table 5. Initially, we applied the Al model directly to the
external validation dataset, but the AUC was insufficient, at
0.738 (95% CI: 0.655-0.821). One possible factor was the
difference in EUS equipment used between the internal and
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external validation datasets (Supplementary Table 3). In the
external validation dataset, most images were obtained with
the EU-MEI and EU-ME?2 systems, which were not used in
the development dataset, and the segmentation quality was
low for these images (Supplementary Fig. 2). To address this
issue, we used a style transfer method based on a genera-
tive adversarial network (GAN) called CycleGAN [29] to
convert images obtained using the EU-ME1 and EU-ME2
systems to the images obtained using the EU-M2000 system,
which accounted for the majority of the development dataset
(Fig. 4a). After application of the CycleGAN style transfer
method, the quality of segmentation was improved (Fig. 4b;
Supplementary Fig. 3). Subsequently, we evaluated the diag-
nostic performance of the AI model using composite images,
which combined the original EUS images and the segmented
images generated from the CycleGAN-based transformed
images (Fig. 4c). As a result, the AUC of the AI model sig-
nificantly increased to 0.815 (95% CI: 0.743-0.886) (0.815
vs. 0.738, p=0.003, DeLong test) (Fig. 4d). With a cutoff
value of 0.3 as in the internal validation dataset, the accu-
racy, sensitivity, and specificity of the Al model were 74.1%,
73.1%, and 75.0%, respectively, with no significant differ-
ence from the diagnosis of experts (p =0.88) (Table 2).

Diagnostic performance of the AI model
and combination diagnostic algorithm

We previously proposed a diagnostic algorithm that com-
bines CE and EUS and showed its usefulness (Fig. 5a). We
then investigated whether incorporating the Al model into
the combined algorithm would similarly result in improved
diagnostic performance in the external validation cohort.
The diagnostic accuracy using CE alone was 58.3%, whereas
this value increased to 76.3% when combined with expert
EUS-based diagnosis and 77.7% when combined with the
Al model for diagnosis by EUS. In both cases, the diagnos-
tic accuracy was significantly better than that of CE alone
(58.3% vs. 76.3%, p<0.001; 58.3% vs. 77.7%, p=0.002)
(Fig. 5b). We also evaluated the diagnostic accuracy by
histological type (Fig. 5¢). In the differentiated type, the
diagnostic accuracy using CE alone was 50.6%, whereas it
significantly increased to 72.4% when combined with the Al
model (50.6% vs. 72.4%, p=0.002), which was consistent
with previously reported results [6]. In the mixed and undif-
ferentiated types, there was no additional effect of combin-
ing CE with the Al model, consistent with a previous report

[6].

Discussion

In this study, we developed an Al-based EUS diagnostic sys-
tem for staging the invasion depth of EGC. EUS diagnosis of

early gastric cancer is not a simple task; however, by using
an Al model with a segmentation step and innovating our
labeling process, we demonstrated a diagnostic accuracy
comparable to that of experts. Furthermore, we showed that
our results were consistent with those of experts by using not
only an internal validation dataset but also an external vali-
dation dataset. To our knowledge, this is the first report of an
Al-based EUS diagnostic system for the T staging of EGC.

EUS for the diagnosis of EGC is crucial, especially in
terms of assessing the invasion depth. However, much expe-
rience is required to obtain appropriate skills for staging by
EUS [30]. In particular, proper identification of the layered
structure of the gastric wall and the lesion is required to
assess the invasion depth of EGC. Furthermore, the pres-
ence of ulcerative findings, which are characteristic of gas-
tric cancer, can also complicate the diagnosis [11]. Not all
gastroenterologists have sufficient opportunity to accumulate
experience in their clinical practice. Therefore, an Al system
that can assist in the diagnosis of EGC by EUS would be
extremely useful for filling the gap in experience.

One of the greatest challenges in constructing an EUS-
based diagnostic system is the labeling of training data. This
is because EUS images often include images of both the
lesion and the surrounding normal tissue. Furthermore, in
many cases, the areas with cancer invasion account for only
a small part of the entire EGC lesion; thus, it is also neces-
sary to evaluate whether EUS images accurately visualize
these areas of cancer invasion. Additionally, there are lesions
for which most images are of poor quality and unsuitable
for use in diagnosis. To overcome these difficulties, we
developed a three-vector scoring system including the qual-
ity score, noninvasion score, and invasion score. The three
scores exhibited a relationship of mutual exclusion, wherein
a high quality score (indicating unsuitability for diagnosis)
would result in low noninvasion and invasion scores (Sup-
plementary Fig. 1b). As a result, only images truly capable
of contributing to the diagnosis could be evaluated. In prin-
ciple, labeling should be performed based on pathological
depth as the gold standard. However, for the aforementioned
reasons, it was difficult to simply associate each image with
the corresponding pathological depth. Therefore, it was not
possible to avoid subjective labeling by gastroenterologists.
In the evaluation of the validation dataset, only the diag-
nostic accuracy for the depth of invasion of each lesion was
assessed, and the importance of the validity of image-level
labeling in this study was considered relatively low. One
approach to overcome these issues is a method called mul-
tiple-instance learning (MIL) [31], which is often adapted
to tasks such as whole-slide imaging. This method involves
training the Al model by collecting multiple images into a
single set and labeling them at the set level. Instead of labe-
ling at the image level, it is possible to label the entire set of
images for a case, allowing labeling to be performed without
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being influenced by the evaluator’s subjectivity. However,
MIL often requires many datasets, and as a strategy in the
context of limited training data, as in this study, the current
method was considered optimal.

A distinctive feature of this study is the use of a two-
step system consisting of a segmentation model and a
classification model. Feeding segmented images into a

@ Springer

subsequent image classifier is a common approach in the
field of image recognition [32]. In the interpretation of
EUS images, proper recognition of the wall structure is
crucial. Therefore, we created an independent model to
recognize the layered structure of the gastric wall. This
approach improved the diagnostic accuracy (Fig. 3b).
Identifying layers first and then evaluating the invasion
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«Fig. 3 Examples of output images from the Al model and diagnos-
tic performance of the Al model and gastroenterologists in the inter-
nal validation dataset. a Top five lesions based on the noninvasion
score (all lesions were histologically M-SM1) and top five lesions
based on the invasion score (all lesions were histologically SM2 or
deeper). For each image, the input EUS image, the segmentation map
inferred by the segmentation model, the ROI visualized by CAM, and
the output score are presented. These examples demonstrate that the
Al model accurately recognized the layer structure and destruction of
the submucosal layer. b ROC curve of the Al model for diagnosing
“M-SM1” and “SM2 or deeper.” The light blue area enclosed by dot-
ted lines indicates the 95% confidence interval for the AI model with
segmentation model. The Al model achieved an AUC of 0.870. With-
out applying the segmentation model, the AUC decreased to 0.759.
The diagnostic performance of experts and nonexperts is represented
by circles and triangles, respectively, with the red shape indicat-
ing the mean value for each group. ¢ Histogram of the highest inva-
sion score for each lesion plotted separately for “M-SM1”” and “SM2
or deeper”. The proportion of lesions with SM2 or deeper invasion
increased as the invasion score increased. M-SM1, mucosal cancer
or cancer in the submucosa <500 pm from the muscularis mucosae;
SM2, cancer in the submucosa >500 pm from the muscularis
mucosae; EUS, endoscopic ultrasonography; ROI, region of interest;
CAM, class activation mapping; ROC, receiver operating characteris-
tic; AUC, area under the curve

depth is the same process that gastroenterologists use to
diagnose patients based on EUS images, and this approach
replicates their process of thinking.

In this study, the diagnostic performance of the Al
model was improved by applying CycleGAN to the exter-
nal validation dataset. In the field of machine learning,
the decrease in performance that occurs when a trained Al
model is applied to another dataset is called the domain
shift problem [33]. We used a GAN-based technique to
overcome this problem. GANs are Al models where two
networks, the generator and the discriminator, compete to
create and identify realistic outputs, respectively. Cycle-
GAN, a variant of GAN, enables the conversion of images
from one style to another without matched pairs using a
parameter of cycle consistency, which checks that a con-
verted image can be converted back to its original form
[29]. In recent years, GAN-based techniques, including
CycleGAN, have been reported as a way to overcome this
domain shift problem [34], including in gastrointestinal
endoscopy [35]. In this study, the AI model developed at

Osaka University did not exhibit sufficient performance
in the external validation cohort in its original state. The
largest factor was considered the difference in the EUS
equipment used between the institutions, and good results
were achieved by learning the domain transformation of
images obtained using different EUS equipment. In prin-
ciple, it is ideal to address this issue by training the model
with images obtained from all kinds of EUS equipment,
but the images that can be obtained are often limited in
the medical field. Thus, a method such as CycleGAN can
be considered one potential approach.

Because EUS is a time-consuming procedure, it is
important to perform it only in appropriate cases. As pre-
viously mentioned, we advocate for performing EUS only
for patients with suspected deep SM invasion based on CE
findings [5, 6]. In this study, we have shown that incorporat-
ing the developed Al system into this strategy could achieve
diagnostic accuracy equivalent to that of experts (Fig. 5b).
The external validation dataset used in this study was limited
to patients with suspected deep SM invasion based on CE
and did not include cases with obvious mucosal cancer. This
was a very challenging condition for the Al model, but it is
noteworthy that it achieved diagnostic accuracy equivalent
to that of experts even with such a realistic dataset. Further-
more, in recent years, there have been multiple reports on
the use of Al to diagnose the invasion depth of gastric cancer
using CE [26-28]. Additionally, there have been reports on
Al in video analysis [36] and the beneficial collaboration
between Al and endoscopists [37]. Gong et al. [38] reported
a real-time diagnostic accuracy of 86.4% in a large-scale
prospective randomized trial. Thus, invasion depth diagno-
sis with Al for gastric cancer using CE has made important
advancements. On the other hand, EUS plays a complemen-
tary role by providing information that CE cannot obtain.
In the future, a collaboration between Al for CE and Al for
EUS is expected to achieve higher diagnostic performance.

This study had several limitations. First, the development
dataset was collected from a single institution. The qual-
ity of EUS images may vary among different institutions
and equipment, but those variations were not fully reflected
in our training data. However, we could overcome this
limitation. Second, although our Al system demonstrated

Table 1 Diagnostic performance of the developed Al model and gastroenterologists on the internal validation dataset

Diagnostic performance, % (95% CI)

Accuracy p value! Sensitivity Specificity PPV NPV
Developed Al model 82.2(74.7-88.3)  Reference  63.4 (46.9-77.9) 90.4 (82.6-95.5) 74.3(56.7-87.5) 85.0(76.5-91.4)
Average of experts (n=6) 81.9 0.95 66.3 88.7 72.8 85.7
Average of nonexperts (n=8)  68.3 <0.01 60.9 71.5 50.0 81.3

Al artificial intelligence, PPV positive predictive value, NPV negative predictive value

! The p value was calculated using Pearson’s chi-square test in comparison with the accuracy of the developed Al model
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Fig. 4 Domain adaptation of the external validation dataset using
CycleGAN and diagnostic performance of the AI model and experts
in the external validation dataset. a All EU-ME1/ME2-derived EUS
images from the external dataset and all EU-M2000-derived EUS
images from the internal dataset were used as the training data for
CycleGAN model. b Comparison of segmentation maps when apply-
ing the segmentation model to raw EUS images and CycleGAN-
transformed EUS images. The recognition accuracy was significantly
improved after CycleGAN transformation. ¢ The input EUS images
were merged with the segmentation images with/without Cycle-
GAN-based transformation and input into the classification model.
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d ROC curve of the Al model for diagnosing “M-SM1” and “SM2
or deeper”. The light blue area enclosed by dotted lines indicates the
95% confidence interval for the AI model with CycleGAN. The AUC
was 0.738 when CycleGAN was not applied, but it increased to 0.818
after applying CycleGAN. The red dots represent the EUS-based
diagnostic performance of the experts from each facility at the time
of case registration during the prospective study. ROC, receiver oper-
ating characteristic; AUC, area under the curve; M-SM1, mucosal
cancer or cancer in the submucosa <500 pm from the muscularis
mucosae; SM2, cancer in the submucosa >500 pm from the muscu-
laris mucosae
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Table 2 Diagnostic performance of the developed Al model and the real-time EUS diagnoses by experts on the external validation dataset
Evaluator Diagnostic performance (95% CI)

Accuracy p value! Sensitivity Specificity PPV NPV
Developed Al model 74.1 (66.0-81.2)  Reference 73.1(60.9-83.2)  75.0(63.4-84.5)  73.1(60.9-83.2)  75.0(63.4-84.5)
Experts (10 institutions) 75.5(67.5-82.4)  0.88 79.1(67.4-88.1)  72.2(60.4-82.1)  72.6 (60.9-82.4)  78.8 (67.0-87.9)

Al artificial intelligence, PPV positive predictive value, NPV negative predictive value

! The p value was calculated using the McNemar test

a b
Overall
100 x
*
*
*
I EGC l 80 T T
/\ g 60 '[
I CE | ‘ M-SM1 ‘ ’ SM2 low-/high-confidence ‘ > l
@©
5
§ 40+
EUS ‘ M-SM1 H >SM2 or inconclusive ‘
20
| Combination | | M-sm1 | >5M2 ol , :
« o N o
R
[ %X Co((\
9 \(j’,
c *: P<0.01, McNemar test
Differentited type Mixed type Undifferentiated type
100 3 100 100
——
80 “' JT 80 “V 80 \ “V \
SR I g 0 J g 60 \
> > >
g g g
8 40+ 1 a 404 8 40+
< < <
204 204 204
0 < © ' 0 © 0 < © '
¢ @ ‘&,-\oa";?e\ o ‘0‘,\@\‘;2;\\ ¢ ¢ @ ‘06\&“05\ o @-\@‘;"3\\
el R

Fig. 5 Diagnostic performance of a combined strategy using CE and
EUS in the external validation dataset. a Integrated diagnostic algo-
rithm combining CE and EUS. EUS was performed only for lesions
with suspected SM invasion based on CE and for diagnosing SM2 or
deeper invasion if also suspected on EUS. b Comparison of the diag-
nostic accuracy between gastroenterologists and the AI model for
all lesions when the combined strategy of CE and EUS was applied.
Experts’ real-time diagnoses at the time of case enrollment in the
prospective study were used. The combined strategy showed a sig-
nificantly improved accuracy compared to that of CE alone, and there

*: P<0.01, McNemar test

was no significant difference between the experts and the Al model. ¢
Comparison of the diagnostic performance of the combined strategy
among different histological types. The combined strategy was effec-
tive for the differentiated type, but no additional benefit of EUS was
observed for the mixed and undifferentiated types, which was consist-
ent with a previous report. M-SM1, mucosal cancer or cancer in the
submucosa <500 pm from the muscularis mucosae; SM2, cancer in
the submucosa >500 pm from the muscularis mucosae; CE, conven-
tional endoscopy; EUS, endoscopic ultrasonography
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sufficient diagnostic performance, the amount of training
data was relatively small compared to that used for gen-
eral deep learning tasks. However, notably, the AI model
achieved a diagnostic accuracy equivalent to that of experts
using only approximately 3400 images. Third, this study was
retrospective and used still images. Thus, whether this sys-
tem is useful in actual real-time diagnosis is unknown, and
further prospective studies are necessary. Fourth, we were
unable to demonstrate the usefulness of the system for undif-
ferentiated cancer. It has been reported that the diagnostic
accuracy of EUS for undifferentiated cancer is not sufficient
[39], which is considered a limitation of the EUS method.
However, it is possible that the Al system with an increase
in training data could overcome this issue, depending on
further research.

In conclusion, our Al-based EUS diagnostic system for
diagnosing the invasion depth of EGC demonstrated diag-
nostic performance equivalent to that of experts. This system
may improve diagnostic accuracy when assessing the depth
of invasion in EGC.
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