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Purpose: To study the efficacy of deep convolutional neural networks (DCNNs) to differ-
entiate pachychoroid from nonpachychoroid on en face optical coherence tomography
(OCT) images at the large choroidal vessel.

Methods: En face OCT images were collected from eyes with neovascular age-related
macular degeneration, polypoidal choroidal vasculopathy, and central serous chori-
oretinopathy. All images were prelabeled pachychoroid or nonpachychoroid based on
quantitative and qualitative criteria for choroidal morphology on multimodal imaging
by two retina specialists. In total, 1188 nonpachychoroid and 884 pachychoroid images
were used for training (80%) and validation (20%). Accuracy for identification of pachy-
choroid by DCNN models was analyzed. Trained models were tested on a test set
containing 79 nonpachychoroid and 93 pachychoroid images.

Results: The accuracy on the validation set was 94.1%, 93.2%, 94.7%, and 94.4% in
DenseNet, GoogLeNet, ResNet50, and Inception-v3, respectively. On a test set, each
model demonstrated accuracy of 80.2%, 83.1%, 89.5%, and 90.1% and an F1 score of
0.782, 0.824, 0.904, and 0.901, respectively.

Conclusions: DCNN models could classify pachychoroid and nonpachychoroid with
good performance on OCT en face images. Automated classification of pachychoroid
will be useful for tailored treatment of individual patients with exudative maculopathy.

Translational Relevance: En faceOCT images can be used by DCNN for classification of
pachychoroid.

Introduction

Pachychoroid is a condition characterized by patho-
logically dilated Haller vessels (i.e., pachyvessel), chori-
ocapillaris attenuation, and choroidal vascular hyper-
permeability.1–3 These features are well observed on B-
scans and en face images of optical coherence tomog-
raphy (OCT) and indocyanine green angiography.4,5
Recognizing pachychoroid is important in exudative
maculopathies because some have distinctive features
from typical age-relatedmacular degeneration (AMD).
These exudative maculopathies were often considered
AMD but can now be classified into the pachychoroid

category. The pattern of pachyvessel in pachychoroid
diseases can best be visualized with OCT en face using
long wavelengths such as swept-source or enhanced
depth spectral-domain images.4,6

The spectrum of pachychoroid disease encom-
passes central serous chorioretinopathy (CSC),
pachychoroid neovasculopathy (PNV), and thick-
choroid polypoidal choroidal vasculopathy (PCV).2,3,7
Previous studies have shown that the pattern of vessels
at the choroidal large vessel layer differs between
pachychoroid and nonpachychoroid eyes.1,4,6,8–12
Vascular densities are significantly increased in
diffusely distributed vessels with large diame-
ters in pachychoroid eyes, while only focal or no
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pachyvessels are observed in nonpachychoroid eyes.
These findings suggest that choroidal large vessel
morphology can be used to differentiate pachychoroid
and nonpachychoroid eyes.

Pachychoroid and typical AMD seem to differ in
clinical features, genetics, natural course, and respon-
siveness to treatment.13–16 Patients with pachychoroid
are usually younger.7,14,16,17 In addition, a lower injec-
tion rate with a longer injection-free period was
reported in PCV eyes with pachychoroid features.13,18
Similar results have been reported in PNV compared to
typical AMD.19 Therefore, pachychoroid identification
would be helpful in disease prognosis of a patient and
in planning tailored treatment options and follow-up
intervals.

As diagnosis of retinal diseases depends largely
on imaging, artificial intelligence (AI), especially its
subclassification deep learning, has been actively
applied in many areas of retina-associated disease,
including diabetic retinopathy and AMD.20–22 Deep
convolutional neural networks (DCNN) have been
applied to achieve automated grading of AMD using
color fundus images20 to detect specific lesions and
subtypes of AMD, as well as in decision making for
treatment.23–25 In the current study, we investigated the
performance of DCNNmodels for detection of pachy-
choroid using en face OCT images at the choroidal
large vessel layer level to investigate the potential of
automatic classification of pachychoroid. As this is the
first study to train DCNN models using en face OCT
images, the results of the current study will also provide
details of the DCNN models that could be useful in
future studies using en face OCT images.

Materials and Methods

The study was approved by the Institutional Review
Board of Seoul and Bucheon St. Mary’s Hospital
(HC19RESI0086 and HC21RASI0007), which waived
the need for written informed consent because of the
study’s retrospective design. The study was conducted
in accordance with the tenets of the Declaration of
Helsinki.

Subjects

En face OCT images of patients with exudative
macular diseases, including typical AMD, PCV, PNV,
and CSC, were collected from consecutive patients
who visited Seoul St. Mary’s Hospital (The Catholic
University of Korea, Republic of Korea) betweenApril
2016 and July 2020. All patients underwent high-

definition OCT (DRI OCT Triton; Topcon Corpo-
ration, Tokyo, Japan) with enhanced depth imaging,
fluorescent angiography (Optos California P200DTx;
Optos, Dunfermline, United Kingdom), and indocya-
nine green angiography (ICGA; Optos California
P200DTx) at baseline to confirm the diagnosis.

All images were prelabeled as pachychoroid or
nonpachychoroid. Confirmation of pachychoroid
strictly followed the quantitative and qualitative
definition described below by two retina special-
ists to avoid controversies. The criteria were based
on thorough review of previous publications and
comprised7: (1) subfoveal choroidal thickness (SFCT)
≥ 300 μm and (2) presence of attenuation of the
inner choroid with dilated choroidal vessels (pachyves-
sel) under the diseased area on OCT B-scans. (3)
Presence of pachydrusen on fundus photography
and OCT and choroidal vascular hyperpermeabil-
ity on ICGA were the optional features used to
confirm pachychoroid. We specified the quantita-
tive value of SFCT and utilized multimodal images
in the definition of pachychoroid to minimize the
ambiguity of distinguishing pachychoroid from
nonpachychoroid.

The exclusion criteria for this study were as follows:
(1) choroidal neovascularization other than AMD
(e.g., punctate inner choroidopathy, vitelliform dystro-
phy); (2) history of previous treatment or scar at the
retina (e.g., photodynamic therapy, laser photocoag-
ulation, intraocular injections, periocular injections,
and systemic injections); (3) high myopia ( > −6.00
diopters or axial length > 26 mm); (4) poor image
quality (signal strength index < 40); and (5) large
subretinal/preretinal hemorrhage or pigment epithelial
detachment that could obscure the choroidal vascular
image.

Image Preparation, Model Training, and
Performance Metrics

Assessment of choroidal morphology was largely
based on our previous studies.4,13 Volume data of the
posterior pole were acquired over a 12 × 9 mm2 area
containing 512 × 256 A-scans using OCT. En face
image acquisition was subjected to automated segmen-
tation and topology normalization using IMAGEnet6
software (version 1.19.11030; Topcon Corporation,
Tokyo, Japan), with the Bruch’s membrane used as
a reference plane for “flattening” operation. En face
images of choroidal large vessel layer used in this study
were obtained at 50% of the total choroidal thick-
ness for analysis of the large choroidal vessel layer. All
images were saved as JPEG files.
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Figure 1. Training, internal validation, and external validation of deep convolutional neural network (DCNN)models. En face optical coher-
ence tomographic (OCT) images were obtained at the level of total choroidal thickness for analysis of the large choroidal vessel layer. The
images were labeled either “pachychoroid” or “nonpachychoroid” by two independent graders. Each en face OCT image was scaled to 224
× 224 × 3 pixels for DCNN training and trained using DenseNet, GoogLeNet, ResNet50, and Inception-v3 architectures. From the dataset,
80% of the images were used for training, and the remaining 20% was used for validation. Trained DCNNmodels were externally validated
using a test set.

Training and validation of DCNN models were
performed using MATLAB R2020a (MathWorks,
Inc., Natick, MA, USA). Among various pretrained
DCNN architectures, this study included DenseNet,
GoogLeNet, ResNet50, and Inception-v3 for trans-
fer learning. DCNN is a neural network that can
process three-dimentional data of color images and
composed of convolution layer and pooling layer. A
brief description for each DCNN architecture used in
this study follows: (1) DenseNet utilizes dense connec-
tions between layers, through Dense Blocks, all layers
with matching feature-map sizes are connected directly
with each other; (2) GoogLeNet is a 22-layer CNN
which is a variant of the Inception, in which stack
modules or blocks within which are convolutional
layers; (3) ResNet50 also stacks blocks and consists of
five stages each with a convolution and Identity block;
(4) Inception-v3 is an architecture from the Inception
family with several improvements (Fig. 1). Selection of
DCNN architectures was based on the top-5 error rate
reported previously in image classification and applica-
tion in ophthalmologic images.26,27

During the training process, each en faceOCT image
was scaled to 224 × 224 × 3 pixels. The input images
were labeled as either “pachychoroid” or “nonpachy-
choroid” by two independent graders experienced in
retinal imaging. In total, 1267 nonpachychoroid and

977 pachychoroid images were collected. Randomly
selected 79 nonpachychoroid and 93 pachychoroid
images were used as a test set. Rule of thumb was
not applied in distribution of test set to use more
data on model training and validation. The rest of
the images were trained with 80% of the dataset,
which was randomly selected: 950 nonpachychoroid
and 707 pachychoroid images. The remaining 20% was
used as the validation set: 238 nonpachychoroid and
177 pachychoroid images. The performance of trained
models was tested on a test set.

All experiments were conducted on a computer
equipped with NVIDIA RTX 2060 and Intel i7 CPUs.
Eachmodel was trained for 30 epochs with amaximum
of 1320 iterations. The performance of each model was
evaluated for accuracy, precision, recall (sensitivity),
specificity, F1 score, and kappa score.

Statistics

Statistical analysis was performed using a commer-
cial program (Statistical Package for the Social Sciences
version 22.0.1 for Windows; IBM Corp., Armonk,
NY, USA). Independent t-test was used to compare
demographics between groups, and the chi-square test
was used to compare categorical variables. Accuracy,
precision, recall, specificity, and F1 score were
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Table 1. Characteristics of Each Dataset

Nonpachychoroid Pachychoroid P-Value

Dataset for training and validation
Image numbers (n) 1188 884
Age, years (mean ± SD) 73.78 ± 8.83 61.59 ± 12.24 <0.001
Gender (% male) 50.19% 70.49% <0.001
Subfoveal choroidal thickness, μm (mean ± SD) 135.22 ± 64.23 405.40 ± 93.86 <0.001

Diagnosis
CSC/PNV/PCV/AMD (n, %) 0(0)/0(0)/332(28)/855(72) 335(38)/214(24)/335(38)/0(0)

Test set
Image numbers 79 93
Age, years (mean ± SD) 73.90 ± 10.44 59.62 ± 12.5 <0.001
Gender (% male) 41.94% 70.76% 0.001
Subfoveal choroidal thickness, μm (mean ± SD) 150.27 ± 76.52 417.46 ± 106.43 <0.001

Diagnosis
CSC/PNV/PCV/AMD (n, %) 0(0)/0(0)/22(28)/57(72) 35(38)/23(24)/35(38)/0

P-values for comparison between dataset and test set
Age 0.93 0.208
Gender 0.211 0.963
Subfoveal choroidal thickness, μm 0.144 0.248

SD: standard deviation; CSC: central serous chorioretinopathy; PNV: pachychoroid neovasculopathy; PCV: polypoidal
choroidal vasculopathy; AMD: age-related macular degeneration.

calculated for each model. The kappa score mean
and standard deviation (SD) were used to determine
the agreement between truth and each model.

Results

Characteristics of the Subjects

In total, 370 images of CSC, 237 images of PNV, 370
images of PCV, and 912 images of typical AMD were
used for training/validation and test. For the dataset
used in training and validation, the mean age in the
nonpachychoroid and pachychoroid group was 73.78
± 8.83 and 61.59 ± 12.24, respectively (P < 0.001).
Proportion of male was 50.19% and 70.49%, respec-
tively (P < 0.001). For the test set, the mean age was
73.90 ± 10.44 and 59.62 ± 12.5 (P < 0.001) and the
male percentage was 41.94% and 70.76% (P = 0.001)
for nonpachychoroid and pachychoroid, respectively.
No statistical difference was observed in mean age, sex
distribution, or subfoveal choroidal thickness between
the dataset and test set (all P ≥ 0.144). Clinical charac-
teristics of the subjects are summarized in Table 1.

Performance of the DCNNModels

The final accuracy on the validation set was 94.1%,
93.2%, 94.7%, and 94.4% in DenseNet, GoogLeNet,

ResNet50, and Inception-v3, respectively (Fig. 2). The
time spent in model training was 171, 9, 21, and 37
minutes, respectively.

In a test set, themodels demonstrated 80.2%, 83.1%,
89.5%, and 90.1% accuracy, respectively. The precision
of the models was 0.9683, 0.9444, 0.8947, and 0.9872
and recall was 0.6559, 0.7312, 0.9140, and 0.8280,
respectively. The F1 score of each model was 0.7821,
0.8242, 0.9043, and 0.9006, respectively. The accuracy,
precision, recall, specificity, F1 score, and kappa values
of each model are summarized in Table 2.

Analysis of Prediction Errors of DCNNModels

In the test set, one nonpachychoroid image was
misclassified as pachychoroid, and 11 pachychoroid
images were misclassified as nonpachychoroid by all
four models. The images of the nonpachychoroid eye
that was misclassified as pachychoroid were from a 64-
year-old female with PCV (Fig. 3). Although the image
was labeled as nonpachychoroid due to a subfoveal
choroidal thickness of 219 μm, OCT B-scans of the
eye revealed dilated vessels under the lesion, and en
face OCT revealed increased vascular density with
diffuse distribution of dilated large vessels. For pachy-
choroid eyes that were misclassified as nonpachy-
choroid, all eyes were diagnosed with PCV, and the
mean subfoveal choroidal thickness was 303.82 ± 5.46
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Figure 2. Internal validation performances of themodels. The final accuracy of the 20% validation set was 94.1%, 93.2%, 94.7%, and 94.4%
in DenseNet, GoogLeNet, ResNet50, and Inception-v3, respectively.

Table 2. Classification Performance of the Deep Convolutional Neural Network Models

DenseNet GoogLeNet ResNet50 Inception-v3

Accuracy 0.8023 0.8314 0.8953 0.9012
Precision 0.9683 0.9444 0.8947 0.9872
Recall (sensitivity) 0.6559 0.7312 0.9140 0.8280
Specificity 0.9747 0.9494 0.8734 0.9873
F1 score 0.7821 0.8242 0.9043 0.9006
Kappa-mean 0.6130 0.6670 0.7920 0.8040
Kappa-SD 0.0560 0.0550 0.0450 0.0440

SD: standard deviation, F1 score = 2× (precision × recall)/(precision + recall).

(range: 300–315 μm). Figure 4 shows a representative
case of a misclassified pachychoroid image.

Discussion

Pachychoroid should be distinguished from other
causes of exudative maculopathy, especially typical
AMD, because these two conditions differ in clinical
features, genetics, natural course, and responsiveness
to treatment.13–16 In the current study, we evaluated
the performance of several DCNN models trained to

classify nonpachychoroid and pachychoroid using en
face OCT images. The results demonstrated that the
DCNN model could identify pachychoroid eyes with
good performance, and certain DCNN architectures
showed better performance than others. Analysis of
errors in classification revealed that most occurred in
PCV eyes with equivocal features.

Description of vascular patterns at the choroidal
large vessel level was initiated by Dansingani et
al.1 They demonstrated that diseases of pachy-
choroid entities share morphologic findings in the
choroid, including increased thickness and dilated
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Figure 3. A representative case of a nonpachychoroid eye misclassified as pachychoroid. A. Optical coherence tomography (OCT) B-scan
demonstrates a subfoveal choroidal thickness of 219 μm, but dilated Haller’s vessels are seen under the lesion (asterisks). B & C. Indocyanine
green angiography and fluorescein angiography reveal polypoidal lesion and leakage, confirming the diagnosis of polypoidal choroidal
vasculopathy. D. En faceOCT shows increased vascular density with diffuse distribution of Haller’s vessels, whichmight have causedmisclas-
sification of this eye as pachychoroid.

Figure 4. A representative case of a pachychoroid eye misclassified as nonpachychoroid. A. Optical coherence tomography (OCT) B-scan
demonstrates subfoveal choroidal thickness of 300 μm, diffusely dilated Haller’s vessels (asterisks), and attenuation of choriocapillaris +
Sattler’s layer under the lesion (arrow). B & C. Indocyanine green angiography and fluorescein angiography reveal polypoidal lesion and
leakage, confirming thediagnosis of polypoidal choroidal vasculopathy.D.Although en faceOCTshowsdiffusedistributionofHaller’s vessels,
the diameter of the vessels does not appear increased, which might have caused misclassification of this eye as nonpachychoroid.

outer choroidal vessels seen on OCT en face. Numer-
ous studies have confirmed the peculiar morphology
of the choroidal vasculature of pachychoroid eyes,
especially based on en face OCT images.1,4,6,28–30 Ng
et al.6 revealed that different exudative maculopathies
show distinctive choroidal vasculature morphology
and can be classified accordingly. Vascular density had
a greater diffuse pattern of dilated vessels in pachy-
choroid eyes compared to nonpachychoroid AMD
eyes in quantitative analysis.4,30 These morphologic

differences can serve as features that could distin-
guish pachychoroid from nonpachychoroid eyes for
DCNNs.

In this study, DCNN architectures of DenseNet,
GoogLeNet, ResNet50, and Inception-v3 were trained
using en face OCT images that represent features of
the choroidal large vessel level in each disease. The
results revealed an accuracy of 80.2% to 90.1% with
the independent test set. In our previous study, we
demonstrated the feasibility of an auto-AI platform
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trained with ultrawidefield ICGA in identification of
pachychoroid.11 The precision and recall of the model
was up to 89.19%. DCNN models trained with en
face OCT images in the current study showed compa-
rable results in terms of precision compared to the
auto-AI platform models trained using ultrawidefield
ICGA images. The model trained with ResNet50 in
this study revealed better performance in both preci-
sion and recall.

There was some difference in performance of
models trained with different DCNN architectures.
The F1 scores of ResNet50 and Inception-v3 were
higher than those of DenseNet and GoogLeNet. This
may be due to their inherent capacity for image classi-
fication, as demonstrated with lower error rates in
previous ImageNet Large Scale Visual Recognition
Challenges27, or the feasibility of the architecture for
en face OCT images. The performances of ResNet50
and Inception-v3 were not only better, but the time
consumed in training was fairly short relative to that of
DenseNet. This result may assist in selection of DCNN
architecture in training en face OCT images for future
studies.

For all DCNN models, the final accuracies for
validation were higher compared to the accuracies
yielded from the test set. This suggests the possibility
of overfitting the models. To maximize the size of the
training data, we included images from both eyes if
the disease was bilateral, and this might have caused
differences in internal validation of datasets and exter-
nal validation using test sets. Nonetheless, the DCNN
models demonstrated good performance, as demon-
strated by high precision, recall, specificity, F1 score,
and kappa score on external validation, especially with
ResNet50 and Inception-v3.

Analysis of the prediction errors revealed that
misclassifications are likely to occur in equivocal cases,
and a large proportion of these equivocal cases may
contain PCV. Subfoveal choroidal thickness shows
bimodal distribution with two peaks around 170 μm
and 360 μm, and this suggests inhomogeneity of the
disease in terms of choroidal morphology.17 Further
studies are needed to support this hypothesis by
showing different characteristics of PCV eyes with
thin and thick choroid.4,6,13,15 Most of the misclas-
sification occurred in eyes with a subfoveal choroidal
thickness between 300 and 315 μm. This can be inter-
preted as decreased capacity of the model to differen-
tiate eyes in an overlapping range between nonpachy-
choroid and pachychoroid. Alternatively, it may also
be explained by the possible existence of PCV entities
with overlapping characteristics of thin and thick
choroid, a hypothesis that requires further studies for
support.

Several limitations of this study should be consid-
ered. First, there might be a selection bias caused by
omitting images with poor quality or other blocking
materials. Eyes with large pigment epithelial detach-
ment or hemorrhage should be treated carefully, but
DCNNmodels trained in this study cannot distinguish
such eyes. Second, the definition of pachychoroid may
be controversial. Borrelli et al.31 reported that15.4% of
neovascular AMD subjects were re-evaluated as pachy-
choroid. We minimized the controversy by specifying
the quantitative value of SFCT and exploring multi-
modal images by two graders in setting the ground
truth. Nonetheless, this can be a clear limitation of
the current study since there can be overlap of SFCT
between pachychoroid and nonpachychoroid eyes.32
Third, there was a significant difference in age and
sex distribution between pachychoroid and nonpachy-
choroid eyes both in the dataset and test set. However,
we believe this will not significantly affect clinical appli-
cation of themodels since younger age andmale promi-
nence are well-established features of pachychoroid
and also should be observed in real life.6,17 Further
research involving en face images from many OCT
machines and more retinal specialists are warranted to
validate the results of the current investigation.

In conclusion, DCNN models could distinguish
pachychoroid from nonpachychoroid with good
performance on OCT en face images. To the best of
our knowledge, this is the first AI article that has dealt
with en faceOCT images and implies that OCT images
of not only B-scans, but also en face scans can be used
in automatizing disease classification. Furthermore,
automated classification of pachychoroid will improve
treatment of patients with exudative maculopathies by
assisting in tailored treatment of each diseased eye.
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