
Genome analysis

ntJoin: Fast and lightweight assembly-guided

scaffolding using minimizer graphs

Lauren Coombe*, Vladimir Nikoli�c, Justin Chu, Inanc Birol and René L. Warren

Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on January 13, 2020; revised on March 23, 2020; editorial decision on April 10, 2020; accepted on April 14, 2020

Abstract

Summary: The ability to generate high-quality genome sequences is cornerstone to modern biological research.
Even with recent advancements in sequencing technologies, many genome assemblies are still not achieving
reference-grade. Here, we introduce ntJoin, a tool that leverages structural synteny between a draft assembly and
reference sequence(s) to contiguate and correct the former with respect to the latter. Instead of alignments, ntJoin
uses a lightweight mapping approach based on a graph data structure generated from ordered minimizer sketches.
The tool can be used in a variety of different applications, including improving a draft assembly with a reference-
grade genome, a short-read assembly with a draft long-read assembly and a draft assembly with an assembly from
a closely related species. When scaffolding a human short-read assembly using the reference human genome or a
long-read assembly, ntJoin improves the NGA50 length 23- and 13-fold, respectively, in under 13 m, using <11 GB
of RAM. Compared to existing reference-guided scaffolders, ntJoin generates highly contiguous assemblies faster
and using less memory.

Availability and implementation: ntJoin is written in Cþþ and Python and is freely available at https://github.com/
bcgsc/ntjoin.

Contact: lcoombe@bcgsc.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Producing highly contiguous assemblies enables important down-
stream research such as genetic association studies and cis-regula-
tory element analysis (Rice and Green, 2019). However, while the
advancement of single molecule sequencing data such as linked
reads and long reads has shown great promise in improving de novo
genome assembly quality (Shafin et al., 2019; Weisenfeld et al.,
2017), most draft assemblies are still not achieving chromosome-
scale completeness.

For some draft genomes, more contiguous assemblies may be
available for a different individual of the same species or even a
closely related species. In this case, sequence synteny between the
assemblies can be leveraged for assembly-guided scaffolding. For ex-
ample, while long-read assemblies can generate contiguous draft
genomes, the high error rates of the reads negatively impact the base
quality, hindering gene annotation (Watson and Warr, 2019).
Polishing using short reads is often used to improve the base-pair ac-
curacy of the assemblies (Rice and Green, 2019; Warren et al.,
2019; Watson and Warr, 2019). An alternative approach to this pol-
ishing step is to assemble short reads separately and scaffold the
short-read assembly using a long-read assembly, producing an as-
sembly on par with the contiguity and structure of the long-read as-
sembly and the base-pair accuracy of the short-read assembly.

Existing reference-guided scaffolders such as Ragout
(Kolmogorov et al., 2018) and Ragoo (Alonge et al., 2019) rely on
alignments of the draft assembly to a reference assembly; Ragout
utilizes Progressive Cactus (Armstrong et al., 2019) for large
genomes, while Ragoo depends on minimap2 (Li, 2018) for the
task. The use of minimizer sketches in tools such as minimap2 is
very effective in compactly representing genome sequences. Instead
of storing every word of size k (k-mer) from the input sequences,
only a chosen set of k-mers or hash values (‘minimizers’) are
retained, greatly reducing the computational cost of sequence data
storage and manipulation (Roberts et al., 2004).

Here, we introduce ntJoin, an assembly-guided scaffolder, which
uses a lightweight, alignment-free mapping strategy in lieu of align-
ments to quickly contiguate a target assembly using one or more
references.

2 Materials and methods

Given the input target and reference sequence(s) in fasta format,
ntJoin first creates an ordered minimizer sketch for each of the sup-
plied sets of sequences, as described previously (Roberts et al., 2004)
(Supplementary Figs S1 and S2). ntJoin then uses the ordered minim-
izer sketches from each input to build a single undirected graph that

VC The Author(s) 2020. Published by Oxford University Press. 3885

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 36(12), 2020, 3885–3887

doi: 10.1093/bioinformatics/btaa253

Advance Access Publication Date: 20 April 2020

Applications Note

http://orcid.org/0000-0002-9890-2293
https://github.com/bcgsc/ntjoin
https://github.com/bcgsc/ntjoin
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa253#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa253#supplementary-data
https://academic.oup.com/


facilitates a lightweight mapping between them. In this graph, each
node is a minimizer, and edges are created between minimizers that
are adjacent in at least one of the ordered sketches. The edge weight
is a measure that is used to place more emphasis on connections in
certain input assemblies. Edge weights represent the sum of the user-
specified weights of each input that supports that edge.

The graph is then subjected to a series of filtering steps. First, a
global edge weight threshold is applied. Next, branching nodes
(nodes with degree > 2) are identified, and incident edges are filtered
with an increasing edge weight threshold until the degree of that
node drops to <3. Generally, the weight of the reference is higher
than the target assembly, causing these edges to be prioritized and
results in fitting the target assembly to the reference structure. The
filtering of incident edges of branch nodes results in the graph being
a set of connected components, each of which is a linear path of
minimizer nodes. The sequences of minimizers in the linear paths
are then translated to ordered and oriented contig paths, which de-
scribe the final output scaffolds (Supplementary Figs S1–S3). This
graph-based method allows the algorithm to perform misassembly
correction in addition to scaffolding the input contigs based on the
input reference assembly, as contigs can be broken at putative misas-
semblies in the default mode. If the user does not want the input
contigs to be cut when fitting the reference sequence, the option
‘no_cut¼True’ can be specified.

The final, scaffolded target assembly in fasta format is the main
output of ntJoin. In addition, the details of how the target assembly
was scaffolded including orientation, order and gap sizes are
described in an output ‘path’ file, and, optionally, an agp file (option
‘agp¼True’). Finally, the minimizer graph is output in ‘dot’ format,
which gives all nodes and edges in the graph as well as the edge
weights indicating the level of assembly support.

Each assembly was evaluated for contiguity and correctness
using QUAST (v5.0.2;–scaffold-gap-max-size 100 000 –large)
(Mikheenko et al., 2018). This scaffold gap parameter setting results
in gap size inconsistencies over 100 kb being classified as ‘extensive
misassemblies’.

Detailed methods are available online.

3 Results and discussion

We first tested ntJoin using various draft and reference-grade
Caenorhabditis elegans and Homo sapiens assemblies
(Supplementary Tables S1 and S2). Compared to Ragout and
Ragoo, ntJoin generally produces assemblies with a higher NGA50
length (length that captures at least 50% of the genome, using
lengths of alignments to the reference instead of contig lengths), and
comparable or fewer misassemblies (Fig. 1; Supplementary Figs S4–
S10; Supplementary Tables S3–S11). Notably, ntJoin improves
assemblies with initial contiguity in the kilobase range to reach meg-
abase scale (NGA50 increases from 26.9 kb to 2.3 Mbp and 19.8 kb
to 50.3 Mbp, for C.elegans and H.sapiens short-read assemblies, re-
spectively, Supplementary Figs S4 and S6), while reducing the misas-
semblies by over a third (33.5 and 61.5%, respectively). This
highlights the potential of ntJoin in improving fragmented draft
assemblies. Compared to Ragout, ntJoin achieved NGA50 values
1.1- to 2-fold higher for the short-read ABySS assemblies tested, al-
though Ragout did scaffold a long-read Shasta assembly to a 1.2-
fold higher NGA50 (Fig. 1; Supplementary Figs S4 and S6)
(Jackman et al., 2017; Shafin et al., 2019). However, the Progressive
Cactus alignment required for Ragout was very computationally ex-
pensive, running for over four days for all human runs and using
over 115 GB of RAM, compared to the human ntJoin runs, which
finished in under 13 min and used <11 GB of RAM. ntJoin was also
faster than Ragoo in all tests, from 1.4 times faster for the Shasta as-
sembly up to 35.8 times faster for the more fragmented H.sapiens
ABySS assembly (Fig. 1; Supplementary Figs S4 and S6). ntJoin pla-
ces 86.3–99.3% of the input assembly in scaffolds, a proportion that
is very similar to both Ragout and Ragoo. Sequences may not be
placed in scaffolds if they are too short as compared to the user-set
window size or if the chosen reference is too divergent. While Ragoo
uses a constant gap size between joined contigs (default 100 bp),

ntJoin and Ragout estimate the gap sizes based on the reference, as
evident from the total gap sizes in the Ragoo scaffolded assemblies
being significantly smaller than both ntJoin and Ragout
(Supplementary Tables S4–S15).

ntJoin can also improve draft assemblies when contiguous
assemblies are available for the same species. This would be the typ-
ical use case in a project that uses multiple sequencing platforms for
hybrid assembly. In Figure 1, a short-read ABySS assembly was scaf-
folded using a long-read Shasta (Shafin et al., 2019) assembly. By
retaining joins unique to the long and short-read sequences, ntJoin
achieves an NGA50 higher than the baseline Shasta assembly. ntJoin
provides an alternative assembly pipeline, where the structure of a
long-read assembly informs the placement of short-read assembly
sequences, precluding the need for polishing a long-read assembly
with short reads. This approach can produce assemblies with high
contiguity and base accuracy—particularly important for down-
stream genome annotation (Supplementary Tables S12–S15). On
this data, neither Ragout nor Ragoo yield assemblies with a similarly
high NGA50 length, and both require more time and memory com-
pared with ntJoin.

The ntJoin approach also extends to scaffolding assemblies of
different species, as demonstrated by scaffolding the saltwater and
gharial crocodile assemblies using the American alligator genome as
reference (Supplementary Tables S16 and S17). In our tests, the
NG50 length of the crocodile assemblies increased to 14.44 and
12.92 Mbp for saltwater and gharial crocodiles (baseline
NG50¼0.14 and 0.07 Mbp), with a corresponding increase in
BUSCO (Sim~ao et al., 2015) gene completeness of 2.6 and 9.5%, re-
spectively. This demonstrates that ntJoin can still leverage synteny
between these target and reference assemblies despite the species
having diverged around 80 million years ago (Delsuc et al., 2018).

There is some inherent reference bias in any reference-based as-
sembly tool, and the user must consider this when designing their ex-
periment, including in choosing the reference assembly. Here, we
demonstrate the utility of ntJoin in fitting an input target assembly
to the structure of the reference, which corrects misassemblies but
also potentially breaks certain large structural variants. Similarly,
the comparator tools were run in modes which can also cut the input
contigs. While this mode will not break all structural variations
(Supplementary Table S18), to avoid breaking/cutting the input con-
tigs the ntJoin parameter ‘no_cut¼True’ can be specified, which

Fig. 1. Comparing (a) the contiguity, correctness and (b) benchmarking results of

ntJoin (orange), Ragoo (blue) and Ragout (green) runs on various H.sapiens

(NA12878) assemblies on (a) linear and (b) log–log scale. The reference genomes

are the human reference genome (‘Ref’) and an ntEdit-polished Shasta assembly

(‘Shasta’). The target assemblies being improved are a NA12878 ABySS assembly

scaffolded with MPET data (‘ABySS’), and an ntEdit-polished Shasta assembly

(‘Shasta’). The ‘Baseline’ statistics are shown for the corresponding target assemblies

prior to scaffolding in each panel of (a)

3886 L.Coombe et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa253#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa253#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa253#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa253#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa253#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa253#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa253#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa253#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa253#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa253#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa253#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa253#supplementary-data


prevents erasing any existing structural variation in the target assem-
bly (Supplementary Fig. S11).

In conclusion, ntJoin performs minimizer graph-based scaffold-
ing quickly and with a small memory footprint, while still producing
chromosome-level contiguity. As demonstrated, it is a flexible,
alignment-free scaffolding tool that can be used in a number of dif-
ferent applications, including hybrid assembly and population gen-
omics research.

Funding

This work was supported by Genome BC and Genome Canada [243FOR,

281ANV]; and the National Institutes of Health [2R01HG007182-04A1].

The content of this article is solely the responsibility of the authors, and does

not necessarily represent the official views of the National Institutes of Health

or other funding organizations.

Conflict of Interest: none declared.

References

Alonge,M. et al. (2019) RaGOO: fast and accurate reference-guided scaffold-

ing of draft genomes. Genome Biol., 20, 17.

Armstrong,J. et al. (2019) Progressive alignment with Cactus: a

multiple-genome aligner for the thousand-genome era. bioRxiv, 730531.

Delsuc,F. et al. (2018) A phylogenomic framework and timescale for compara-

tive studies of tunicates. BMC Biol., 16, 39.

Jackman,S.D. et al. (2017) ABySS 2.0: resource-efficient assembly of large

genomes using a Bloom filter. Genome Res., 27, 768–777.

Kolmogorov,M. et al. (2018) Chromosome assembly of large and complex

genomes using multiple references. Genome Res., 28, 1720–1732.

Li,H. (2018) Minimap2: pairwise alignment for nucleotide sequences.

Bioinformatics, 34, 3094–3100.

Mikheenko,A. et al. (2018) Versatile genome assembly evaluation with

QUAST-LG. Bioinformatics, 34, i142–i150.

Rice,E.S. and Green,R.E. (2019) New approaches for genome assembly and

scaffolding. Annu. Rev. Anim. Biosci., 7, 17–40.

Roberts,M. et al. (2004) Reducing storage requirements for biological se-

quence comparison. Bioinformatics, 20, 3363–3369.

Shafin,K. et al. (2019) Efficient de novo assembly of eleven human genomes

using PromethION sequencing and a novel nanopore toolkit. bioRxiv,

715722.

Sim~ao,F.A. et al. (2015) BUSCO: assessing genome assembly and annota-

tion completeness with single-copy orthologs. Bioinformatics, 31,

3210–3212.

Warren,R.L. et al. (2019) ntEdit: scalable genome sequence polishing.

Bioinformatics, 35, 4430–4432.

Watson,M. and Warr,A. (2019) Errors in long-read assemblies can critically

affect protein prediction. Nat. Biotechnol., 37, 124–126.

Weisenfeld,N.I. et al. (2017) Direct determination of diploid genome sequen-

ces. Genome Res., 27, 757–767.

ntJoin 3887

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa253#supplementary-data

