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Abstract

In vivo, cardiomyocytes comprise a heterogeneous population of contractile cells defined by

unique electrophysiologies, molecular markers and morphologies. The mechanisms direct-

ing myocardial cells to specific sub-lineages remain poorly understood. Here we report that

overexpression of TGFβ-Activated Kinase (TAK1/Map3k7) in mouse embryonic stem (ES)

cells faithfully directs myocardial differentiation of embryoid body (EB)-derived cardiac cells

toward the sinoatrial node (SAN) lineage. Most cardiac cells in Map3k7-overexpressing EBs

adopt markers, cellular morphologies, and electrophysiological behaviors characteristic of

the SAN. These data, in addition to the fact that Map3k7 is upregulated in the sinus venous

—the source of cells for the SAN—suggest that Map3k7 may be an endogenous regulator

of the SAN fate.

Introduction

In mammalian embryos, the SAN is located in the right atrial wall of the heart between the

superior vena cava and the crista terminalis [1] and acts as the site of impulse initiation in the

heart. It also serves as the heart’s pacemaker by adjusting the rate of beating in response to

environmental cues. SAN cells are molecularly, morphologically, and electrophysiologically

distinct from both atrial and ventricular myocardial cells.

Identification of SAN cells ex-vivo is complicated by a number of factors, including the

overall heterogeneity of the SAN (reviewed in Barbuti and Robinson [2]). Nevertheless, a num-

ber of criteria have become widely accepted for this purpose. Characteristics that are consid-

ered to be essential benchmarks for SAN cells include rapid beat rate, automaticity, action

potential morphologies that include diastolic depolarization, the ability to speed up and slow

down beating in response to small molecules that impact the concentration of cyclic AMP, and
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functional expression of the inward funny channel (If) [3]. The If channel belongs to a family

of Hyperpolarization-Activated Cyclic Nucleotide-Gated Potassium Channel 4 (Hcn4) proteins

[4, 5], of which Hcn4 is the dominant member during mouse SAN development [6].

SAN cells can also be distinguished from working myocardial cells by their expression of

particular molecular markers and the activation of a SAN-specific transcriptional program.

Genetic studies in mouse embryos have begun to define the transcriptional network that medi-

ates SAN differentiation. Tbx5 expression within the heart tube establishes expression of

Shox2, which both inhibits expression of Nkx2.5 and activates expression of the transcriptional

repressor, Tbx3 [7, 8]. Tbx3, in turn, inhibits atrial chamber specification and activates SAN-

specific gene expression, including Hcn2 and Hcn4, among other factors [9–11] (reviewed in

[12]). Meanwhile, high levels of Nkx2.5 activity in the working myocardium repress the afore-

mentioned transcriptional network, resulting in a progressive, regional refinement of SAN-

specific gene expression to the node and sinus horns [13]. Another characteristic of SAN cells

is a low abundance of the inward rectifier current [14] but relatively high levels of the L-type

calcium channel Cav1.3 [15, 16].

Cardiomyocytes derived from mouse or human ES cells or from induced pluripotent stem

cells (IPSCs) comprise fewer than 20% nodal-like cells [11, 17–19]. However, several ap-

proaches have been developed in recent years to isolate cell populations that are highly en-

riched for SAN-like cells. For example, both the addition of suramin and the inhibition of

Neuregulin/ErbB signaling [11, 19] appear to preferentially expand the SAN lineage over other

cardiac lineages. Highly purified populations of SAN cells can be isolated based on the expres-

sion of SAN-specific markers. This can be done by using either genetically engineered tags

[20], or the cell surface marker CD166, which serves as a specific marker of SAN progenitors

during early development [16]. There are also promising early results using transcription fac-

tor overexpression to achieve directed differentiation of SAN lineages. Recently, Kapoor et al.

demonstrated that genetic transduction of Tbx18 into neonatal rat ventricular myocytes

(NRVMs) could convert them into pacemaker-like cells [21], suggesting that transcription fac-

tor regulation might be sufficient to drive cells to the SAN fate. Since then, overexpression of

Tbx3 [22], Shox2 [23] and Islet-1 (Isl1) [24] have all been demonstrated to activate SAN-like

characteristics in cardiomyocytes derived from pluripotent stem cells. Altogether these data

suggest that transcription factors can activate or selectively direct the differentiation of SAN

cells in populations of differentiating EBs. Finally, Protze et al. demonstrated that it was pos-

sible to isolate a population of cells that were highly enriched for the SAN fate without the

addition of transgenes [25]. However, full realization of this potential will require a more thor-

ough understanding of the signaling pathways that lead cells to adopt the SAN fate during

development.

We recently identified the TGFβ-Activated Kinase (TAK1/ Map3k7) signaling pathway

[26] as a potential mediator of cardiac differentiation [27, 28]. Previous studies have shown

that Map3k7 is required for cardiac differentiation of P19 cells [29] and that mice possessing

homozygous deletions of Map3k7 have cardiac defects [30]. In addition, mice that express a

dominant interfering form of Map3k7 in the heart die shortly after birth due to conduction

abnormalities [31]. Together these findings suggest that Map3k7 may play a specific role in the

differentiation of the cardiac conduction system.

To examine this possibility, we produced ES cell lines overexpressing Map3k7 and found

that nearly all of the cardiac cells that differentiated from these cell lines had gene expression

and electrophysiological characteristics of SAN cells, including expression of the If channel.

Differentiated cells also showed decreased transcriptional expression of markers for the work-

ing myocardium such as Mhcα, Mhcβ and Mlc2a, in combination with a near total absence of

Cx43; they also upregulated the the transcriptional network that directs endogenous SAN
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differentiation. Finally, we observed changes in the expression of SAN related genes as early as

day 5 after EB differentiation, suggesting that Map3k7 impacts an early lineage decision that

directs cells to the SAN fate.

Materials and methods

Cell culture

CGR8 ES cells expressing the αMhc::GFP reporter [32] were obtained from Mark Mercola. R1

ES cells (obtained from ATCC) were transduced with the PGK::Map3k7-IRES-GFP expression

virus and a second reporter αMhc::mCherry. These were maintained in ES cell growth

medium. For differentiation studies, ES cells were passaged off MEFs and differentiated as EBs

using the hanging drop method, as previously described [28].

Construction of the PGK:: Map3k7 expression vector

The open reading frame of mouse Map3k7 was amplified by PCR from the pRK5m -WT-flag

vector (a gift from Hiroshi Shibuya) and directionally cloned into the Sin18 pre.hPGK. IRES2.

eGFP.PB vector (a gift from Mark Mercola), which drives expression of both the inserted gene

and Green Fluorescent Protein (GFP) from the ubiquitous PGK promoter. Virus was pro-

duced using the second-generation lentiviral expression system [33].

Real time PCR

EBs were collected on specific days of differentiation, RNA was isolated using Tri Reagent

(Sigma), and cDNA was transcribed using Quantitect Reverse Transcription Kit (Qiagen).

qRT-PCR reactions were carried out using 50 ng template/reaction in SybrGreen Master Mix

(Roche), on a Roche LightCycler1 480 Real-Time PCR Instrument, and analyzed with the

LightCycler 480 software package (version 1.5.0.39). Crossing point data were first adjusted to

reflect the efficiency of primer pairs by comparison to standard curves (based on dilution

series over a total dynamic range of 1:1,000 or 1:10,000 for positive control cDNAs) and subse-

quently normalized to the ubiquitously expressed transcript Gapdh. Each data point represents

averaged data from three technical replicates from a same time course experiment. Error bars

represent standard error based on three technical replicates as calculated by Roche LightCycler

software. A change in gene expression between Map3k7-overexpressing and wild-type EBs is

considered relevant if the same change was observed in each of at least three biological repli-

cates. Primers used in this study are listed in Table 1:

Immunocytochemistry

EBs were dissociated and cells were transferred to chamber slides. After attachment, cells were

washed with PBS and fixed using 4% paraformaldehyde at room temperature (RT) for 15 min-

utes. Blocking was carried out for one hour using 3% fetal calf serum (FBS), 2% BSA and 0.5–

1% Triton X-100 in PBS. Expression of cardiac contractile proteins was assessed using the

anti-Sarcomeric Myosin (CT3) antibody (Developmental Studies Hybridoma Bank), goat

polyclonal anti-Troponin (C-19) (Santa Cruz), anti-Cx43 (Santa Cruz), anti-CaV1.3 (Neuro-

Mab), anti-Kir3.1 (Santa Cruz) and anti-Hcn4 (NeuroMab) antibodies. Cells were then stained

with fluorescent-conjugated secondary antibodies, Alexa Fluor1 555 or Alexa Fluor1 488

(Invitrogen) diluted 1:1,000. The nucleus was visualized with DAPI and mounted in vecta-

shield (Vector).
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Calcium imaging

Calcium imaging was performed on cardiomyocytes obtained from collagenase-dissociated EBs

using the cell-permeant acetomethyl (AM) form of the calcium sensitive dye mag-Fluo-4

(Molecular Probes). Analysis was carried out 5–7 days after the initial dissociation of cells at day

16 of EB differentiation. The AM ester of the indicator dye was dissolved in 25μl of DMSO to a

concentration of 2.45 mM. For cell loading, 12.5 μl of this solution was diluted into 1 mL of dif-

ferentiation medium to a final concentration of 30.6 μM, and incubated for 30 minutes at RT.

After initial incubation, cells were washed with differentiation medium for 30 minutes to

remove unbound dye and allow complete de-esterification. Epifluorescence was recorded using

one camera of an 80x80 pixel CardioCCD-sm Dual-Camera Imaging System (RedShirtIma-

ging) at 1000Hz, digitized at 14 bits. Baseline recordings were performed on cells in differentia-

tion medium at RT. Response to acetylcholine and norepinephrine was recorded at RT. Drug

exposure was performed through a series of washes–three initial washes with differentiation

medium, a drug wash with differentiation medium and drug, and a final wash with differentia-

tion medium. After each wash, 10 s of epifluoresence was recorded at three time points, 15 s, 2

min, and 4 min. Data was stored and analyzed with the RedShirtImaging Cardioplex software.

Growth curves

To determine if Map3k7 impacts cell proliferation, the rate of growth of cells overexpressing

Map3k7 was compared to that of wild-type cells. Map3k7-overexpressing and wild-type ES

cells were plated at identical densities and counted daily over the course of several days. The

total cell number on each day was averaged over several trials. In parallel, these cells were dif-

ferentiated as EBs and their growth rates were assessed during differentiation.

Flow cytometry

Wild type R1 EBs and Map3k7-overexpressing EBs were collected and dissociated into single

cell suspensions using 1 mg/ml Collagenase D in DMEM. Cells were washed with 1X PBS and

Table 1. Primer pairs used for real time PCR.

Gene Forward primer Reverse Primer

T/bra AGCTTCGTGACGGCTGACAA CGAGTCTGGGTGGATGTAG

Fgf8 GCTCATTGTGGAGACCGATAC TTGCTCTTGGCAATTAGCTTC

Gapdh AATGGATACGGCTACAGC GTGCAGCGAACTTTATTG

Hcn1 TGCCAGTGTCCGAGCTGATA TCTCTCGGTCATGCTTCACG

Hcn2 TGCTCAGCATGATCGTAGGC CCCAAGGATGCTGTCCTCAT

Hcn4 ACCTGACGATGCTGTTGCTG CTC TGC GGGTCAAGGATGAT

Isl1 GAGTCATCCGAGTGTGGTTTC ACCATGGGAGTTCCTGTCATC

Map3k7 CGTAGATCCATCCAAGACTTGAC GAGGTTGGTCCTGAGGTAGTGAT

Map3k7 3’UTR CCAATGGCTCAGATAACTCCA AACAAATGCAGCAAAGAGAGG

Mhcα CATGCCAATGACGACCT CCTACACTCCTGTACTGCC

Mhcβ GGTGGCAAAGTCACTGCTGA ACAGGCAGC CACTTGTAGGG

Mlc2a CAGACCTGAAGGAGACCTATTCC CTACCTCAGCAGGAGAGAACTTG

Nkx2.5 TTACCG GGAGCCTACGGTG GCTTTCCGTCGCCGCCGTGCGCGTG

Shox2 TCCCCTGAACTGAAGGATCG CAGTCGCTGGCTCAATTCCT

Tbx3 GTTTTGTCTGGGAGGGAGCA CTTCAGCCCCGACTTCATA

Tbx5 CCAGCTCGGCGAAGGGATGTTT CCGACGCCGTGTACCGAGTGAT

cTnI CCGCCTCCAGAAAACTTCAG CGTGAAGCTGTCGGCATAAG

https://doi.org/10.1371/journal.pone.0189818.t001
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fixed with 4% PFA at RT for 15 minutes. Permeabilization was carried out for 10 min in 1X

PBS consisting of 0.5% BSA and 0.1% Triton X-100 (permeabilization buffer). After permeabi-

lization, cells were incubated for 1 hour in permeabilization buffer containing mouse MF20

antibody (Developmental Studies Hybridoma Bank) diluted at 1:100. Compensation control

samples were also prepared without the addition of MF20. Cells were then washed with per-

meabilization buffer and incubated for 1 hour with a FITC-conjugated goat polyclonal anti-

mouse secondary antibody (abcam) diluted at 1:1000. After washing twice in permeabilization

buffer, cells were resuspended in 1X PBS and filtered through an 80 μm sieve. Flow cytometry

was performed with a Becton-Dickinson (B-D) FACScan, and data were acquired using the

B-D CellQuest software. Dot plots were created with FSC-H and FL1-H on the x- and y-axes

respectively, and FITC-treated negative controls (compensation controls) were used to elimi-

nate non-cardiomyocytes during statistical analyses. Data is represented as fold difference

compared to untreated wild-type EBs. Bars represent the average difference between wild-type

and Map3k7-overexpressing cells over four separate trials. Error bars represent standard error.

Statistical significance was determined by unpaired, two-tailed t-test.

Electrophysiology

EB cells plated on gelatin-coated glass coverslips were placed in the experimental chamber

(23˚C), and superfused with Tyrode solution of the following composition (mM): 140 NaCl,

5.4 KCl, 2 CaCl2, 1 MgCl2, 5 HEPES, 10 glucose (pH 7.4). Membrane currents or action poten-

tials (AP) from single cells or small clusters of cells were recorded using a computer equipped

with pCLAMP 8, a Digidata 1322A series interface and Axopatch 1C amplifier (Molecular

Devices). Only cells expressing mCherry fluorescence driven by the MHCα promoter were

used for recording. The perforated patch clamp technique was employed. Borosilicate glass

pipettes (Sutter Instrument) were filled with (mM) 130 aspartic acid, 146 KOH, 10 NaCl, 2

CaCl2, 5 EGTA, 10 HEPES, 2 Mg-ATP, 100 μg/ml amphotericin (pH 7.2). After forming a

gigaseal, progress in electrical access was evaluated by monitoring capacitance currents

induced by 20 ms pulses from -35 mV to -40 mV. AP and If were recorded when series resis-

tance was reduced to 40–50 MO and 20–30 MO respectively. If was induced by voltage steps

ranging from -35 to -125 mV with duration decrementing with more negative pulses, followed

by a 5 s long pulse to -85 mV to measure tail current and 0.5 s deactivating pulse to -5 mV.

Holding potential was -35 mV.

Data curation

Raw data underlying figures that contain post-collection analysis by the investigators is pro-

vided as supporting data (S1 Tables).

Results

Overexpression of Map3k7 by lentiviral vector

Map3k7 was overexpressed in mouse R1 ES cells using a lentivirus driving Map3k7 and green

fluorescent protein (GFP) under the control of the strong ubiquitous human promoter, hPGK.

The Sin18hPGK::Map3k7-IRES2-GFP (Fig 1A) virus was produced using the second-genera-

tion lentiviral expression system [33, 34], and ES cells were transduced using a high viral titer

(multiplicity of infection (MOI) ranging from 25–40). Colonies expressing the transgene were

identified by flow cytometry for high expression of GFP (Fig 1B–1D) and by qRT-PCR for the

continuous overexpression of Map3k7 mRNA during EB differentiation. EBs virally trans-

duced with MOIs of 40 showed continuous two-fold overexpression of Map3k7 mRNA as
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compared to unmodified R1 cells. Lower levels of infection resulted in either no increased

expression, or decreases in the overall expression of Map3k7. Interestingly, endogenous

Map3k7 transcripts, assessed using primers specific to the Map3k7 3’ UTR, were dramatically

downregulated during EB differentiation. This finding suggests that the Map3k7 pathway is

subject to an autoregulatory negative feedback loop that is only overcome by continuous over-

expression of the gene under the PGK promoter (Fig 1E). Map3k7-transduced ES cells pos-

sessed a small but statistically significant growth rate advantage over wild-type ES cells, but

there was no significant difference in the growth rates of Map3k7 and wild-type EBs (1f, g).

Cardiomyocytes derived from Map3k7-overexpressing ES cells are

morphologically distinct from cardiac cells derived from wild-type ES

cells

Both wild-type and Map3k7-overexpressing EBs produce cardiomyocytes recognized by car-

diac specific antibodies against α-CT3 and α-cTnI (Fig 2A). There are several published proto-

cols to enhance cardiomyocyte differentiation in EBs by addition of growth factors, however

since Map3k7 is known to interact with theses pathways we chose to differentiate them in the

absence of growth factors. These protocols, while yielding an overall low yield of cardiomyo-

cytes (1–4%) (not shown) allows us to specifically observe the effects of Map3k7 without the

confounding effects of growth factors that may effect its level of expression or phosphorylation

state.

However, Map3k7-overexpressing cardiomyocytes were morphologically distinct from

those differentiated from wild-type ES cells. The vast majority of Map3k7-overexpressing car-

diomyocytes possessed a small round morphology that is characteristic of immature pacemak-

ers (Fig 2A). At later time points some Map3k7 overexpressing cardiomyoctyes adopted

spider-shaped and spindle-shaped morphologies that are characteristic of mature SAN cells

(Fig 2B) [35, 36]. These cardiomyocytes often showed poorly organized myofibrils, another

hallmark of SAN cells [37] (Fig 2A). To further analyze this, clonal lines of Map3k7-overex-

pressing ES cells were established that also express the cardiac-specific fluorescent reporter

MHCα::mCherry [32] (Fig 2C). It was noted that beating foci in Map3k7-overexpressing EBs

(red cells in Fig 2C) had a dramatically different organization as compared to beating foci in

wild-type EBs, which possess the MHCα::GFP reporter (green cells in Fig 2C). Wild type colo-

nies were comprised of cardiomyocytes with large, well-organized myofibrils, whereas

Map3k7-overexpressing colonies were organized in tight, rounded cell clusters.

Map3k7 is upregulated in the region of the sinus node and markedly

downregulated in the ventricular myocardium

Cardiomyocytes derived from Map3k7-overexpressing EBs differentiate initially as small,

round clusters whereas a previous study had demonstrated that Map3k7 overexpression in the

ventricular myocardium resulted in cardiac hypertrophy [38]. To understand how Map3k7
overexpression might lead to such diametrically opposed outcomes in different developmental

contexts, we examined Map3k7 protein expression in embryonic mouse hearts.

Fig 1. A. Schematic of lentiviral construct used to create an ES cell line stably overexpressing Map3k7. B-D. Flow cytometry analysis

comparing green fluorescent protein (GFP) in Map3k7-overexpressing ES cells (B) to unmodified R1 cells (C). D. Cell count as compared to

GFP fluorescence in untransduced (purple) and transduced (green) cells. E. qRT-PCR data showing overall Map3k7 expression during EB

differentiation (red line) as compared to unmodified ES cells. Error bars indicate standard deviation of three technical replicates from a single

differentiation. F-G. Growth curves comparing rate of growth in Map3k7-overexpressing cells (red) as compared to unmodified R1 cells, when

grown as ES cells (tan) (F) and during EB differentiation (G). Error bars indicate standard deviation across three biological replicates.

https://doi.org/10.1371/journal.pone.0189818.g001
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In 14.5 day old mouse embryos, Map3k7 protein (α-Map3k7) was expressed at compara-

tively higher levels in the atria and inflow tract region of the heart, including high expression

in Hcn4 positive cells of the SAN (Fig 2D). By contrast, Map3k7 expression in the ventricular

myocardium (Fig 1E) was very low or nearly absent, except in the trabeculae. This suggests

that SAN cells normally express higher levels of Map3k7 than ventricular cardiomyocytes.

Cardiomyocytes derived from Map3k7-overexpressing EBs display

physiological, electrophysiological, and molecular characteristics of the SAN

To determine if Map3k7 influences the differentiation of cardiomyocytes to the SAN fate, we

used qRT-PCR to examine markers that are known to influence the SAN fate in vivo (reviewed

Fig 2. A. Immunocytochemistry showing that individual or small clusters of cardiomyocytes that form in wild-

type and Map3k7-overexpressing EBs express both the MF20 epitope (anti-CT3 epitope, green) and cardiac

Troponin (cTnI, red). Blue indicates DAPI signal in all panels. Note that Troponin protein is poorly organized in

cardiac cells derived from Map3k7-overexpressing ES cells. Scale bars indicate 10 μM in panels stained for

cTnI and 20μM in panels stained for MF20. B. After several weeks in culture Map3k7-overexpressing cells

showed spider and spindle cell morphologies that are characteristic of mature SAN cells. C. Fluorescent

image showing Map3k7-overexpressing cells that also possess the MHCα::mCherry reporter (marking

cardiomyocytes with red fluorescence) and wild-type cells possessing the MHCα::GFP reporter (marking

cardiomyocytes with green fluorescence). Note that cardiomyocytes derived from Map3k7-overexpressing

cells possess a distinct morphology as compared to wild-type cardiomyocytes. Scale bar represents 100 μM.

D. Anti- Map3k7 antibody staining of 19 day old mouse embryo showing increased expression in the remnants

of the sinus venous and overlapping with HCN4 positive cells. E. By contrast, low expression of Map3k7 in the

left ventricle of the same heart.

https://doi.org/10.1371/journal.pone.0189818.g002
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in [12])) (Fig 3A). Map3k7-overexpressing ES cells were differentiated as EBs and assessed by

qRT-PCR for cardiac marker expression over 16 days of differentiation (Fig 3B). During EB

differentiation, continuous overexpression of Map3k7 had a profound impact on the transcrip-

tional expression of the cardiac progenitor markers Nkx2.5 and Tbx5. By day 5 of differentia-

tion, Nkx2.5 transcription was decreased in Map3k7 cells and by day 7, Tbx5 was dramatically

increased in Map3k7-overexpressing EBs.

Within approximately the same differentiation window, mRNAs encoding the SAN-spe-

cific transcription factors Shox2 and Tbx3 were upregulated and cardiac contractile proteins,

Mhcα, Mhcβ, Mlc2a, were markedly decreased. Other SAN-specific markers were either

unchanged as compared to wild-type EBs (Hcn2) or upregulated (Hcn4). Hcn1, which is not

Fig 3. A. Diagram of the major transcriptional regulators of SAN differentiation in the mouse embryo. Tbx5 activates Shox2, Tbx3 and SAN-specific markers,

including Hcn2 and Hcn4. In addition, Shox2 inhibits Nkx2.5 expression, and Tbx3 inhibits markers for the working myocardium. B. qRT-PCR data showing

changes in the expression or timing of SAN related genes. Blue line indicates relative gene expression normalized to expression of Gapdh over time in wild-

type R1 EBs and red lines indicate gene expression in Map3k7-overexpressing EBs. Error bars indicate standard error from three technical replicates.

Upregulation or downregulation of each gene was considered relevant only if relative expression trends were the same in each of a minimum of three

biological replicates. Error bars represent standard error from three technical replicates. Statistical significance was determined by t-test. (*) represent

p<0.006.

https://doi.org/10.1371/journal.pone.0189818.g003
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expressed in the SAN of the mouse embryo was expressed at similar levels as compared to

wild-type EBs, but the timing of expression was different.

Isl1 is expressed in cardiac precursors and is down regulated in most differentiated myocar-

dial cells. However, sinus node cells continue to express Isl1 [39]. In wild-type EBs, we typically

observe three pulses of Isl1 expression. While one of these pulses was normal in Map3k7-over-

expressing cells, the other two were decreased; however, the overall expression was similar in

wild-type and Map3k7 expressing cells. Since Isl1 is non-specific for the node, we examined

another marker of SAN precursor, Tbx18. As with Isl1, Tbx18 (data not shown) was not signifi-

cantly different between the two populations. This data suggests that Map3k7 acts on estab-

lished SAN precursors but does not determine the size of the precursor population.

To address this, we examined the early mesoderm markers T/brachyury and Fgf8, and the

cardiac progenitor marker Mesp1, none of which were affected by Map3k7 overexpression

(data not shown). Together, these data support the hypothesis that Map3k7 influences lineage

specialization within the heart rather than progenitor cell proliferation.

Beat rates for individual contracting foci were scored on days 11 and 12, and then on days

15 and 16 of EB differentiation (Fig 4). On days 11 and 12, EBs from each of the three cell lines

had beating areas contracting at approximately 50 beats per minute (bpm). By days 15/16 the

rate of beating in wild-type EBs had increased to 60–70 bpm. By contrast, Map3k7-overexpres-

sing EBs had an average beat rate greater than 100 bpm at room temperature. Of the beating

loci quantified on days 15 and 16, 12/42 (29%) of R1 EBs, 13/32 (40%) of CGR8 EBs and 46/59

(78%) of Map3k7 EBs had areas beating above 90 bpm. Both SAN and atrial cells beat more

rapidly in culture than ventricular cardiomyocytes [18]. To distinguish between these possibili-

ties, we examined by immunocytochemistry the expression of Hcn4, which is expressed in the

SAN but not in atrial cells, and found that it was highly expressed in cardiomyocytes derived

from Map3k7 EBs (Fig 4B), but was rarely observed in wild-type EBs. To quantify this, individ-

ual or small clusters of cardiomyocytes (as determined by the expression of the mCherry

reporter) were scored for expression of HCN4. Approximately one third of all wild-type cardi-

omyocytes expressed Hcn4. In contrast, nearly all Map3k7-overexpressing cardiomyocytes

expressed Hcn4 (Fig 4C).

We performed perforated patch clamp studies on mCherry-expressing cardiomyocytes to

test if Map3k7-overexpressing cardiomyocytes have physiological and electrophysiological

characteristics of the SAN. Our initial patch clamp studies on cardiac cells derived from

Map3k7-overexpressing cell lines demonstrated that most of the cells tested had action poten-

tial morphologies characterized by a phase 4 (diastolic) depolarization and/or expressed the If

current, suggesting that these cardiac cells were either primary pacemaker or mature SAN

cells. However, when these cells were treated with a low concentration of norepinephrine

(0.01μM) to ensure continual activation of the Map3k7 signaling pathway [40], 100% (6/6) of

the patched cells exhibited action potentials identical to those of isolated mouse sinoatrial cells

[41] and 4 of 4 showed physiologically appropriate expression of the If current activating over

a physiologically appropriate voltage range (Fig 4D).

While many cardiac cells adjust their rate of beating in response to β-adrenergic and cholin-

ergic stimulation, SAN cells are required do so. To test if the cardiomyocytes isolated from

Map3k7-overexpressing EBs behave physiologically like mouse SAN cells, calcium transient

data was measured in mCherry-expressing (cardiac) cells derived from Map3k7-overexpres-

sing EBs using a calcium sensitive dye. Consistent with a SAN identity, cells exposed to a rela-

tively high dosage of norepinephrine (1 μM) showed an increased calcium transient rate in all

cardiomyocytes tested, with an average increase of 36% (p<0.0006), whereas addition of

0.01 μM acetylcholine decreased the calcium transient rate by an average of 7.5% in 5 of 6

(83%) cardiomyocytes (p<0.0006) (Fig 4E). Notably, the dose of norepinephrine that was
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required to speed up the rate of calcium transients was approximately 100-fold greater than

the dose used to stimulate electrophysiological differentiation. These data suggest that Map3k7

overexpression plays a role in the electrophysiological maturation of SAN cells which is sepa-

rate from its ability to change beat rate in response to beta-adrenergic or cholinergic

stimulation.

To determine if low doses of norephinephrine effects the expression of channel protein, we

analyzed the expression of several ion channel and gap junction proteins by immunocytochem-

istry (Fig 5A). These included Kir3.1, Connexin43 (Cx43), and CaV1.3, all of which are differen-

tially expressed between SAN and the working myocardium [15, 42]. Individual or small clusters

of cardiomyocytes (as determined by the expression of the mCherry reporter) were scored for

expression of these markers (Fig 5B). The percentage of cells with expression was compared

between cardiomyocytes derived from unmodified R1 ES cells and those that were stabily trans-

duced with the PGK::Map3k7 overexpression vector. These were also compared to Map3k7 over-

expressing cells that were treated with a low dose (0.01μM) norepinephrine. Both Hcn4 (Figs 2C

and 5B) and the calcium channel CaV1.3were detected in approximately 20% of cardiomyocytes

of wild-type origin. However, more than 80% of cardiomyocytes derived from Map3k7-overex-

pressing EBs expressed these markers. Addition of low dose norepinephrine did not have a

major impact on either Hcn4 or CaV1.3 expression levels. In contrast, Cx43 and Kir3.1 were

expressed in most wild-type cardiomyocytes but only in less than 20% of of Map3k7-overexpres-

sing cardiac cells. In addition, the expression of Kir3.1 was dramatically decreased in wild-type

cardiomyocytes after the addition of low dose norepinephrine. Therefore, these data not only

support a SAN-like identity for Map3k7-overexpressing cardiomyocytes, but also suggest that

specific channel proteins might be affected by the continuous activation of this pathway by

norepinephrine.

Discussion

Lineage-specific differentiation of sinoatrial node cells in vitro

Here we describe a novel protocol that directs the differentiation of ES-derived myocardial

cells toward the SAN sublineage.These cells upregulate the transcriptional network that medi-

ates SAN differentiation in vivo, express markers for the SAN and display physiologic and

electrophysiological characteristics of the node. Action potential morphologies, the mis-align-

ment of contractile fibers, rapid beat rate and the severe down-regulation of markers for the

working myocardium eliminate the possibility that these cells represent ventricular myocar-

dium. In addition, while both SAN and atrial cells beat fast, Map3k7-overexpressing cells

express Hcn4, which is not expressed in the atrium. Finally while both SAN and Purkinje fibers

express the If current, Purkinje cells do not respond to the addition of acetylcholine unless the

rate has already been accelerated by catecholamine (accentuated antagonism), whereas SAN

cells do [43], eliminating the possibility that these are Purkinje-like. In short, these cells can

only be SAN.

Fig 4. A. Beat Rate Data showing quartile beat rate data for 100 beating foci for two wild type mouse strains and Map3k7

overexpressing cells. B. Immunocytochemistry showing overlap of the cardiac reporter with the SAN specific marker Hcn4. C.

Summary of this data showing the % of Hcn4 expressing cardiomyocytes is dramatically increased in the Map3k7-overexpressing

cells. D. Perforated patch recording of automaticity and pacemaker current in mCherry expressing cardiomyocytes derived from

Map3k7-overexpressing ES cells. Left: Spontaneous APs. Middle: Pacemaker current recorded from the same cell. Right:

calculated activation relation from the same cell, showing current activation within the diastolic potential range. E. Calcium

transients in cardiomyocytes derived from Map3k7-overexpressing ES cells before (red trace) and after (blue trace) treatment

with either 1μM norepinephrine or 0.01μM acetylcholine, as indicated. Beating in these cardiomyocytes accelerates in response

to norepinephrine and slows down in response to acetylcholine.

https://doi.org/10.1371/journal.pone.0189818.g004
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When does Map3k7 function in SAN differentiation?

In these studies, we overexpressed Map3k7 using the ubiquitously expressed human PGK pro-

moter and because of this, Map3k7 could function at any stage of EB differentiation to direct

SAN differentiation. Cardiac cells in these cultures begin to beat more rapidly than wild-type

cells between days 12 and 15 of differentiation. However, it is unclear if this sudden increase in

beating represents a change of fate or simply reflects the maturation of cells already fated to

become SAN. In the mouse embryo, cells fated to give rise to the SAN can be distinguished as

early as 8.5 dpc as a region in the atrial wall that co-expresses Tbx18 and Isl1, but which lacks

expression of Nkx2.5[44]. These data suggest that the SAN fate separates from other myocar-

dial lineages quite early in mouse development. Marker analysis of Map3k7-overexpressing

EBs supports this idea. When cardiac markers were assessed over time in differentiating EBs,

differences were observed as early as day 6. More specifically, we observed an increase in Tbx5
and a decrease in Nkx2.5. At the same time, there was a marked decrease in the activation of

contractile proteins such as Mlc2a, Mhcβ and Mhcα. These data demonstrate that Map3k7

Fig 5. Immunocytochemistry on individual or small clusters of wild type or Map3k7 overexpressing

cardiomyocytes (as indicated by expression of cTnI, red, in CaV1.3 and Kir3.1 panels) or CT3

monoclonal antibody (green, in Cx43 panels) indicating that the SAN-specific calcium channel

CaV1.3 (green) is expressed in Map3k7 cardiomyocytes but not in most cardiac cells derived from

wild type ES cells. By contrast Cx43 (red and red arrow heads) and Kir3.1 (green) are expressed in most

wild type cardiomyocytes but not in cardiac cells derived from Map3k7 overexpressing EBs. Blue indicates

DAPI staining in all panels. Scale bars in all figures represent 20μM.

https://doi.org/10.1371/journal.pone.0189818.g005
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mediates an early lineage decision biasing myocardial differentiation away from atrial and ven-

tricular fates and toward the SAN fate.

Alternatively, it is possible that Map3k7 overexpression simply causes cells to beat more

rapidly than wild-type cardiomyocytes, which as a consequence, causes electrophysiological

remodeling of cardiomyocytes to a SAN-like phenotype. This is, however, unlikely for several

reasons. First, changes in gene expression occur prior to the onset of beating, suggesting that

rapid beating is a consequence of channel maturation within cells already fated to become

SAN and not vice versa. Also, previous studies, in which Map3k7 was overexpressed in ventric-

ular myocardial cells, did not result in remodeling of those cells to a SAN-like morphology

[31] but rather caused these cells to become hypertrophic and ultimately to fail.

A transcriptional network mediating SAN differentiation in the mouse has been established

by genetic studies. In these studies it appears that Tbx5 expression in the area of the sinus

venosus activates expression of Shox2, which in turn, both inhibits expression of Nkx2.5 and

activates expression of the transcriptional repressor, Tbx3 [7, 8]. Our studies place Map3k7
activity upstream of this pathway, since all of these factors were profoundly impacted by

Map3k7 overexpression.

On the other hand, cells fated to become SAN in mouse can be distinguished early in devel-

opment based on co-expression of Tbx18 and Isl1[44]. In addition, Isl1, while initially

expressed in in all cardiac precursors, is down regulated in all differentiated myocardial cells

except those in the sinus node[39]. Overexpression of Map3k7 did not impact the expression

of Tbx18 and had a complicated effect on the timing but not overall expression of Isl1. This

suggests that these factors are either upstream of Map3k7 or in a parallel pathway.

The implications for regenerative medicine

Protocols for lineage specific differentiation of cardiomyocytes have tremendous potential for

regenerative medicine. First, they will provide the tools required for screens that will eventually

identify novel markers of the SAN fate. These screens could be comprised of either microarray

or proteomic analyses or could involve comparing epigenetic markers to identify enhancers

that are activated at different stages of SAN differentiation [45].

Second, these cells could serve as the basis for pharmacological screens on pacemaker cells

derived from human ES cells or from patient-specific iPS cells. This will potentially allow for

the identification of factors with specific therapeutic benefit to, or toxic effects on, the SAN.

Finally, these cells could serve as the basis for the development of biological pacemakers.

Unlike skeletal muscle, cardiomyocytes in adult mammals have little or no ability to regenerate

after injury. Instead, damage results in the formation of apoptotic and necrotic cells that are even-

tually replaced by fibroblasts and scar tissue. In particular, damage to the heart’s pacemaker, the

SAN, results in bradycardia, arrhythmia, and ultimately, heart failure. Because of the central

importance of the SAN to cardiac function, in addition to the limitations of mechanical pacemak-

ers, a number of proposals have been put forward for the creation of biological pacemakers and

several proof-of-principle experiments have demonstrated the potential efficacy of this approach.

First, non-pacemaker cardiac cells could be converted to pacemaker function by vector-mediated

introduction of factors that convey pacemaker function. For example, the viral introduction of

Hcn2 proteins into the left branch bundle of dogs in complete AV block, increased the basal rate

of beating, decreased the dependence on mechanical pacemakers [46] and increased the heart’s

responsiveness to exogenous adrenergic stimulation and emotional arousal [46, 47]. Similarly,

single ventricular myocytes derived from rats or guinea pigs or human mesenchymal stem cells

that are virally transduced with Hcn family members, adopted electrophysiological characteristics

of the SAN [48–50]. Other types of genetic manipulations, such as introducing constructs that
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increase cAMP production [51], or which suppress the Kir2.1 channel[52], have also been used to

activate spontaneous contractions and other pacemaker-like activities in adult cardiac cells that

do not normally beat spontaneously. A potential problem with this approach is that adoption of

fully functional pacemaker activity in non-SAN cells will likely depend on complex interactions

between cell surface channels and proteins regulating calcium concentration in the sarcoplasmic

reticulum (reviewed in [53]), and may therefore require the simultaneous activation and/or deac-

tivation of multiple genes.

Another approach that is currently being tested is the introduction of xenografts of pace-

maker-like cells into the hearts of SAN-damaged animals. Indeed, both implanted EBs and ES-

derived cardiomyocytes [54, 55], in addition to the Hcn-modified cells described above [49,

50], have been tried in animal models and have shown to transiently engraft into host tissue

and/or activate spontaneous action potentials. Nevertheless, it should be noted that most ES-

derived cardiomyocytes display spontaneous beating early in their development, but this

native pacemaker activity is lost as they mature into working myocardium. For example, the

spontaneously contracting cells engrafted by Kehat expressed the gap junction protein Cx43,

which is not expressed in sinoatrial node cells, suggesting that these were immature ventricular

or atrial cardiomyocytes rather than SAN cells. In other words, for this approach to work, it is

likely that a purified population of true SAN cells will have to be identified. As a proof of prin-

ciple, cells enzymatically isolated from the sinoatrial nodes of canines, that were then re-

implanted as grafts into the apex of the ventricle, were also effective in initiating action poten-

tials and temporarily reducing the dependence on electronic pacemakers [56]. The Map3k7
overexpression protocol described here may therefore be ideal for the production of medically

applicable sinoatrial node cells because it appears to specifically select SAN differentiation at

the expense of other myocardial cell types, and thus will allow for an expandable source of

potential donor cells for engraftment.
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