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Seven-valent pneumococcal conjugate vaccine (PCV7) was included in the UK national immunisation program in 2006, and this
was replaced by thirteen-valent PCV in 2010. During this time, the carriage of vaccine-type Streptococcus pneumoniae decreased but
pneumococcal carriage remained stable due to increases in non-vaccine-type S. pneumoniae. Carriage studies have been undertaken
in various countries tomonitor vaccine-type replacement and to help predict the serotypes, whichmay cause invasive disease.There
has been less focus on how conjugate vaccines indirectly affect colonization of other nasopharyngeal bacteria. If the nasopharynx
is treated as a niche, then bacterial dynamics are accepted to occur. Alterations in these dynamics have been shown due to seasonal
changes, antibiotic use, and sibling/day care interaction. It has been shown that, following PCV7 introduction, an eradication of
pneumococcal vaccine types has resulted in increases in the abundance of other respiratory pathogens including Haemophilus
influenzae and Staphylococcus aureus. These changes are difficult to attribute to PCV7 introduction alone and these studies do not
account for further changes due to PCV13 implementation. This review aims to describe nasopharyngeal cocarriage of respiratory
pathogens in the PCV era.

1. Introduction

Invasive pneumococcal disease (IPD) is a cause of substantial
morbidity and mortality worldwide, with over 5,000 cases
reported in the UK per year [1]. For patients with IPD in
the United States, around 10% will die from the illness [2].
In 2008, globally there were an estimated 476,000 deaths
attributed to pneumococcal infection among children less
than five years of age. As of 2014, globally 59% of infants
still live in countries where a PCV has yet to be added to
the national immunisation program [3]. The seven-valent
pneumococcal conjugate vaccine (PCV7) (Prevenar, Pfizer,
previouslyWyeth) was added to the US immunisation sched-
ule in 2000 and to the UK immunisation schedule in 2006.
The effect of PCV7 on pneumococcal carriage in children

has been investigated, with vaccine serotypes decreasing
since PCV introduction [4–6]. In the UK and elsewhere,
the incidence of IPD has decreased after the implementation
of PCVs [7–10]. As PCV13 was introduced, the rates of
vaccine-type carriage and IPD have similarly declined [11–
13], and as additional higher valency PCVs are introduced
it is expected that IPD incidence will continue to decrease
[14].

The effect of pneumococcal vaccination on other bacterial
species known to occupy the same niche as S. pneumoniae
has not been fully investigated, in particular determination
of how changes in the human microbiome can be attributed
to external pressures or vaccine introductions [15, 16]. This
paper reviews what is known about cocarriage of nasopha-
ryngeal bacteria.
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2. Pneumococcal Disease

S. pneumoniae are Gram-positive diplococci often found to
occupy the nasopharynx. Pneumococci are typed according
to the serological response to their external polysaccharide
capsule. Strains of S. pneumoniae that do not react with type-
specific antisera are deemed nontypeable (NT) S. pneumo-
niae. Currently 94 pneumococcal serotypes have been char-
acterised [17–22]. Individuals become colonisedwith S. pneu-
moniae and other nasopharyngeal flora during their first few
months of life [23], although the age of pneumococcal coloni-
sation varies and may be attributed to environmental factors
such as having siblings, attending day care, or geographical
location [23, 24]. Colonisation with a pneumococcal isolate
is a prerequisite for pneumococcal infection; the capsule type
of S. pneumoniae rather than genotype is thought tomodulate
the degree of infection [25].The capsular type of the pneumo-
coccus dictates the duration of colonization in children with
common serotypes retained longer in carriage. As the age of
a child increases, so does their immune mediated clearance
of pneumococcal serotypes [26]. Disease caused by pneumo-
coccal infections can be divided into two groups: invasive
pneumococcal disease (IPD) and noninvasive disease.

3. Immunisation to Reduce Disease Burden

The 23-valent pneumococcal polysaccharide vaccine
(PPV23) (Pneumovax II, Aventis Pasteur) is a plain polysac-
charide vaccine that induces an immune response to the
polysaccharide capsule of an infectious organism to induce
short-term memory B-cells and antibody production. As the
immune response produced is classed as “slow, no immune
memory,” this type of vaccine is not effective in young
children and infants (IPD risk groups). T-cell independent
vaccines also appear not to prevent carriage of the bacterial
species [27] after the short-lived immune response has
finished.

Conjugate vaccines contain bacterial polysaccharides
from the outer capsule of an organism, for example, PCV7
(seven-valent pneumococcal conjugate vaccine, Prevenar,
Pfizer); 10-valent PCV (Synflorix, GSK) and 13-valent PCV
(Prevenar 13, Pfizer) are currently licensed pneumococcal
conjugate vaccines. The polysaccharide is converted into
a T-cell dependent antigen through the presence of the
carrier protein. Long-term memory B-cells mature so that
the immune system has both a short-term and long-term re-
sponse invoked when those polysaccharides are encountered
again. This reduces colonisation of the serotypes included
within the vaccine, helping to prevent infection even in the
very young. PCVs are given to children rather than a PPV to
produce a stronger and more long-lasting immune response
[28] and PCVs have also been found to be more effective
against vaccine serotypes than PPV in older adults [29]. The
10-valent pneumococcal vaccine, PHiD-CV10 (GSK), also
includes conjugation of nontypeableHaemophilus influenzae
protein D. PCV10 is comparable to PCV7 at preventing
invasive pneumococcal disease [30] and has been found to
have a higher immunologic coverage for acute otitis media
than PCV13 [31].

4. Pneumococcal Conjugate Vaccination

Prior to implementation of 7-valent pneumococcal conju-
gate vaccination, the majority of invasive disease globally
was caused by seven of the pneumococcal serotypes [32].
PCV13 introduction has further addressed IPD caused by
the 6 serotypes included in the new vaccine in Europe
and North America [33]. PCV effectiveness is subject to
strains undergoing capsular changes including (a) serotype
replacement/shifting [34], where prevalence of a nonvac-
cine serotype increases as prevalence of a vaccine serotype
decreases and the non-vaccine-type bacteria overcome vac-
cine challenges in a community [35], and (b) capsular switch-
ing, where an individual bacterium can undergo changes in
the capsular genes, causing the bacteria to change serotype
[36]. Through alteration of capsular expression and the
increase in prevalence of serotypes not included in vaccine
formulations, serotypes in carriage may be replaced with
more virulent serotypes [37]. However it has been reported
that capsular switching resulting from vaccine pressures will
only contribute to an increase of a maximum of three extra
cases of IPD per 100,000 vaccinated children cumulated over
a ten-year period [38]. The additional maximum of three
cases per year was deduced using a mathematical model of
pneumococcal transmission based on IPD data presented in
previous European publications [38]. However until there is
evidence from more studies of capsular switching after PCV,
IPD from non-vaccine-type pneumococci may be a more
pressing issue [39]. Antibiotic resistance in pneumococcal
isolates has also been shown to be present globally in both
carriage [40–42] and disease [43–45] cases. Reasons for
pneumococcal antibiotic resistance include vaccine pressures
as well as overprescribing and overuse of antibiotics acting
as a selective pressure for current strains to undergo clonal
expansion [46, 47].

5. Interactions of Nasopharyngeal Microbiota

The microbiota of the human nasopharynx contains both
commensal and potentially pathogenic species with external
environmental factors and the presence of antibiotic resistant
species contributing to disease states [48].

Bacteria found to reside in the nasopharynx other than
S. pneumoniae include H. influenzae, Moraxella catarrhalis,
alpha-haemolytic streptococci (𝛼-HS), Staphylococcus au-
reus, and Neisseria meningitidis which are included in this
review as respiratory bacteria capable of causing significant
infections. M. catarrhalis is a nonmotile Gram-negative
human commensal and opportunistic pathogen responsible
for a range of infections, including causing an estimated
10% of adult chronic obstructive airways disease (COPD)
exacerbations [49]. It has been shown that even the coloni-
sation of M. catarrhalis in a COPD patient can contribute
to the progression of airway disease [50]. S. pneumoniae,
Streptococcusmutans, and Streptococcus sanguis are all species
of 𝛼-haemolytic streptococci (𝛼-HS) that are both com-
mensal and pathogenic in people; Streptococcus viridans are
a group of streptococcal organisms including Streptococcus
mitis, Streptococcus salivarius, and S. mutans. S. viridians have
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been shown to be involved in causing empyema thoracis
and lung abscesses [51]. S. aureus is a commensally carried
Gram-positive bacterium that can act as an opportunistic
respiratory pathogen in susceptible individuals. Nasal car-
riage of S. aureus is positively associated with noninvasive
and invasive infections, compared to those who do not carry
S. aureus [52]. It is important to assess the carriage of S.
aureus and to monitor if carriage of methicillin-resistant
(MRSA) bacteria is increasing in the community. Carriage
of the Gram-negative diplococcus N. meningitidis is higher
in young children under 1 year of age and then, after 15
years of age [53], N. meningitidis can result in a wide range
of infections and bacterial load is associated with mortality,
particularly for serogroup C that produces a higher bacterial
load in patients [54]. H. influenzae are Gram-negative coc-
cobacilli, serologically typed a–f, as well as a large, distinct
population [55] that are unencapsulated, termed nontypeable
H. influenzae (NTHi). Certain bacterial genes of NTHi have
been found to be associated to aid bacterial persistencewithin
the lower airways of patients with COPD [56] as well as now
being known to cause invasive disease in risk groups [57].

6. Monitoring Bacterial Carriage

Bacterial colonization is thought to be a prerequisite for an
individual to become infected, but bacterial colonisation does
not normally result in infection [58].There are many relevant
studies, both completed and ongoing, that monitor bacterial
carriage in individuals [59–63]. Bacterial carriage may be
monitored to detect before and after changes following the
implementation of a preventative vaccination strategy [4, 59,
64–68]. Carriage can be monitored for changes attributed
to age, health status, geographical location, ethnicity, and
many other environmental factors [69, 70]. Carriage of a
number of bacteria or carriage of a single bacterial species
can be monitored. Respiratory bacteria can be detected using
relatively noninvasive means such as a nasopharyngeal [71,
72] or nose swab,meaning that larger numbers of patients can
be recruited to strengthen the results gained from the study.

Pneumococcal carriage studies are highly informative
and beneficial for a number of reasons. Through surveillance
of invasive disease studies, we have seen how PCVs are
effective against invasive vaccine-type (VT) pneumococcal
disease [73], and through carriage studies we can see the
reduction of VT pneumococcal colonisation and VT pneu-
mococcal transmission [74]. It is also possible to monitor
indirect effects of PCVs (Table 1), such as changes in dynam-
ics of the nasopharynx to detect microbial shifts [75], where
the bacterial species change in content or numbers due to an
external pressure.

7. A Niche of Carriage and Infection

Bacterial cocolonisation of the nasopharynx niche can be
classed as dynamic as it comprises both synergistic and
competitive associations. These associations can change
depending on whether or not the niche is in a healthy or
a disease state [76]. A lower diversity of nasopharyngeal

flora has been positively associated with higher carriage rates
of nasopharyngeal pathogens including S. pneumoniae, H.
influenzae, and M. catarrhalis [77]. Individuals with sponta-
neous otorrhea that have multiple pneumococcal serotypes
colonising at any one time were more likely to present with
other species cocolonising [78]. Viral infection has been to
leave the middle ear vulnerable to infection by bacteria that
normally reside in the nasopharynx [79].

External factors such as sibling interaction and interac-
tion with other children can play a part in polymicrobial
carriage, and such relationships are associated with more
frequent nasopharyngeal carriage of potential pathogens
[80]. Adult associations with more frequent carriage of
potential pathogenic species include, but are not limited to,
the presence of children either at home or at work, preexisting
allergic conditions, and respiratory conditions including
COPD and asthma [80]. Such data imply that children are
reservoirs for bacterial pathogens. With increased contact
between children and other children or children and adults,
there is a greater chance for bacterial transmission between
the individuals.

S. pneumoniae and H. influenzae are frequently found
to cocolonise the nasopharynx, and competition may exist
between the two organisms for nutritional resources and for
dominance of the niche. It has been shown that H. influen-
zae when colonising with S. pneumoniae may outcompete
them for survival through signaling of nucleotide-binding
oligomerisation domain-1 (Nod1) to facilitate clearance of S.
pneumoniae [81], but virulent S. pneumoniae serotypes show
resistance to host cell-mediated clearance as a mechanism to
overcome these attacks [82]. Both organisms cause immune
responses in colonised individuals and cocolonisation by
these two pathogens can result in exaggerated immune
responses with prolonged hospitalization particularly for
young asthmatics experiencing their first count of wheezes
[83].

Before the inclusion of the H. influenzae type b (Hib)
conjugate vaccine in theUK routine paediatric immunisation
schedule in 1992 [84], around 95% of invasive H. influenzae
disease was attributed to serotype b alone [85]. After Hib
vaccination there was a dramatic 98% decrease in invasive
disease by 1998 [86]. However a small amount of Hib disease
has still been reported in some vaccinated populations,
ranging from invasive disease due to vaccine failure in the
UK and elsewhere [86, 87]. Increased disease incidence has
been reported for non-Hib serotypes [88–90]. NTHi has also
been reported as a cause for invasive disease [90, 91]. The
surveillance followingHib vaccination indicates that vaccine-
type replacement is seen with other strains not included
in vaccine formulation; however studies have not yet fully
elucidated the effects on cocolonising niche species.

Polymicrobial cocarriage can consist of more than one
bacterial species; this can also include viruses and fungi
[92]. A polymicrobial infection combining both bacteria and
fungi can mount a greater immune response within a host
than infection by either bacteria or fungi [93]. Preinfection
with a virus can destroy epithelial cells and allow better
adhesion for bacteria, thus priming the middle ear for
further infection that can result in otitis media [94]. Bacterial
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Table 1: Examples of studies identifying respiratory cocarriage of bacterial species in the PCV era.

Study Study detail: vaccination status, species selected,
and origin of samples Methodology

Wiertsema et al. [104] Post-PCV7, Spn, and Hflu (Australia) Nasopharyngeal swab (NP) and conventional
culture

Xu et al. [101] Post-PCV7, Spn, Hflu, and Mcat (USA) Nasal swab (NS), oropharyngeal sample (OP), and
conventional culture

Spijkerman et al. [105] Post-PCV7, Spn, SA, Hflu, and Mcat
(Netherlands) NP swab and conventional culture

Principi et al. [24] Pre-PCV7, Spn, Hflu, and Mcat (Italy) NP swab and conventional culture

Biesbroek et al. [75] Post-PCV7 and pre-PCV7, Spn, Mcat, SA, and
Spn (Netherlands) NP swab and 454 pyrosequencing

Xu et al. [76] Post-PCV7, Spn, Hflu, Mcat, and SA (USA) NP, OP, and conventional culture
Pettigrew et al. [77] Post-PCV7, Spn, Hflu, and Mcat (USA) NP and 454 pyrosequencing
Laufer et al. [102] Post-PCV7, Spn (USA) NS swab and 454 pyrosequencing

Bogaert et al. [103] Post-PCV7 and reduced dose PCV7, Spn, Hflu,
Mcat, and SA (Netherlands) NP swab and 454 pyrosequencing

This table includes vaccination status, species chosen for monitoring, and the origin of the samples as well as the methodology used for a comparison. Spn: S.
pneumoniae; Hflu: H. influenzae; SA: S. aureus; Mcat:M. catarrhalis. 454 pyrosequencing is nonculture based identification.

communities that aggregate together on a surface are known
as biofilms. Biofilms have a number of mechanisms to
increase persistence and survive, which protect from both
therapeutic attack and host immune responses [95, 96].
Bacterial biofilms contribute to a range of chronic respiratory
and otolaryngeal diseases. Bacterial biofilms are commonly
detected and implicated in pathogenicity in children with
recurrent acute otitis media [97, 98], chronic middle ear
effusion [99], and other chronic respiratory conditions.

8. Indirect Effects of PCV Implementation

Reports are emerging of the effect of PCV implementation on
cocarriage and disease caused by bacteria other than pneu-
mococci. Where vaccine serotypes of S. pneumoniae have
been eradicated, there has been an increase in nontypeable
H. influenzae isolated in cases of otitis media [100]. A large
study of healthy children and children with recurrent otitis
media, all less than 36 months of age in Western Australia,
has shown that with a decrease in S. pneumoniae and S.
pneumoniae PCV7 VT serotypes there is a corresponding
increase in H. influenzae, particularly NTHi. Another study
has shown that colonisation with of S. pneumoniae invasive
serotype 19A is associated with a decrease in colonisation
of H. influenzae [101]. To study the indirect effects of PCV
implementation without introducing bias through standard
microbiology culture, 16S-sequencing was used to sequence
nasopharyngeal swabs of children with or without otitis
media, which demonstrated that an infection is associated
with increased S. pneumoniae andH. influenzae being present
with a lack of protective flora present [102]. Another study
set out to characterize the nasopharyngeal niche to deduce
which, if any, external factors (such as viral carriage and day
care level) have an effect on the microbiota of the nasophar-
ynx of young children. Results showed that seasonal changes

were occurring but that these were unrelated to viral or
antibiotic causes and that seasonal variations corresponded to
“healthy” probiotic species being more abundant in summer
rather than autumn [103].

9. Summary

Pneumococcal conjugate vaccines (PCVs) affect the carriage
of S. pneumoniae and the carriage of vaccine-type (VT)
serotypes. With a decrease in S. pneumoniae PCV7 VT sero-
types, there was a corresponding increase in H. influenzae,
particularly NTHi [100], exemplifying the dynamic, poten-
tially competitive relationship between these two organisms
[106–108]. The eradication of PCV7 VT in the nasopharynx
has also been associatedwith higher rates ofH. influenzae and
S. aureus carriage in young children and infants, highlighting
those virulent serotypes of S. pneumoniae also having a com-
petitive relationship with S. aureus as well as H. influenzae
[75, 105]. Incidences of bacterial cocarriage are important
to report to inform future vaccine developments. This is
important as the effect of vaccines targeting nasopharyngeal
pathogens may produce indirect effects, as the ultimate
balance between cocolonising organisms is unknown. The
future of vaccination is under scrutiny with each vaccination
implemented against specific serotypes or serogroups, as
vaccine-type replacement is detected in the years following
vaccination. When it is so difficult to predict the effects after
vaccination of the target species, it is even more difficult to
account for the indirect effects on cocolonising species.

(i) IPD remains an important disease both in theUK and
worldwide responsible for morbidity and mortality.

(ii) PCVs are currently the most effective pneumococcal
vaccinations available at both reducing colonization
of invasive serotypes and invasive disease.
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(iii) The role of conjugate vaccines in the nasopharyngeal
niche remains unclear as studies initially focused on
serotype/serogroup replacement of the target species.

(iv) Serotype replacement occurs after PCV implemen-
tation, driving the need to develop new vaccination
strategies independent of pneumococcal serotype
inclusion.

(v) Bacterial carriage studies in the conjugate vaccine
era have primarily focused on carriage of the target
species; there have not been as many studies looking
at nasopharyngeal cocarriage.

(vi) Studies that have looked at nasopharyngeal cocarriage
in the PCV era have shown changes in carriage of
H. influenzae and S. aureus following PCV imple-
mentation, implying that a reduction in vaccine-type
pneumococci will result in an increase of carried H.
influenzae and S. aureus.

(vii) It is currently difficult to define all potential indirect
effects of PCV on the carriage of nonpneumococcal
organisms.
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