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The day we understand the time evolution of subcellular events
at a level of detail comparable to physical systems governed by
Newton’s laws of motion seems far away. Even so, quantitative
approaches to cellular dynamics add to our understanding of cell
biology. With data-guided frameworks we can develop better
predictions about, and methods for, control over specific biolog-
ical processes and system-wide cell behavior. Here we describe
an approach for optimizing the use of transcription factors (TFs)
in cellular reprogramming, based on a device commonly used in
optimal control. We construct an approximate model for the nat-
ural evolution of a cell-cycle–synchronized population of human
fibroblasts, based on data obtained by sampling the expression of
22,083 genes at several time points during the cell cycle. To arrive
at a model of moderate complexity, we cluster gene expression
based on division of the genome into topologically associating
domains (TADs) and then model the dynamics of TAD expression
levels. Based on this dynamical model and additional data, such
as known TF binding sites and activity, we develop a method-
ology for identifying the top TF candidates for a specific cellu-
lar reprogramming task. Our data-guided methodology identifies
a number of TFs previously validated for reprogramming and/or
natural differentiation and predicts some potentially useful com-
binations of TFs. Our findings highlight the immense potential of
dynamical models, mathematics, and data-guided methodologies
for improving strategies for control over biological processes.

cellular reprogramming | control theory | time series data |
genome architecture | networks

In 1989, pioneering work by Weintraub et al. (1) success-
fully reprogrammed human fibroblasts into muscle cells via

overexpression of transcription factor (TF) MYOD1, becoming
the first study to demonstrate that the natural course of cell
development could be altered. In 2007, Yamanaka and cowork-
ers (2) changed the paradigm further by successfully repro-
gramming human fibroblasts into an embryonic stem-cell–like
state [induced pluripotent stem cells (iPSCs)], using four TFs:
POU5F1, SOX2, KLF4, and MYC. This work showed that a dif-
ferentiated cell state could be reverted to a more pluripotent
state. These discoveries have changed the trajectory of regener-
ative medicine, opening the possibility of generating needed cell
types on demand for repairing damaged or diseased tissues. Ulti-
mately, patient-derived fibroblasts could be used in autologous
transplantations to minimize immune incompatibility.

These remarkable findings also demonstrate that the genome
is a system capable of being controlled via an external input
of TFs. In this context, determining how to push the cell from
one state to another is, at least conceptually, a classical prob-
lem of control theory (3). The difficulty arises in the fact that
the dynamics—and even proper representations of the cell state
and inputs—are not well defined in the context of cellular repro-
gramming. Nevertheless, it seems natural to treat reprogram-
ming as a problem in control theory, with the final state being
the desired reprogrammed cell. In this paper, we provide such a
framework based on empirical data and demonstrate the poten-

tial of this framework to provide insights into cellular repro-
gramming (4).

Our goal is to mathematically identify TFs that can directly
reprogram human fibroblasts into a desired target cell type. As
part of our methodology, we create a model for the natural
dynamics of proliferating human fibroblasts, using time series
data collected throughout the cell cycle. We couple data from
bioinformatics with methods of mathematical control theory—a
framework that we dub data-guided control (DGC). We use this
model to determine a principled way to identify the best TFs for
efficient reprogramming.

Previously, selection of TFs for reprogramming has been
based largely on trial and error, typically relying on TF differen-
tial expression between cell types for initial predictions. Recent
work has sought to predict TFs for reprogramming the cell state
(5–8). Rackham et al. (7) devised a predictive method based
on differential expression, as well as gene and protein network
data. Our approach is fundamentally different in that we take a
dynamical systems point of view, opening avenues for investigat-
ing efficiency (probability of conversion), timing (when to intro-
duce TFs), and optimality (minimizing the number of TFs and
amount of input).

Our method identifies TFs previously found to reprogram
human fibroblasts into embryonic stem-cell–like cells, muscle
cells, and many additional target cell types. Furthermore, our
analysis predicts the points in the cell cycle at which the introduc-
tion of TFs might most efficiently affect a desired change of cell
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state. In addition, we demonstrate the efficacy of using topologi-
cally associating domains (TADs) for genome dimension reduc-
tion. Implicit in this approach is the notion of distance between
cell types, which is measured in terms of the amount of transcrip-
tional change required to transform one cell type into another.
In this way, we are able to provide a comprehensive quantita-
tive view of human cell types based on the respective distances
between them.

Our framework separates into three parts:

i) Define the state. Use structure and function observations of
the initial and target cell types’ genomes to define a compre-
hensive state representation.

ii) Model the dynamics. Apply model identification methods to
approximate the natural dynamics of the genome from time
series data.

iii) Define and evaluate the inputs. Infer from bioinformatics
(TF binding location and function) where TFs can influence
the genome and then quantify controllability properties with
respect to the target cell type.

The actual dynamics of the genome are undoubtedly very com-
plicated, but as is often done in mathematical modeling studies,
we use measurements to identify a linear approximation. This
will take the form of a difference equation that is widely studied
in the control systems literature, (9):

xk+1 = Akxk + Buk . [1]

In this case, the three items listed above correspond respectively
to the value of the state xk at time k , the time-dependent state
transition matrix Ak , and the input matrix B (along with the
input function uk ).

Methods
Genome-State Representation and Dimension Reduction: xk . The
state representation x in Eq. 1 is the foundation for any control
system and is critical for controllability analysis. To fully repre-
sent the state of a cell, a high number of measurements would
need to be taken, including gene expression, protein level, chro-
matin conformation, and epigenetic measurements. As a simpli-
fication, we assume that the gene expression profile is a sufficient
representation of the cell state.

Gene expression for a given cell is dependent on a num-
ber of factors, including (but not limited to) cell type, cell-
cycle stage, circadian-rhythm stage, and growth conditions. To
best capture the natural fibroblast dynamics from population-
level data, time series RNA-seq was performed on cells that
were cell-cycle and circadian-rhythm synchronized in normal
growth medium conditions (SI Appendix). Before data collec-
tion, all cells were temporarily held in the first stage of the
cell cycle, G0/G1, via serum starvation. Upon release into
the cell cycle, the population was observed every ∆t = 8 h
for 56 h, yielding eight time points (at 0 h, 8 h, 16 h, . . . ,
56 h). Let gi,k be the measured activity of gene i = 1, . . .,N
at measurement time k = 1, . . ., 8, where N is the total num-
ber of human genes observed (22,083). Analysis of cell-cycle
marker genes indicated that the synchronized fibroblasts took
between 32 h and 40 h to complete one cell cycle after growth
medium introduction (SI Appendix, Fig. S1). Because of this,
we define K = 5 to be the total number of time points used for
this model.

An obstacle to using g to represent x in a dynamical systems
approach is the computational feasibility of studying a system
with over 20,000 variables, necessitating a dimension reduction.
A comprehensive genome-state representation should include
aspects of both structure and function and simultaneously have
low enough dimension to be computationally reasonable. Along
these lines, we propose a biologically inspired dimension reduc-
tion based on TADs.

Fig. 1. Overview of TAD dimension reduction. (A) Partitioning the Hi-C
matrix based on the Fiedler vector. (B) Cartoon depiction of TAD genomic
structure. (C) TAD dimension reduction summary.

The advent of genome-wide chromosome conformation cap-
ture (Hi-C) allowed for the studying of higher-order chromatin
structure and the subsequent discovery of TADs (10). TADs are
inherent structural units of chromosomes: contiguous segments
of the 1D genome for which empirical physical interactions can
be observed (11). Moreover, genes within a TAD tend to exhibit
similar activity, and TAD boundaries have been found to be
largely cell-type invariant (11, 12). TADs group structurally and
functionally similar genes, serving as a natural dimension reduc-
tion that preserves important genomic properties. Fig. 1 depicts
an overview of this concept. We computed TAD boundaries from
Hi-C data via an algorithm that uses Fielder vector partitioning,
described in Chen et al. (13) (SI Appendix).

Let tad(i) := j if gene i is contained within TAD j . We
define each state variable xj ,k to be the expression level of TAD
j = 1, . . ., Ñ at time k , where Ñ = 2, 245 is the total number of
TADs that contain genes. Specifically, xj ,k is defined as the sum
of the expression levels of all genes within the TAD, measured in
reads per kilobase of transcript per million (RPKM); i.e.,

xj ,k :=
∑
i s.t.

tad(i)=j

gi,k . [2]

The vector of all TAD activities at measurement k is denoted
with a single subscript xk ∈RÑ×1, k = 1, . . .,K .

State Transition Matrix: Ak . Given the data we have, perhaps the
most direct way to model the evolution of TAD activity level
would be to assume a model of the form xk+1 = xk +uk , where xk
and xk+1 come from data, and uk is the exogenous input. How-
ever, in a time-varying situation, it will typically not be the best
way to use the data to create a model because it fails to cap-
ture the idea that an input applied at one point in the cell cycle
can be expected to have a different effect if applied at a differ-
ent point in the cell cycle. Taken over a full cycle, the average
value of the expression level of the 2,245 TADs is known within
experimental error. Assuming that there is a function f which
maps xk to xk+1, we can subtract the steady-state average, x̄ ,
and focus on measuring the deviation from average as the cycle
evolves. With this in mind, we consider the first-order approxi-
mation f (x ) = x̄ + A(x − x̄ ), where A is allowed to depend on
where one is in the cell cycle. This is a time-varying linear model
for the variation from x̄ . If the model is to match data and cap-
ture variability over the cell cycle, we will need to have a dif-
ferent A for each time step. Using the principle that A should
differ as little from the identity as possible, we let Ak be the
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identity plus a rank one matrix chosen to match the data for each
time step k ; we impose the condition that without inputs we have
xk+1 − x̄ =Ak (xk − x̄ ).

Define a time-dependent state transition matrix Ak as

Ak := IÑ +
(xk+1−xk )x

T
k

xT
k

xk
∈ RÑ×Ñ , k = 1, 2, 3, 4, 5, [3]

where IÑ is the Ñ × Ñ identity matrix. Let the measured values
of the state of the unforced evolution be x1, x2, · · · , x5; let the
controls be labeled u1, u2, · · · , u5; let the values of the state with
the controls acting be z2, z3, · · · , z6. Letting z denote the devia-
tion from the cell-cycle average, we have

zk+1 =

(
I +

1

xT
k xk

(
xk+1 − xk )xT

k

))
zk + Buk ,

where Ak is as above. Solving this difference equation, we have

zk =

k−1∏
i=1

Aix1 +

k−1∑
i=1

k−1∏
j=i

Aj−1Bui

with the understanding that A0 = I . This explicit expression
shows that the effect of the u(i) cannot be inferred from the
sum of the ui because different ui are weighted in different ways,
dependent on the stage in the cell cycle at which it is applied. This
is a significant point relating to the model and plays a significant
role in determining the optimal times for inserting TFs.

Input Matrix and Input Signal: B, uk . With the natural TAD-level
dynamics established in the context of our control Eq. 1, we turn
our attention to quantifying methods for control.

A TF can regulate a gene positively or negatively by bind-
ing to a specific DNA sequence near a gene and encouraging
or discouraging transcription. The degree to which a TF acti-
vates or represses gene expression depends on the specific TF–
gene interaction, which is influenced by a variety of factors that
are difficult to quantify. Let wi,m be the theoretical regulation
weight of TF m on gene i , where wi,m > 0 (wi,m < 0) if TF m
activates (represses) gene i , and m = 1, . . .,M , where M is the
total number of well-characterized TFs. Weights that are big-
ger in absolute value, |wi,m |� 0, indicate stronger transcrip-
tional influence, and weights equal to zero, wi,m = 0, indicate no
influence.

Extensive TF perturbation experiments would be needed to
determine wi,m for each TF m on each gene i . Instead, we
propose a simplified method to approximate wi,m from exist-
ing, publicly available data for TF binding sites (TFBSs), gene
accessibility, and average activator/repressor activity. To deter-
mine the number of possible binding sites a TF m recognizes
near gene i , the reference genome was scanned for the loca-
tions of potential TFBSs following methods outlined by Neph
et al. (14) (SI Appendix). Position frequency matrices (PFMs),
which give information on TF–DNA binding probability, were

Fig. 2. DGC overview. (A) Summary of control equation variables. (B) Each TAD is a node in a dynamic network. The blue connections represent the edges
of the network and are determined from time series fibroblast RNA-seq data. The green plots represent the expression of each TAD changing over time.
The red arrows indicate additional regulation imposed by exogenous TFs. (C) A conceptual illustration of the problem: Can we determine TFs to push the
cell state from one basin to another?

obtained for 547 TFs from a number of publicly available sources
(∴ M = 547). Let ci,m be the number of TF m TFBSs found
within ±5 kb of the transcriptional start site (TSS) of gene i (SI
Appendix, Fig. S2).

Although many TFs can do both in the right circumstances,
most TFs have a tendency toward either activator or repressor
activity (15). That is, if TF m is known to activate (repress) most
genes, we can say with some confidence that TF m is an activa-
tor (repressor), so wi,m ≥ 0 (wi,m ≤ 0) for all i . To determine a
TF’s function, we performed a literature search for all 547 TFs
and labeled 299 as activators and 124 as repressors (SI Appendix).
The remaining TFs were labeled unknown for lack of conclusive
evidence and were evaluated as both an activator and a repres-
sor in separate calculations. Here, we define am as the activ-
ity of TF m , with 1 and −1 denoting activator and repressor,
respectively.

TFBSs are cell-type invariant since they are based strictly on
the linear genome. However, it is known that for a given cell type,
certain areas of the genome may be opened or closed, depend-
ing on epigenetic aspects. To capture cell-type–specific regula-
tory information, we obtained publicly available gene accessibility
data (DNase-seq) on human fibroblasts (GSM1014531). DNase-
seq extracts cell-type–specific chromatin accessibility information
genome-wide by testing the genome’s sensitivity to the endonu-
clease DNase I and sequencing the nondigested genome frag-
ments. These data are used for our initial cell type to determine
which genes are available to be controlled by TFs (16). Here,
we define si to be the DNase I sensitivity information (acces-
sibility; open/close) of gene i in the initial state, with 1 and 0
denoting accessible and inaccessible, respectively (SI Appendix).

We approximate wi,m as

wi,m := amsici,m , [4]

so that the magnitude of influence is equal to the number of
observed consensus motifs ci,m , except when the gene is inac-
cessible (si = 0) in which case wi,m = 0.

Since we are working off a TAD-dimensional model, our
input matrix B must match this dimension. Let bm be a 2,245-
dimensional vector, where the j th component is

bj ,m :=
∑
i s.t.

tad(i)=j

wi,m , [5]

and define a matrix B =
[
b1 b2 · · · bM

]
.

The amount of control input is captured in uk , which is an
RM×1 vector representing the quantity of the external TFs we
are inputting to the system (cell) at time k . This can be con-
trolled by the researcher experimentally through manipulation
of the TF concentration (17). In this light, we restrict our anal-
ysis to uk ≥ 0 for all k , as TFs cannot be subtracted from the
cell. um,k is defined as the amount of TF m to be added at time
point k .

11834 | www.pnas.org/cgi/doi/10.1073/pnas.1712350114 Ronquist et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1712350114/-/DCSupplemental/pnas.1712350114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1712350114/-/DCSupplemental/pnas.1712350114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1712350114/-/DCSupplemental/pnas.1712350114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1712350114/-/DCSupplemental/pnas.1712350114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1712350114/-/DCSupplemental/pnas.1712350114.sapp.pdf
http://www.pnas.org/cgi/doi/10.1073/pnas.1712350114


BI
O

PH
YS

IC
S

A
N

D
CO

M
PU

TA
TI

O
N

A
L

BI
O

LO
G

Y
SY

ST
EM

S
BI

O
LO

G
Y

With all variables of our control Eq. 1 defined, we can now
attempt to predict which TFs will most efficiently achieve cellu-
lar reprogramming from some xI (initial state; fibroblast in our
setting) to xT (target state; any human cell type for which com-
patible RNA-seq data are available) through manipulation of uk .
An overview of our DGC framework is given in Fig. 2.

Selection of TFs. Our general procedure for scoring TFs is
explained as follows. Eq. 1 has an explicit solution that is given
below. The first few terms are

z2 = A1x1 + Bu1

z3 = A2A1x1 + A2Bu1 + Bu2

z4 = A3A2A1x1 + A3A2Bu1 + A3Bu2 + Bu3

...

This shows how z4 depends on u1, u2, and u3.
If xT is a target condition, then the Euclidean distance ‖ · ‖

can be used to measure how close a state is to the target state.
We define

d = ‖xT − z6(u)‖, [6]

where the notation z6(u) is used to emphasize the dependence of
z6 on u . Considering all possible input signals, one can compute
the optimal control that finds the minimum distance for a given
initial and target cell type. Let u∗ denote the optimal u used to
minimize d and d∗ denote this minimum distance value.

When appropriate, we write z6(u) to emphasize the fact that
the final state depends on the input. The Euclidean distance
‖ · ‖ can be used to measure how close a given state is to the
target. If there were no restrictions on the u terms, the con-
trol that minimizes the distance between z6 and the target could
be computed without difficulty. However, there are reasons for
restricting the number of different TFs used in any one trial.
Transfection of cells with too many TFs can lower the effi-
ciency of transfection and even lead to cell death. Moreover,
many confirmed direct reprogramming experiments use ≤4 TFs
to achieve reprogramming. For these reasons, we modify the
optimization problem by adding the constraint that there are no
more than a fixed number of TFs (components of u) used in a
given trial.

Let p̂ be a set of integers that identifies the subset of the com-
ponents of u (read: TFs) that are allowed to be nonzero. For
example, p̂ = {1, 4, 7} refers to TFs 1, 4, and 7. Let p be the
number of elements in p̂. Given a set of TFs, p̂, we determine
the quantity and timing of TF input, u∗k , that minimizes the dif-
ference between x6 and the target cell state, xT . Mathematically,
this can be written as

minimize
u

‖xT − z6(u)‖

subject to

um,k ≥ 0, k = 1, ..., 5
um,k = 0, if m /∈ p̂
um,k+1 ≥ um,k

. [7]

We use MATLAB’s lsqnonneg function to solve Eq. 7, which
gives u∗k and d∗.

Let d0 := ‖xT − x0‖ be the distance between the final state
and target state with no control input. Define a score µ := d0 −
d∗, which can be interpreted as the improvement provided by
a particular choice of u . This can be calculated for each p̂ and
sorted (high to low) to determine which TF or TF combination is
the best candidate for direct reprogramming between x0 and xT .

We consider different scenarios for the type of input regime
in the results. The first one assumes the input signal is constant
u1 = uk = ū , intended to mimic empirical regimes where TFs are
given at a single time point. Later, we also consider inputting
TFs at different times k̂ , which can be viewed mathematically

as requiring um,k = 0 for all k < k̂ , and um,k is a constant value
for all k ≥ k̂ . This is intended to mimic inputting a TF at time
k̂ , which will continue to express at a constant level until time
point k = 6.

Remark. Subsets of TFs were chosen for each calculation based
on the following criteria: ≥10-fold expression increase in target
state compared with initial state and ≥10 RPKM in target state.
These criteria are used to select differentially expressed TFs and
TFs that are sufficiently active in the target state.

Results
Quantitative Measure Between Cell Types. To best use our algo-
rithm to predict TFs for reprogramming, compatible data on tar-
get cell types must be collected. For this, we explore a number
of publicly available databases where RNA-seq has been col-
lected, along with RNA-seq data collected in our laboratory.
The ENCODE Consortium has provided data on myotubes and
embryonic stem cells (ESCs) (SI Appendix) (18). The GTEx por-
tal provides RNA-seq data on a large variety of different human
tissue types (19). Although each GTEx experiment is performed
on tissue samples, thus containing multiple different cell types,
we use these data as more general cell-state targets.

To give a numerical structure to cell-type differences, concep-
tually similar to Waddington’s epigenetic landscape, we calculate
d0 between all cell types collected. Fig. 3A shows d0 values for 32
tissue samples collected from the GTEx portal, along with ESC,
myotube, and our fibroblast data (additional cell-type d0 values
shown in SI Appendix). GTEx RNA-seq data are scaled to keep
total RPKM difference between time series fibroblast and GTEx
fibroblast RNA-seq minimal (SI Appendix).

TF Scores. To assess our method’s predictive power, a subset of
target cell types is presented here that has validated either TF
reprogramming methods or TFs highly associated with the tar-
get cell type. Additional predicted TFs for reprogramming are
included in SI Appendix. We note that although experimentally
validated TFs provide the best current standard for compari-
son, we believe experimental validation with our predicted TFs
may provide more efficient and comprehensive reprogramming
results. For all reprogramming regimes presented in this section,
fibroblast is used as the initial cell type due to the availability
of synchronized time series data, and all TFs are introduced at
k = 1 (11).

For conversion of fibroblast to myotubes, the top predicted
single-input TFs are MYOG and MYOD1, both of which are
known to be crucial for myogenesis. While MYOD1 is the clas-
sic master regulator reprogramming TF for myotube conver-
sion, activation of downstream factor MYOG is necessary for
full conversion (20). For fibroblast to ESC conversion, a num-
ber of TFs known to be necessary for pluripotency are predicted,
including MYCN, ZFP42, NANOG, and SOX2 (2). With the
knowledge that no single TF has been shown to fully repro-
gram a fibroblast to an embryonic state, combinations of TFs
are more informative for this analysis. The top-scoring combi-
nation of three TFs is MYCN, NANOG, and POU5F1—three
well-known markers for pluripotency (2). Interestingly, POU5F1
scores poorly when input individually, but is within the top set of
three TFs when used in combination with MYCN and NANOG.
Left ventricle reprogramming includes TFs that are known to
be necessary for natural differentiation in the top score for all
one to three combinations. These include GATA4 (a known
TF in fibroblast to cardiomyocyte reprogramming), HEY2, and
IRX4 (21–23).

Time-Dependent TF Addition. Fibroblast to ESC conversion was
of particular interest in our analysis as this is a well-studied
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Fig. 3. Quantitative measure between cell types and TF scores. (A) d0 values between GTEx tissue types and ESC, myotube, and fibroblast. Tissue types and
cell types with black arrows have predicted TFs for reprogramming from fibroblasts shown in B. (B) Table of predicted TFs for a subset of cell and tissue
types. Top five TFs for combinations of one to three are shown. Green labeled TFs are highly associated with the differentiation process of the target cell
type and/or validated for reprogramming. These TFs are discussed in the main text. (C) Time-dependent scores for selected combinations of three TFs for
fibroblast to ESC and fibroblast to “heart - left ventricle.” x axis refers to time of TF addition, and y axis refers to µ.

regime with a number of validated TFs (with a variety of reported
efficiencies), and this conversion is promising for its regener-
ative medicine application. High-scoring TFs yield many that
are known markers for pluripotency, but the top combination of
three, MYCN, NANOG, and POU5F1, has not been used specif-
ically together, to our knowledge. Here, we analyzed how the TF
combination would score if input at different points throughout
the cell cycle.

Time-dependent analysis of the top-scoring ESC TFs reveals
that scores vary widely, depending on the time of input. MYCN
and NANOG show a strong preference for input at the begin-
ning of the cell cycle, while POU5F1 shows a slight prefer-
ence for input toward the end of the cell cycle, with the high-
est score achieved when MYCN and NANOG are input at 0 h
and POU5F1 is input at 32 h. Analysis on how the time of input
control affects µ is shown in Fig. 3C. Time-dependent analysis
was also conducted for the top combination of three TFs for
fibroblast to left ventricle. This analysis predicted that the best
reprogramming results would occur if GATA4 is given imme-
diately (0 h), with IRX4 and HEY2 given later (24 and 32 h,
respectively).

Discussion
The results from this algorithm show promise in their prediction
of known reprogramming TFs and demonstrate the importance
of including time series data for gene network dynamics. Time of
input control has shown to have an impact on the end cell state,
in line with what has been shown in natural differentiation (24).

While we believe that this is the best model currently avail-
able for predicting TFs for reprogramming, we are aware of its
limitations and assumptions. TAD-based dimension reduction is
based on the observation that genes within them correlate in
expression over time, although we lack definitive proof of regu-

lation by shared transcriptional machinery (11). This assumption
was deemed necessary for dimension reduction in the context of
deriving transition matrix Ak . With finer time steps in RNA-seq
data, the assumption may not be necessary for TF prediction, at
the cost of increased computation time. Additionally, a 5-kb win-
dow flanking the TSS of each gene was used to ensure that all
potential regulators are found, at the cost of potential inclusion
of false positive motifs.

Although this program can score TFs relative to other TFs
in a given reprogramming regime, it is difficult to predict a µ
threshold that would guarantee conversion. Additionally, rigor-
ous experimental testing will be required to validate these find-
ings and determine how our u vector translates to TF concentra-
tion. This is a product of the large number of assumptions that
we have made to develop the initial framework for a reprogram-
ming algorithm. With finer resolution in the time series gene
expression, more subtle aspects of the genomic network may be
observed, allowing for better prediction.

Our proposed DGC framework successfully identified known
TFs for fibroblast to ESC and fibroblast to muscle cell repro-
gramming regimes. We use a biologically inspired dimension
reduction via TADs, a natural partitioning of the genome. This
comprehensive state representation was the foundation of our
framework, and the success of our methods motivates further
investigation of the importance of TADs as functional units to
control the genome.

A dynamical systems view of the genome allows for analysis
of timing, efficiency, and optimality in the context of reprogram-
ming. Our framework is the first step toward this view. The suc-
cessful implementation of time-varying reprogramming regimes
would open unique avenues for direct reprogramming. This
template can be used to develop regimes for changing any cell
into any other cell, for applications that include reprogramming
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cancer cells and controlling the immune system. Our DGC
framework is well equipped for designing personalized cellular
reprogramming regimes. Finally, this framework can serve as
a general technique for investigating the controllability of net-
works strictly from data.

Materials and Methods
Hi-C and RNA-seq data were collected from cell-cycle– and circadian-
rhythm–synchronized proliferating human fibroblasts of normal karyotype.

Data were collected every 8 h, spanning 56 h. Publicly available data were
used for target cell types. Detailed materials and methods are provided in
Chen et al. (11), Dataset S1, and in SI Appendix.
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