l‘ I ‘ Journal of Chemical Theory and Computation

Ho®

pubs.acs.org/JCTC

Regularized CASPT2: an Intruder-State-Free Approach

Stefano Battaglia,* Lina Fransén, Ignacio Fdez. Galvan, and Roland Lindh*

Cite This: J. Chem. Theory Comput. 2022, 18, 4814-4825

I: I Read Online

ACCESS | [l Metrics & More | Article Recommendations | @ Supporting Information

ABSTRACT: In this work we present a new approach to fix the
intruder-state problem (ISP) in CASPT2 based on ¢* regularization.
The resulting o’-CASPT2 method is compared to previous
techniques, namely, the real and imaginary level shifts, on a
theoretical basis and by performing a series of systematic
calculations. The analysis is focused on two aspects, the effectiveness
of o°-CASPT2 in removing the ISP and the sensitivity of the
approach with respect to the input parameter. We found that o-
CASPT?2 compares favorably with respect to previous approaches
and that different versions, ¢'-CASPT2 and 6*CASPT2, have
different potential application domains. This analysis also reveals the
unsuitability of the real level shift technique as a general way to
avoid the intruder-state problem.

1. INTRODUCTION

Among the many options of multireference electron correlation
methods," approaches based on second-order perturbation
theory (PT2) with a multiconfigurational reference function
offer an appealing compromise between accuracy and computa-
tional complexity. Their popularity is reflected by the large
number of available flavors,”® which typically differ in the
partitioning of the Hamiltonian, the many-electron basis used to
express the first-order wave function, or the conditions to obtain
the expansion coeflicients. One of the most known and used of
these multireference perturbation theory (MRPT) approaches
is complete active space PT2 (CASPT2),” whose development
has seen some important activity in recent times, with a newly
modified zeroth-order Hamiltonian (CASPT2-K),” new quasi-
degenerate variants (XDW-CASPT2 and RMS-CASPTZ),IO’Il
reduced scaling implementations,'”~"* and analytic nuclear
energy gradients and derivative couplings.'>~** Despite its
popularity and general applicability, CASPT?2 suffers from an
issue common to other MRPT-based approaches, the intruder-
state problem (ISP). While this generally does not appear when
modeling the ground state of small organic compounds, it is
much more common in transition metal complexes and excited-
states applications. Two techniques have been introduced
during the years to avoid this issue in CASPT2, namely, the real
and imaginary level shifts.”** In both cases, the idea is to add a
uniform shift to the resolvent operator, avoiding the singularity
that causes the ISP. As a consequence, these techniques
introduce a dependence of the results on a user-defined
parameter, which should ideally be minimal, especially in the
absence of intruder states. In other words, the results for well-
behaved cases should be as insensitive as possible to the value of
the input parameter. This is because it is common that, for a
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molecular system, only a subset of electronic states or
conformations is affected by the ISP but all of them are treated
with the same intruder-state-removal technique. In principle, the
results of well-behaved cases should not change as a function of
the parameter, as they did not require any intervention in the
first place. This is for instance typical in the calculation of vertical
transition energies, where only one or a few states of the
excitation manifold are plagued by ISPs, albeit imposing the use
of the shift for all states. Furthermore, considering the current
wide availability of analytic nuclear energy gradients for
CASPT2,''¢20212526 exploration of the potential energy
surfaces, especially in the excited states,”” has become more
common, requiring a robust approach that effectively avoids
ISPs and that at the same time does not affect the qualitative
description in regions of the PES where these are not present. In
this context, the real level shift*® is not an ideal solution, the
reason for which the imaginary level shift’* had been developed.
This second option is much better, because it selectively corrects
large amplitudes. Nevertheless, the results obtained remain
susceptible to the choice of input parameter. In an attempt to
find a new intruder-state-removal technique that is more
insensitive to this, but equally effective in removing the
singularities in the first-order wave function, we propose to
use o* regularization in CASPT2.”**” This approach is a simple
and effective way to remove the ISP, and that from a theoretical
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perspective appears to have some advantages over the real and
imaginary level shift techniques. In this contribution we
introduce the ¢’-CASPT2 method and critically analyze it in
comparison to the established alternatives.

The work is organized as follows. In the next section we
present the theoretical foundations of the ISP and the various
intruder-state-removal techniques. We then conduct a series of
tests to evaluate the effectiveness of 6*-CASPT?2 in removing the
ISPs and study the sensitivity of this new approach with respect
to the input parameter. In the last section we summarize our
findings and briefly discuss the remaining open issues in this
context and possible future directions to solve them.

2. THEORETICAL BACKGROUND

In this section we will define the intruder-state problem from a
phenomenological perspective, review the theory behind the
level shift techniques, and introduce the o regularization
formalism. The discussion is very general and applies, in
principle, to any approach based on second-order Rayleigh—
Schrodinger perturbation theory (RSPT2). However, in the
following, these techniques are presented in the context of
CASPT?, as this method is the focus of the present work.

2.1. Elements of Second-Order Perturbation Theory.
The starting point is the partitioning of the Hamiltonian into a
zeroth-order part and a perturbation operator (also known as
fluctuation potential):

(0) (1)
The wave function of the reference state ¥*) is an eigenfunction
of H© by construction (which does not necessarily have to be
the ground-state one), with an associated energy eigenvalue E©.
Note that in state-specific CASPT2, this energy does not
correspond to the CASSCF one but rather to the expectation
value of the generalized Fock operator (this is just as in MP2,
where the zeroth-order energy does not correspond to the
Hartree—Fock one). The first-order interacting space (FOIS) is
spanned by an additional set of M eigenfunctions of HO),
satisfying the following eigenvalue equation:

A=0"+7V

A%  =ed, i=1.,M

1

@)

In CASPT2, the functions @, are (linear combinations of)
internally contracted configurations generated by the applica-
tion of excitation operators to the CASSCF reference wave
function (eqs la—h in ref 2.), while in uncontracted theories
such as MRMP2, they are configuration-state functions or Slater
determinants.” In either case, €; represents the zeroth-order
energy associated with the perturber function ®;. For the
remainder of this article we will assume that the eigenfunctions
®; and eigenvalues €; are known, unless otherwise stated. This is
in practice the case for the diagonal CASPT2 method®” (named
CASPT2D in the original publication) but not for the (more
conventional) full CASPT?2 approach (referred to as CASPT2N
by Andersson et al.”). In principle, it is possible to obtain the
eigenpairs (®, ¢;) in CASPT?2 as well, but this would require the
diagonalization of H® expressed in the FOIS basis, which is
impractical from a computational perspective. Regardless of the
particular implementation of RSPT2, the first-order correction
to the wave function is expanded as follows,

M
vV =3 10,

1

(3)

i=1
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where the amplitudes T; are determined by solving the first-
order equations:

M
3 (@A - EO)T = ~(@101w®),

j=1

M

(4)
Owing to eq 2 and the orthogonality of the eigenfunctions, the
analytical expression for the amplitudes is simply

! € — E(O)

(@Ivw®y  —y .
- =, i=1,.

i .M

(5)

where we have introduced a short-hand notation for the right-
hand side elements V, = (®/VI¥®) and for the energy
denominators A, = €, — E©. At last, the second-order correction

to the energy is obtained either by projection,

M

@ — o)y —

EQ). = (#I01e©) = 3 v,
i=1

(6)

or variationally, through the evaluation of the Hylleraas
functional,®*

E® = (A — EOp®y 1 20p0pig©)

M
= 2 T’A + 21,

i=1

(7)

Note that the solution of eq 4 is a stationary point of eq 7, hence
the variational nature of the Hylleraas expression. Inserting that
solution, i.e., eq S, into either eq 6 or eq 7 results in the same
second-order energy correction.

2.2. Intruder-State Problem. The intruder-state problem
(ISP) arises when the energy denominator in eq S vanishes,

Vi
A —>0>T=-— >t

A, (8)

leading to an infinitely large amplitude and a divergent
perturbation series. This is caused by a degeneracy between
¥ and a perturber @, in the zeroth-order approximation. The
first obvious solution to this situation would be to include the
intruder state @, in the reference wave function. However, this is
not always possible or desired in CASPT2, as it involves
changing the active space of the underlying CASSCF
optimization and potentially leads to the appearance of new
intruder states, the need of additional electronic states in the
state-averaging procedure, or exceedingly expensive calcula-
tions. The other option is to change the partitioning of the
Hamiltonian. If the degeneracy between the intruder state @,
and W is the result of the approximate description provided by
the zeroth-order Hamiltonian, while the true energies of these
states are different, one could modify the structure of H® to lift
this accidental degeneracy. In fact, the potential existence of an
ISP is intimately coupled to the form of the zeroth-order
Hamiltonian. For instance, an internally contracted approach
based on Dyall's Hamiltonian” is known to be practically free
from intruder states, as in the case of NEVPT2.%**** Thus, it
seems a natural choice to focus the efforts for solving the ISP in
CASPT2 on modifying HO, analo§ously to the strategy
followed by Roos and Andersson”> and Forsberg and
Malmgqyist™* several years ago, with the introduction of the
real and imaginary level shift techniques, respectively. It is
important to note that, even though from a formal point of view
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an intruder state strictly implies an exact degeneracy, in practice,
all perturbers ®; associated with small energy denominators are
considered intruder states. This is because the corresponding
amplitudes will lead to artificially large contributions to the
correlation energy. Rigorously speaking, it is possible that
higher-order corrections compensate for that, though, for all
practical purposes, this is not relevant, because the perturbation
expansion is generally considered up to second-order only (for a
formal discussion on the matter, we suggest the excellent work
by Olsen and Jorgensen” and references therein).

Before moving on to review the level shift techniques in
CASPT?2, it is important to introduce a convenient way to
identify intruder states in actual calculations. Recognizing that
an underlying assumption of perturbation theory is that the
fluctuation potential V is a minor modification of the zeroth-
order description of the system, it is expected that the first-order
correction to the wave function is small compared to pO, A way
to quantify this is to consider the weight of P© relative to PV in
the wave function corrected through first order, phl = g 4
P, This gives rise to the diagnostic measure called reference
weight, which is given by

1
1+ X0 TP

Weef =

)

Here, intermediate normalization is assumed (this is the case of
CASPT?2), thus assigning a unit coefficient to the reference wave
function. In the trivial case where w, = 1, all amplitudes must be
zero and thus the first-order correction does not contribute at all
to P!, On the other hand, increasingly small values of w ¢ imply
larger contributions to the total wave function from ‘P(IS ; this is
the typical situation. The limiting case w,¢ = 0 is formally
possible only in the presence of a true intruder state, where the
amplitude of the offending state ®; diverges; T; — oo. In
practice, accidental exact degeneracies almost never occur and
small energy denominators are instead the typical cause of
troubles, leading to large amplitudes that outweigh the reference
wave function. This situation is associated with small values of
w,.p which we shall recognize as a signature of the intruder-state
problem. Clearly, the reference weight is an empirical diagnostic
measure, and therefore there is no universal threshold that
unambiguously classifies Wl a5 affected by intruder states.
Typical values of w,¢ for small organic molecules range between
0.7 and 0.9, while transition metal complexes with many open-
shell electrons can have lower values due to the dense manifold
of electronic states and the presence of a large number of
important low-lying configurations.

In any case, w, is expected to decrease with the number of
correlated electrons regardless of the type of molecular system
considered. Importantly, in most applications the interest is in
relative energies, e.g., when computing vertical transition
energies or comparing different conformations. For a balanced
and consistent account of the electron correlation effects in these
situations, it is crucial that the reference weight is commensurate
among all structures and states considered. This simple
guideline provides a prescription on how to use w, in practice.
In calculations involving several electronic states, and in
agreement with previous works,” we consider as a rule of
thumb deviations of more than 10% from the state with largest
wp typically the ground state, as potentially damaged by
intruder states. At the same time, the reference weight of any
electronic state should be a smooth function of the molecular
geometry, insomuch as the electronic energy is. This is
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particularly important in the calculation of potential energy
surfaces and curves, such as for molecular dynamics simulations
and the dissociation of diatomics.

2.3. Level Shift Techniques. With the realization that the
intruder-state problem manifests itself when the energy
denominator in eq S vanishes, a possible solution would be to
add a small value € > 0 to A, such that when A; — 0, T; » —V,/¢.
This is the simple idea behind level shift techniques. It can be
formally implemented in any perturbation theory approach by
modifying the partitioning of the Hamiltonian as follows:

f=#"1eQ) + (V- eQ)

v (10)
where Q = 2, 1@) (@] is a projector that shifts only states
orthogonal to the reference one. Solution of the first-order
equations with this modified partitioning leads to amplitudes of
the form

7o

-V

1

_Ai+e

‘ (11)
For a vanishing energy difference, A; = 0, the amplitude T; now
remains finite owing to the presence of ¢ in the denominator.
This technique is very effective in removing intruder states from
ground-state calculations, and it was proposed as a remedy to the
ISP in CASPT2 by Roos and Andersson.”* However, because &
uniformly shifts all of the amplitudes of the first-order wave
function, it affects also the coefficients of states @, associated
with large denominators, resulting in a second-order energy that
strongly depends on it. In an attempt to decrease this
dependence, a level shift correction that tries to minimize the
impact of the shift on large denominators was proposed. The
expression presented in the original contribution™ was derived
from manipulating eq 6 and assuming that certain contributions
are negligible in the case A;>> ¢; however, it was later found™*
that this correction actually corresponds to simply evaluating the
variational second-order energy, eq 7, using the modified
amplitudes (see Section 1.1 in the Supporting Information for a
detailed derivation). Unfortunately, the level shift approach with
areal parameter does not really remove the singularity but rather
moves it at A; = —e. While this is not an issue as long as €; > E©,
it is possible in CASPT2 that energy denominators take on
negative values and accidentally fall near the singularity; that is,
A; ~ —e. This is particularly problematic when exploring several
conformations, as it can be hard to find a suitable range for € that
avoids all singularities, or when computing excited states and
investigating transition metals, where a large a number of small
denominators make the results very sensitive to the value of the
parameter.%’37

In an attempt at solving the shortcomings of the real level
shift, Forsberg and Malmqvist24 proposed to use a purely
imaginary parameter instead of a real one. In the imaginary level
shift technique, the partitioning is simply modified as

=@\ +iQ) + (V- ieQ) (12)
which leads to complex amplitudes of the form
-V
=——€C
A + ie (13)

To avoid working with complex arithmetic and considering that
the electronic energy is a real number, only the real part of eq 13
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is taken, resulting in the following expression for the imaginary-
shifted amplitudes:
-V
T=R(T) = —

2
Aty (14)
Interestingly, this is essentially equivalent to the intruder-state
avoidance technique developed for MRMP2>* and to Tikhonov
regularization in linearized coupled cluster.”” In contrast to eq
11, eq 14 does not contain any singularity; hence, the imaginary
level shift effectively removes the ISP. This happens by
suppressing the contributions associated with small energy
denominators: the smaller A, the greater the reduction of T;
Vice versa, when A, > 0, we have that £2/A;, — 0 and the
amplitudes remain unmodified. Crucially, the ability of the
imaginary shift to quench the contributions only when the
energy denominators are small comes from its dependence on
A, Aslong as the zeroth-order Hamiltonian is diagonal, such as
in CASPT2D and MRMP2, the values of these energy
denominators are known. However, this is not the case for a
nondiagonal HO, preventing the use of the true denominators in
€?/A;. In CASPT2, the imaginary shift is approximated by using
only the diagonal entries of the zeroth-order Hamiltonian
matrix, which typically yields a reasonable estimate of the exact
A, as long as the off-diagonal couplings are small. It is important
to note that the imaginary shift is in practice a real shift too, as can
be seen from eq 14. Its formal advantages over the real level shift
technique of Roos and Andersson”’ are not due to the use of
complex algebra but rather to its configuration-specific nature, as
opposed to the single uniform parameter appearing in the
denominator of eq 11.

At this point, it is convenient for the visual comparison of the
two shifts, and for the discussion on the regularizers in the next
subsection, to introduce the following general formula for the
amplitudes:

T, = -V f(A; €) (15)

where the function f(A; €) embodies the energy denominator
and the different approaches that modify it (note the semicolon
in eq 15 to highlight that ¢ is a fixed parameter). For instance, in
the case of the real level shift, we have

1
f(Ai;' €) = A +e (16)

while for the imaginary shift this is

f8s €)= 5o
A+ (17)

Note how, in both cases, 1/A is recovered for £ = 0. The way in
which the amplitudes are affected by the level shift technique is
neatly captured by f(A; €), which is plotted in Figure 1 as a
function of the energy denominator A,. As can be seen, f(A; & =
0.2) for the imaginary shift does not contain any pole, while the
real one diverges at A; = —0.2 Ej..

Finally, note that also, in the case of the imaginary shift, it is
possible to reduce the sensitivity of the energy with respect to &
by computing it using the variational expression given in eq 7.

2.4. 6® Regularization. An alternative approach to remove
the singularity from eq S is the ¢f regularization technique
introduced by Head-Gordon and co-workers in the context of
(orbital-optimized) second-order Meller—Plesset perturbation
theory (MP2).”**’ The theoretical foundation of ¢* regulariza-
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Figure 1. f(A; € = 0.2) for the real and imaginary level shifts as a
function of the energy difference A; = ¢, — E©. The gray thick line is the
unmodified denominator with the singularity at the origin. The purple
line is f(A;; & = 0.2) for the real level shift (the dashed vertical line shows
the position of the new singularity). The green line is f(A; € = 0.2) for
the imaginary level shift.

tion is rooted in the Laplace transform of the energy
denominator, which is given by

T=— [ veda
‘ fo i (18)

When A, =0, the integrand is a constant function and T; = c0. A
possibility to avoid such divergence is to change the upper limit
of the integral to a value that is directly proportional to the
energy difference A, such that when A, = 0 and the integrand is
constant, the integral is bound by a finite upper limit. This
strategy is implemented by the following expression, where, to
accommodate for the possibility for negative denominators, we
have introduced the absolute value and sign functions at
appropriate places:

olAP! At
T.=—snA4/ Ve ©F dt
1 g ( l) 0 1 (19)
In this equation, o is a non-negative parameter and p is a positive
number, which for simplicity we consider to be an integer value.
The integration in eq 19 can be carried out analytically, resulting
in the ¢?-regularized amplitude:

T.

1

-V
— _1(1 _ e—(rlA,IP)
A, (20)

For A, — 0, (1 — e_"'A"P) goes to zero faster than 1/A, diverges,
such that the singularity is effectively suppressed. Similarly to the
imaginary shift, the regularized amplitudes depend on the
energy denominator appearing in the exponential factor, which
in CASPT2 we approximate with the diagonal one as done for
the imaginary shift. The integer value p changes the functional
form of the regularizer and the way in which the singularity at A;
= 0 is avoided. In this work we consider the valuesp =1 and p =
2, as these were found to be the most promising in regularized
MP2.” Interestingly, inserting eq 20 into eq 6 results in the same
energy expression as in the driven similarity renormalization
group approach.”” The parameter o is the counterpart of ¢ in the
real and imaginary shifts, and the two can be conveniently
related by the following expression (see Section 1.2 in the
Supporting Information for more details)

21)

c=¢"
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In this way, we can define the regularizer in terms of € in a
manner similar to eqs 16 and 17, that is

_ (1 _ e—IA‘/slp)
A, (22)

The behavior of eq 22 for p = 1 and p = 2 as a function of A, is
shown in Figure 2. In both cases the singularity at the origin is

f(Aﬁ €)

]

h

F(Ape=02) [E
(e}

-4 r ol regularization .
o° regularization 1
PR IR ST R

—6:"""""""'1"
—-0.8 —-0.6 —0.4 -—-0.2 0

A; [Ey]

02 04 06 0.8

Figure 2. f(A; € = 0.2) for the ¢' and 6” regularizers as a function of the
energy difference A,. The light blue line is f(A; € = 0.2) for ¢, while the
orange line, for o>,

removed. For p = 1 the amplitudes are damped to a finite value,
thereby allowing each component of the first-order wave
function to contribute to the correlation energy. On the other
hand, the case with p = 2 is very similar to the imaginary level
shift, where the amplitudes associated with small denominators
are completely suppressed. In fact, it is instructive to directly
compare f(A;; €) for the imaginary shift and the ¢ regularizer, as
shown in Figure 3. For matching values of the input parameter,

6 T T T T T T
T o4f ]
| o [ ]
S ot 1
Il [
f.”; _9 \_/ ]
a4 3 ]
= -4 imaginary shift — -
r o2 regularization ]
et b
—-0.8 —0.6 —0.4 —-0.2 0 0.2 0.4 0.6 0.8
A; [Ey]

Figure 3. Comparison of f(A; €) for the imaginary level shift and ¢*
regularization as a function of the energy difference A;. A value £ = 0.2
E,, was used for both cases.

the behavior at A; — 0 is the same for both techniques. However,
the ¢ regularizer follows more closely the unmodified 1/A,
function for larger values of A. We thus expect the -
regularized energy to be less sensitive to the input parameter &
than the imaginary level shift, which is supported by a Taylor
expansion of f(A; €) around A; — 0 and £ — 0 (see section 1.3
in the Supporting Information for details). Moreover, the energy
obtained with ¢'-regularized amplitudes is expected to be even
less affected by the value of €, because no contributions to the
energy are suppressed; rather they are just damped to a finite
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value. However, this comes at the price of a discontinuity at A; =
0. This does not constitute a problem for calculations at a fixed
conformation, but a change in the sign of a denominator during a
smooth distortion of the molecular geometry will lead to a jump
on the potential energy surface. For this reason, the ¢' and ¢
regularizers will likely have different potential applications.
2.5. A Note on the IPEA Shift. Another famous shift used in
CASPT2 that requires some attention is the IPEA shift.*' While
it is technically a shift, its nature is fundamentally different from
the techniques discussed in this contribution. The IPEA shift
acts on the generalized Fock operator expressed in the molecular
orbital basis and was introduced to fix a systematic energy
underestimation of open-shell electronic configurations with
respect to closed-shell ones. While this has in general a positive
effect on the ISP, that is the number of ISPs is generally smaller
with the IPEA shift than without, it is not its intended use. The
techniques discussed in this work act on the zeroth-order
Hamiltonian expressed in the internally contracted basis
spanning the FOIS. This directly targets the energies appearing
in the denominators of eq 5, whereas the IPEA shift has a more
complicated indirect eftect on them due to the internal
contraction formalism. In other words, the IPEA shift modifies
the energies €; of eq S in nontrivial ways that depend on the
generalized Fock eigenvalues. Given this difference, a detailed
account of the IPEA shift is omitted from the current work.

3. RESULTS AND DISCUSSION

In this section we present a series of calculations to evaluate the
effectiveness of o’ regularization in solving the intruder-state
problem in CASPT?2 and compare it to the level shift techniques.
We have implemented the ¢' and ¢* regularizers in a
development branch of OpenMolcas*** and note that they
work with any quasi-degenerate variant of CASPT2 currently
available in the package. In the following, we shall refer to
CASPT?2 with ¢ regularization simply as ¢’-CASPT2.

3.1. Chromium Dimer. The dissociation of the chromium
dimer has proven to be one of the most challenging systems for
multireference quantum chemical methods, and it has been used
to test a plethora of approaches.””**~>° Due to one 4s and five
3d unpaired electrons in the ’S ground state of each atom, the
chromium dimer has a formal sextuple bond, which requires at
least an active space of 12 electrons in 12 orbitals for the
description of its dissociation. One of the challenges in this
molecular system is the large imbalance of the role that dynamic
correlation plays at different internuclear distances. Around the
equilibrium, there is a significant overlap between the compact
3d orbitals, and the presence of many electrons in such a small
space requires an accurate description of short-range correlation
effects. This can be achieved by including a large number of
Slater determinants in the expansion of the wave function,
leading to a sizable contribution of dynamic electron correlation
in this region of the potential energy curve (PEC). On the
contrary, a crude description of the Coulomb cusp results in a
significant overestimation of the repulsion between the
electrons, which explains why the CASSCF PEC is strongly
repulsive at short internuclear distances (see Figure S1 in the
Supporting Information). The situation is qualitatively and
quantitatively different during dissociation, where only the more
diffuse 4s orbitals overlap, thereby decreasing the importance
and contribution of dynamical electron correlation. Another
difficulty encountered in the description of the chromium dimer,
which is common to transition metal systems, is the presence of
a dense manifold of low-lying electronic states. This makes
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Figure 5. 6>-CASPT?2 potential energy curves of Cr, (a) and corresponding reference weights w,. (b) as a function of the internuclear distance R.

MRPT approaches, and in particular the CASPT?2 method, very
susceptible to intruder states. As a matter of fact, the Cr,
molecule has been the quintessential test of the intruder-state
problem since the early days of CASPT?2 and has been used as a
representative system to highlight the effectiveness of both the
real and imaginary level shift techniques.””** In this work we
keep this tradition and assess the o regularizers on the
dissociation of Cr, as well. In particular, we adopt the minimal
12 electrons in 12 orbitals active space in association with the cc-
pwCV5Z basis set”™® and include scalar relativistic effects through
the second-order Douglas—Kroll—Hess Hamiltonian.””** The
CASPT?2 potential energy curve is computed for the lowest
singlet state using the modified g, zeroth-order Hamiltonian,”
which provides a qualitatively correct shape of the PEC. All
energies are given relative to twice that of the single atom and no
correction for the basis set superposition error was considered,
as it does not affect the potential existence of intruder states. The
variational energy expression, eq 7, has been used in all cases
unless otherwise stated. As a reference, we report the
experimental curve of Dattani’® in all of the plots, which
predicts a dissociation energy of 1.66 eV. Note that the main
focus of these calculations is not to obtain the best possible ab
initio results reproducing the experimental data but rather to
investigate the effectiveness of the regularizers in suppressing the
intruder states.

To this end, we start by showing in Figure 4a the CASPT2
PEC obtained with and without the real level shift, for an
increasing value of €. In the unmodified CASPT?2 results, there
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are several places along the curve where the energy is clearly
unphysical, and these are all associated with low reference
weights, a typical signature of intruder states. This can be clearly
seen from Figure 4b, where we plot w, as a function of the
internuclear distance R. Due to the presence of negative
denominators around A; & —0.1 E}, a level shift parameter of € =
0.1 Ey, is not sufficient to avoid all singularities. A value of € = 0.2
E, significantly improves the situation, though only at € = 0.3 E,,
the obtained potential energy curve is smooth. For this last case,
W, varies only very little as a function of R, meaning that the
first-order wave function provides a consistent correction at any
point of the dissociation. Repeating the same systematic
calculations with 6*>-CASPT?2 results in a smooth PEC with a
much smaller value of €, as can be seen from Figure Sa. In
particular, already at € = 0.06 E; the reference weight is
approximately constant throughout the dissociation, apart from
aminor drop around R = 1.6 A; see Figure Sb. At £ = 0.1 E; both
the binding energy and w, are extremely smooth functions of
the internuclear distance, highlighting the effectiveness of o*-
CASPT?2 in removing the intruder states, however, without
requiring a large value of the regularization parameter. The
curves shown in Figure Sa,b are essentially equivalent to those
obtained with the imaginary shift, which we report in the
Supporting Information (Figure S2a,b). Additional plots with
other values of ¢ for both approaches confirm the comparable
effectiveness of ¢>-CASPT2 and the imaginary level shift
technique (see Figures S2c—f and S3 in the Supporting
Information). We analyze the sensitivity of the results with
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respect to the input parameter by computing the energy
difference AE(¢) = E(¢) — E,¢ throughout the dissociation for
increasing values of . Considering the results obtained with & =
0.1 E;, converged (that is, all intruder states are fully removed),
we can set E, ;= E(¢ = 0.1) and compute AE(¢ =0.2) and AE(e
= 0.3) for both techniques. These energy difference curves are
shown in Figure 6. As elucidated by the theoretical discussion in
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Figure 6. Energy differences AE(¢) = E(¢) — E, ¢ as a function of the
internuclear distance R, for two different values of . The reference
energy E ¢ used for each technique was obtained with the value £ = 0.1
E,.

the previous section, the second-order energy with imaginary
level shift is more sensitive to the value of & than the 6*-CASPT?2
one. For instance, around R = 1.6 A, the deviation from E, is
almost double as much for the former approach for both values
of & considered.

However, these deviations are less than 1% of the total
correlation energy introduced by the second-order correction.

The dissociation of the chromium dimer with ¢'-CASPT? is
shown in Figure 7a, and the value of w, as a function of R is
reported in Figure 7b. Also, in this case, € = 0.1 Ey, is sufficient to
obtain a balanced first-order wave function throughout the
dissociation and remove all intruder states. However, a
noticeable jump in the energy is present near the equilibrium
distance. This discontinuity is due to two perturbers, whose
denominators flip sign from R = 1.66 A to R = 1.68 A. As a result,
a net change of about 0.04 eV in the correlation energy happens
between these two points, despite avoiding the singularity at A;
= 0. This is the issue alluded to earlier in the theoretical
discussion of the ¢' regularizer, which limits its applicability to
situations in which the molecular structure does not change.
Note that, despite this potential problem, 6'-CASPT?2 effectively

removes the ISP and is very insensitive to the value of the
regularization parameter & (see Figures S4 and SS in the
Supporting Information).

Besides showing PECs with the smallest possible value of € for
which the ISPs are removed, we also report in Figure S6 of the
Supporting Information the PECs obtained with artificially large
values of & in combination with all intruder-state-removal
techniques. This highlights another aspect of these techniques,
which is briefly discussed in the Conclusions section.

At last, we shall note that 6’-CASPT2 is less dependent on the
expression used to obtain the energy, in contrast to the real and
imaginary level shifts. For these, the difference between the
energy obtained with eq 6 and eq 7—the level shift correction—
is about 0.45 eV and 0.2 eV, respectively, for a level shift
parameter € = 0.3 E;,. On the other hand, for 6>-CASPT2 and ¢'-
CASPT? this is about 0.08 eV and 0.15 eV, respectively, for the
same value of the input parameter ¢ = 0.3 Ej, (see Figures S7—
S$12 in the Supporting Information).

3.2. Vertical Excitation Energies. The dissociation of the
chromium dimer has shown that both the imaginary shift and 6>-
CASPT?2 are equally effective in removing the intruder-state
problem and provide a smooth potential energy curve
everywhere. This is the case for the real shift too, albeit with a
relatively large value of the shift parameter, which potentially has
a negative impact on the overall accuracy. On the other hand,
Cr, was the perfect example to evidence the main shortcoming
of ¢'-CASPT2—the discontinuity at A; = 0—which limits its
use for this type of applications even though it effectively
removed the intruder states. We shall now turn our attention to
calculations at a fixed molecular geometry, and in particular to a
typical application of the CASPT2 approach: vertical transition
energies. In the following, the objective is 2-fold. First, we
evaluate the effect of o’ regularization and the level shift
techniques in cases where no intruder-state problems are
present. In particular, we are interested in measuring the
sensitivity of the results with respect to the input parameter and
quantify to what extent these deviate from the unmodified
CASPT? energies. Ideally, the best technique affects these results
the least, as in these situations a modification is not really
needed. We call this NOISP analysis. Second, we test the
effectiveness of these techniques in fixing the ISP. This case is
similar to the chromium dimer dissociation, where removal of
singularities was necessary to obtain physical results, though the
context is different here, because we consider fixed molecular
geometries. To this end, we investigate vertical excitation
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6'-CASPT2 potential energy curves of Cr, (a) and corresponding reference weights w,¢ (b) as a function of the internuclear distance R.
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energies which are affected by intruder-state problems. We call
this ISP analysis. To carry out these two analyses, we employ
Thiel’s benchmark set®' and systematically investigate a large
number of singlet and triplet vertical excitation energies in 28
small organic compounds. The geometries are taken from the
original work and correspond to MP2-optimized structures, in
combination with the 6-31G*°>°® basis set. The selection of
active spaces and the number of states included in the SA-
CASSCF optimization follow closely that of the original
reference.”’ The starting point for both analyses is the
calculation of 311 singlet and triplet excitation energies using
the MS-CASPT2 method®* (and its diagonal counterpart, MS-
CASPT2D), in association with the TZVP basis set® and the
atomic compact Cholesky decomposition of the two-electron
integrals®® (using the default threshold value of 107*E, ). Here,
the IPEA shift*' was set to zero and the unmodified generalized
Fock operator was used (i.e., no g, zeroth-order Hamiltonian®?).
First, we performed these calculations without any shift or
regularization, which resulted in 117 states with a reference
weight deviating by more than 10% from the ground-state one
(109 for MS-CASPT2D). These were considered affected by
intruder states and hence excluded from the NOISP analysis.
The MS-CASPT?2 transition energies of the remaining 194 (202
for MS-CASPT2D) states form the set of reference values for the
NOISP analysis, as they do not require any shift or
regularization. The full set of 311 states is instead used in the
ISP analysis. Please refer to Section S3.1 of the Supporting
Information for the detailed account of which states are included
in which analysis. In the NOISP analysis, we compare the results
obtained with an increasing value of ¢ to the reference values (&
= 0). This provides a quantitative measure of the sensitivity of
the excitation energies with respect to &. Instead, in the ISP
analysis we track the distribution of the reference weights as a
function of €. In particular, for each molecule we compute the
relative deviation of the excited states w,.¢ (w) with respect to
the ground-state one (w); that is,

g es
Wref Wref
gs
Wref

Aeref =
(23)

(this is the same method used to identify the set of states affected
by ISPs). An effective method fixing intruder-state problems
should provide a distribution of Aw, that quickly becomes
narrow and peaked around zero for increasing values of e.
Instead of plotting the distributions directly, we compute the
cumulative distribution function (CDF), which neatly captures
how effective the different techniques are. For a given value of
Aw, the CDF essentially counts how many states have a
reference weight deviation lower than Aw,¢in proportion to the
total number of states. Mathematically, this can be described as

CDF(Aw,) = ). plx)

x,<Aw,

ref

(24)

where p(x;) is the (empirical) probability that there is a reference
weight deviation «; in the data set. The signature of an effective
intruder-state-removal technique is a CDF function that quickly
grows to 1.

From a theoretical perspective, we have seen in the previous
section that the imaginary shift and ¢” regularization depend on
the spectrum of the zeroth-order Hamiltonian. For a diagonal
zeroth-order Hamiltonian, the use of any of these techniques
strictly guarantees that intruder states are progressively removed
by increasing the value of the input parameter. This is not the
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case for CASPT2, where the off-diagonal couplings in H could
accidentally introduce intruder states. To provide an unbiased
comparison between the shifts and the regularizers, we perform
the NOISP and ISP analyses using the CASPT2D approach first.
Nonetheless, we repeat the analyses using CASPT2 as well, as
this is the method typically used in practice.

The root-mean-square and maximum absolute deviations
(RMSD and MAD, respectively) of all techniques applied to
CASPT2D for the NOISP set of energies are shown in Table 1.

Table 1. NOISP Analysis for CASPT2D“

technique e=0.1 E, &£ =0.2E, e =03E,

real 0.916 (9.80) 3.197 (45.3) 0.096 (0.39)
imaginary 0.013 (0.07) 0.029 (0.12) 0.052 (0.21)
o*-reg 0.011 (0.07) 0.021 (0.10) 0.034 (0.12)
o'-reg 0.008 (0.04) 0.017 (0.07) 0.029 (0.12)

“The values represent root-mean-square deviations (maximum
absolute deviations in parentheses) of vertical transition energies
obtained with different values of € > 0 with respect to the reference
ones obtained with & = 0. All values are given in eV.

As it was the case for the chromium dimer, the results for the real
level shift highlight its fundamental flaw; that is, the singularity is
simply moved at a different place and not really removed. Even
though among the 202 states considered here there are no small
denominators in the unshifted calculation, increasing the value
of € has catastrophic effects. In a number of cases, negative
denominators close to A; & —0.1 E, and A; & —0.2 E;, cause
divergences in the first-order wave function and lead to a very
large root-mean-square deviation when £ = 0.1 E; and € = 0.2 Ey,.
For instance, of the several hundred thousands of denominators
appearing in the wave function expansion of the first 1Blg and
3Blg states of benzoquinone, two of them have a denominator
equal to —0.103 E; and —0.096 E,, respectively. These did not
cause any issue for the reference calculations but led to ISPs for &
= 0.1 Ey. The excitation energy obtained in these two cases is off
by more than 8 eV, which is clearly incorrect. It is only with a
larger value of € = 0.3 E;, that no accidental ISPs are introduced
by the real level shift. In the remaining lines of Table 1 we see a
clear trend for the imaginary shift and the ¢” regularizers. First,
no accidental intruder state appears in any of them, empirically
proving the theoretical analysis carried out in the previous
section. Importantly, for increasing values of &, w,; monotoni-
cally increases (see Figures S13—S1S in the Supporting
Information for an example with the second 'B, state of
pyrimidine). Second, for matching values of &, ¢*-CASPT2
consistently shows smaller deviations from the reference
energies compared to the imaginary level shift. Third, the
RMSD and MAD increase at different rates as a function of € for
the three techniques. These results suggest that 6/-CASPT?2 is
less sensitive to the input parameter than CASPT2 with the
imaginary shift. In particular, ¢' shows the least deviation,
highlighting its potential in this scenario.

The situation is slightly different for the ISP analysis. Here we
perform the calculation on the entire set that includes 311
excited states and track their reference weight deviations Aw,
with respect to the ground-state ones. Recall that, for £ = 0, there
are 109 states that have a reference weight deviating by more
than 10% from the ground-state one. In Figure 8a we plot the
cumulative distribution function of Aw,for € = 0.1 E, and € =
0.3 E,, respectively (the plot for £ = 0.2 E, is shown in the
Supporting Information, Figure S19). For the unmodified
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Figure 8. ISP analysis for CASPT2D. The cumulative distribution function is shown in the top half of the plots, while the values Aw, ¢ < 20% are shown
as points in the center of the plots. In the bottom stripe we show the position of the average reference weight deviation Aw,..

calculation, one-fifth of the excited states obtained with the
unmodified CASPT2D method have a Aw, that is larger than
20% (note the CDF function at around 0.8 in the top right part
of Figure 8a). Correspondingly, the first series of points shown
in the center of Figure 8a—the red pluses—extends beyond the
20% mark (hence, it is not visible in the plot), resulting in a large
average deviation. The real level shift improves this situation,
producing a significantly more compact distribution of the Aw,
and a CDF that grows much faster in the range Aw, ¢ < 10%.
Nevertheless, several states remain affected by the ISP, which
keep the average Aw,relatively large. In contrast, the imaginary
shift and o regularization are much more robust, as evidenced
by a CDF curve that reaches the value of 1 for Aw,¢ smaller than
15%. This means that no state of the 311 ones considered has a
deviation of the reference weight larger than 15% with respect to
the ground-state one. The distributions of the weights are very
similar across the three approaches, with the imaginary shift
slightly outperforming the regularizers, e.g., displaying a lower
mean deviation of about 4% compared to ~4.5% for of-
CASPT2D. Increasing the value of € to 0.3 E, has a dramatic
effect for the real level shift, which becomes the most effective
way to fix the ISP, as evidenced by the fastest-growing CDF
shown in Figure 8b. All intruder states are removed, and the
average w,¢ deviation is as low as ~2%. The imaginary shift also
improves significantly, with no deviation of the reference
weights above the 10% mark. The smallest difference between &
= 0.1 E; and € = 0.3 Ej, is obtained with ¢’ regularization. This
result is in agreement with the lower sensitivity with respect to
the input parameter observed in the NOISP analysis.
Calculations using CASPT2D served to carry out an unbiased
analysis of the various techniques; however, in practice the full
CASPT?2 approach is the method of choice. Hence, we repeated
all of the calculations with the latter, investigating to what extent
the off-diagonal couplings in the zeroth-order Hamiltonian
affect the results obtained with CASPT2D. In Table 2 we show
the RMSD and MAD obtained in the NOISP analysis with the
CASPT2 method. The real shift is still plagued by accidental
intruder states due to denominators that are close to the negative
level shift parameter, and only for € = 0.3 E,, there are no such
cases. For the other three techniques, the results are almost
identical to those in Table 1, and thus the same discussion holds.
This is the case for the ISP analysis as well, with CASPT2 results
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Table 2. NOISP Analysis for CASPT2“

technique e=0.1E, e=02E, e=03E,

real 0.866 (8.17) 1.765 (24.4) 0.095 (0.37)
imaginary 0.013 (0.06) 0.029 (0.12) 0.051 (0.21)
oreg 0.010 (0.05) 0.020 (0.08) 0.033 (0.12)
o'-reg 0.008 (0.03) 0.017 (0.06) 0.029 (0.12)

“The values represent root-mean-square deviations (maximum
absolute deviations in parentheses) of vertical transition energies
obtained with different values of € > 0 with respect to the reference
ones obtained with & = 0. All values are given in eV.

virtually equal to CASPT2D ones; hence, we report the plots of
the cumulative distribution functions in the Supporting
Information (Figures S20—S22). As before, the real shift
improves significantly upon increasing € and shows the most
compact distribution compared to the other techniques when &
= 0.3 E;. The imaginary shift and the ¢’-CASPT2 differ only
slightly and can be considered equally effective. It is interesting
to note that, in a few cases, the off-diagonal couplings in the
zeroth-order Hamiltonian have led to a decreasingw, for
increasing values of ¢, as illustrated for the second 'B, state of
pyrimidine in the Supporting Information (Figures S16—S18).

Overall, the NOISP and ISP analyses suggest that the
imaginary level shift and ¢’ regularization have a comparable
performance. On the one hand, the former is more sensitive to
the level shift parameter but appears to be slightly more robust in
solving the ISP. On the other hand, 6’-CASPT?2 provides the
smallest deviations from the reference energies in the NOISP
analysis, in particular with p = 1. According to this latter result
only, it appears that 6'-CASPT2 would be the best choice for
calculations at a fixed molecular geometry. However, this comes
with the inherent risk that small differences in the structures
used (for instance obtained with a different methodology) might
significantly affect the results in the unlucky case that one or
more denominators change sign. Nevertheless, one can consider
that already for € = 0.1 E,, all ISPs are effectively removed by o-
CASPT?2 (and the imaginary shift), even though some states are
above the (arbitrary) Aw,.;= 10% threshold. We can see this by
noting, e.g., that the energy differences are not unphysical and
agree with values obtained with higher values of €. After all, the
reference weight is one possible measure to identify ISPs, and
other criteria may be used as well, such as an analysis in terms of
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the excitation character of the perturbers with large contribu-
tions to the correlation energy. At last, the most striking result is
for the real shift. A small value of & is prone to generate
accidental intruder states, but a large value, which is most
effective in increasing the reference weight, is associated with the
largest RMS deviations in the NOISP analysis. Remarkably, for
all methods, no significant difference is observed between the
CASPT2D and CASPT?2 results.

4. CONCLUSIONS

In this work we have implemented the of-regularization
technique in CASPT2. The resulting methodology, of-
CASPT2, compares favorably to previous approaches based
on the real and imaginary level shifts in terms of its efficacy in
removing the intruder-state problem and the sensitivity of the
results with respect to the input parameter. It was found that the
two variants considered, 6'-CASPT?2 and 6>-CASPT?, are suited
for different use-case scenarios. 6'-CASPT2 is the least sensitive
approach to the input parameter and effectively removes all
intruder states for sufficiently large values of £. However, due to
the discontinuity of the regularized amplitudes at A; = 0, its
application is likely limited to calculations at a fixed molecular
geometry, e.g., the determination of vertical transition energies.
For calculations involving different molecular geometries, such
as the dissociation of diatomic molecules or the exploration of
potential energy surfaces, only the imaginary shift and o’
CASPT?2 ensure smooth results. This is because, in these two
cases, the regularized amplitudes are a continuous function of
the zeroth-order energy denominator. Both approaches remove
all singularities equally well; however, 6>-CASPT?2 is slightly less
sensitive to the input parameter and, hence, our preferred
choice. Nonetheless, we should note that the difference between
them is probably insignificant compared to the overall accuracy
offered by CASPT2 in the first place, such that in practice they
both are valid options. Overall, the real level shift is the worst
performer and should be avoided, due to its uniform action on all
amplitudes. Only large values of the input parameter somewhat
ensure no intruder states, but its results are the most sensitive to
it, such that they may be considerably different from unshifted
CASPT?2 ones.

An important aspect related to 6’-CASPT2 and the imaginary
level shift technique is their dependence on the energy
denominator. From a strict theoretical perspective, these
techniques are truly intruder-state-free only when used in
combination with CASPT2D. In this case, increasing € always
leads to increased reference weights. This is not true for
CASPT?2, and there are cases in which the off-diagonal couplings
of the Fock operator are such that accidental degeneracies
aAp(pear for & > 0. The use of the true eigenvalues of the CASPT2
H© remains an open problem, and its solution is rather involved
from the computational perspective because it would require the
(atleast partial) diagonalization of H (©), On the positive side, the
results obtained in this work for excitation energies suggest that
this issue is statistically not so relevant.

It is also interesting to note that the level shift technique and
o* regularization can be considered from a different point of view
than that of intruder-state-removal approaches. In fact, for a
given partitioning of the Hamiltonian, a renormalization of the
first-order amplitudes can be interpreted as a way to introduce
correlation effects from higher-order terms. This has the net
impact of decreasing the amount of electron correlation
captured by second-order perturbation theory, which is typically
overestimated with respect to the infinite-order limit. Within this
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perspective, one could determine an optimal value for & by
comparing to experiment or high-level computational reference
data, essentially defining a new separate methodology that is free
of intruder states by design and potentially with a better
accuracy. This is for instance the rationale behind regularized
MP2 as proposed by Head-Gordon and co-workers,”” and what
has been done with the intruder-state-avoidance technique in
MRMP2.%” Nevertheless, the simple functional form of the shifts
and regularizers cannot compensate the limitations inherent to a
second-order perturbation theory framework. For instance,
whereas a value of € = 1.15 E,, for 6>-CASPT?2 is such that the
PEC of the chromium dimer matches the experimental one
around the equilibrium, this comes at the cost of a far worse
agreement at longer internuclear distances (see Figure S6 in the
Supporting Information). This is because the effect of the
regularizer is different at different correlation regimes, and there
is no guarantee that a given value of € is adequate everywhere. In
light of this, our take on 6”-CASPT?2 is for an approach that can
be used routinely with a (small) fixed value of £ > 0 which fixes
the intruder states, but that provides results as similar as possible
to an unmodified version of CASPT2.

At last, we shall note that ¢’ regularization can be used in
combination with any variant of CASPT2 and RASPT2
currently implemented in the OpenMolcas package, and that
its use does not pose a problem for the implementation of
analytic nuclear energy gradients.
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