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Purpose. Ephrin B1 (EFNB1), the Eph-associated receptor tyrosine kinase ligand, is suggested to have an important function in
neurodevelopment. However, its contribution to glioblastoma multiforme (GBM) remains uncertain. *is study aimed to
determine the prognostic power and immune implication of EFNB1 in GBM. Methods. We first identified differentially
coexpressed genes within GBM relative to noncarcinoma samples from GEO and TCGA databases by WGCNA. *e STRING
online database and the maximum cluster centrality (MCC) algorithm in Cytoscape software were used to design for predicting
protein-protein interactions (PPI) and calculating pivot nodes, respectively.*e expression of hub genes in cancer and noncancer
tissues was verified by an online tool gene expression profile interactive analysis (GEPIA).*ereafter, the TISIDB online tool with
Cox correlation regression method was employed to screen for immunomodulators associated with EFNB1 and to model the risk
associated with immunomodulators. Results. Altogether 201 differentially expressed genes (DEGs) were discovered. After that, 10
hub genes (CALB2, EFNB1, ENO2, EPHB4, NES, OBSCN, RAB9B, RPL23A, STMN2, and THY1) were incorporated to construct
the PPI network. As revealed by survival analysis, EFNB1 upregulation predicted poor overall survival (OS) for GBM cases.
Furthermore, we developed a prognostic risk signature according to the EFNB1-associated immunomodulators. Kaplan–Meier
survival analysis and receiver operating characteristic method were adopted for analysis, which revealed that our signature showed
favorable accuracy of prognosis prediction. Finally, EFNB1 inhibition was found to block cell proliferation and migration in GBM
cells. Conclusion. *e above results indicate that EFNB1 participates in cancer immunity and progression, which is the candidate
biomarker for GBM.

1. Introduction

Glioblastomamultiforme (GBM) is a central nervous system
(CNS) cancer with high malignancy grade and aggression.
According to the World Health Organization (WHO)
classification published in 2016, GBM is classified as a grade
IV glioma [1]. Nowadays, with the advancements of medical
science, in addition to surgery, chemoradiotherapy, and
molecular targeted therapy, novel immunotherapy has been

added to the multimode therapy for cancer. Immunotherapy
is gradually gaining ground in antitumor therapy. It is well
known that the discovery and application of PD-1 and its
ligands PD-L1 and CTLA-4 have revolutionized the treat-
ment of tumors [2, 3]. In recent years, multiple immuno-
therapies have been approved by the FDA for a variety of
tumors [4]. Unfortunately, GBM patients benefit little from
immunotherapy [5, 6]. *is may be due to its unique an-
atomical location, lymphatic drainage of the CNS, blood-
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brain barrier, and complex tumor-immune microenviron-
ment, which make GBM susceptible to immune escape
[7, 8]. *erefore, it is extremely significant to explore the
underlying pathogenesis and discover immune biomarkers
to diagnose, treat, and predict the prognosis of GBM.

EFNB1 (Ephrin B1), the Eph-associated receptor tyro-
sine kinase ligand, mainly plays a central part in cell ad-
hesion, angiogenesis, and development of the nervous
system [9]. Abnormal expression of EFN/Eph signal in
several tumors has been reported [10]. EFNB1 stimulates the
secretion of matrix metalloproteinase-8, which promotes
cancer cell invasion [11]. EFNB1 interacts with CNK1 to
promote cell migration by activating JNK, which may have
an important function in cancer metastasis [12]. Chronic
hypoxia-induced slug enhances prostate cancer (PC) cell
invasion and migration through upregulating EFNB1 [13].
In addition, Vermeer et al. found that EFNB1, as a PTPN13
phosphatase substrate, and its mobilization were related to
ERK1/2 phosphorylation and its complex with ERBB2
mediated signal transduction and drug resistance in tumor
cells [14]. At present, EFNB1 has been rarely reported in
GBM, and the mechanism of its carcinogenesis remains
unclear.

In our study, we constructed a gene coexpression net-
work by analyzing the mRNA profiles obtained from TCGA
and GEO databases with WGCNA analysis. Subsequently,
combining differentially expressed genes (DEGs) obtained
in GBM and noncarcinoma samples, we acquired differ-
entially coexpressed genes and further built a hub gene
network. EFNB1, highly expressed in GBM tissues, was
screened from hub genes to construct an immunomodulator
prognosis model, which could act as a novel prognosis
marker and offer a new perspective for immunotherapy of
GBM patients. Finally, this study examined the role of
EFNB1 in carcinogenesis by in vitro study.

2. Methods

2.1. Data Collection and Processing. *e original mRNA
expression profiles of GBM were collected from TCGA
database. Meanwhile, corresponding survival information
was also obtained from TCGA data portal. Another gene
profile data set of GSE108474 was obtained from the GEO
database. *e GSE108474 data set containing the infor-
mation of 28 normal tissues and 221 tumor tissues was
studied with GPL570. In addition, we obtained the clinical
data of GBM cases from the Chinese Glioma Genome Atlas
(CGGA) database for prognostic model validation.

2.2. Weighted Gene Coexpression Network Analysis
(WGCNA). *e R software “WGCNA” package was applied
to generate gene coexpression networks. First, the pick-
Soft*reshold function was utilized to screen soft thresh-
olding powers to construct the scale-free networks, with
TCGA data set to 3 and GSE108474 data set to 4. Second, the
adjacency matrix and the topological overlap matrix (TOM)
were generated based on the corresponding soft power.
According to related discrepancy (1-TOM), we drew a

hierarchical clustering dendrogram for classifying genes
whose absolute correlation coefficients were high in the
constructed coexpression modules. To determine coex-
pression modules related to clinical data of glioblastoma, the
clinical trait information and module-trait relationships
were analyzed. Finally, we selected modules with the high
correlation coefficient as candidate coexpression modules
for subsequent analysis.

2.3. Screening of DEGs and Interaction with the Modules of
Interest. To search DEGs in GBM compared with non-
carcinoma samples from GSE108474 and TCGA data sets,
we discovered DEGs upon the thresholds of adj. p< 0.05 and
|logFC|≥ 1.0 by adopting the R software “limma” package.
*e volcano plot and heatmap were generated for DEGs
using the R package “pheatmap” and “ggplot2”. Afterward,
we intersected DEGs with coexpression genes obtained in
the interesting modules, and the intersected genes were
regarded as the candidate prognostic genes that were seen
from the Venn diagram.

2.4. Identification of PPI Network. To predict the interaction
of selected genes, we used the STRING online tool to build a
PPI network. In our study, we selected genes showing the
score >0.9 for network construction and visualization via
Cytoscape (v3.7.2). Afterward, the maximal clique centrality
(MCC) algorithm in the Cytoscape software was adopted for
identifying hub genes.

2.5. Gene Ontology (GO) Enrichment Analysis. We con-
ducted GO functional annotation on those screened genes
by the “clusterProfiler” in the R package, and p< 0.05 was
the selection criterion.

2.6. Validation of the Expression Patterns and the Prognostic
Values of Hub Genes. *e online tool GEPIA was utilized to
verify hub gene expression between carcinoma and non-
carcinoma tissues based on GTEx and TCGA databases. For
investigating the association of OS with hub genes among
GBM cases, we conducted a log-rank test and Kaplan–Meier
(KM) analysis. p< 0.05 stood for statistical significance.

2.7. Immunomodulators Analysis. To explore the interac-
tions between EFNB1 and tumor-immune system, immu-
nomodulators correlated with EFNB1 were obtained from
the TISIDB database (http://cis.hku.hk/TISIDB/). Using the
TISIDB online tool, we selected immunoinhibitors and
immunostimulators remarkably related to the EFNB1 level
(p< 0.05 upon the Spearman correlation test).

2.8. Identification of Prognostic Model Based on EFNB1-Re-
lated Immunomodulators. First, univariate Cox regression
analysis was conducted for assessing EFNB1-associated
immunomodulators significantly correlated to OS based on
a p-value of <0.05 in the training set. *en, we performed
LASSO regression for narrowing the overfitting risk. At last,
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we carried out multivariate Cox regression analysis for
constructing the optimal signature related to immuno-
modulators. For GBM cases, their risk scores were deter-
mined by risk score � (mRNA 1 level× coef) + (mRNA 2
level× coef) + . . .+ (mRNA n level× coef). Meantime, all
cases were divided into low- or high-risk group based on
median score. Moreover, the CGGA data set was utilized to
validate the signature.

2.9. Gene Set Enrichment Analysis (GSEA). GSEA was per-
formed to explore the downstream pathways of EFNB1.
GBM samples from TCGA with the top 25% and lowest 25%
EFNB1 expression were defined as the high and low ex-
pression groups, respectively. According to Molecular Sig-
natures Database version 7.4. C1 (Hallmark), GSEA was
used to obtain enriched pathways associated with EFNB1
expression.

2.10. Cell Culture and Transfection. We cultivated GBM cell
lines (U87, U251) and normal human astrocyte line (NHA)
within RPMI-1640 medium that contained 10% fetal bovine
serum (FBS, Gemini Company) under 37°C and 5% CO2
conditions. Negative control (si-NC) and si-EFNB1 were
provided by RiboBio (Guangzhou, China). Supplementary
Table S1 presents the sequences of si-EFNB1. Cell trans-
fection was performed using Lipofectamine 3000 reagent
(Invitrogen) in line with specific protocols.

2.11. RNA Extraction and Quantitative Real-Time PCR (qRT-
PCR) Assays. *is study adopted TRIzol reagent (Vazyme
Biotech) for extracting total cellular RNA in line with
specific protocols. Later, we utilized PrimeScript reagent
(Takara Bio) for preparing cDNA fromRNA through reverse
transcription. TB Green reagent (Takara Bio) was employed
for preparing the reaction system for qRT-PCR on StepO-
nePlus (*ermo Fisher Scientific). *en, we measured
mRNA expression based on GAPDH and determined its
level through 2−ΔΔCt approach. Supplementary Table S2
displays primer sequences of all genes.

2.12. Cell Counting Kit-8 Assay. 2000 cells per well cultured
in RPMI1640 containing 10% FBS were inoculated in 96-
well plates. After 24, 48, 72, and 96 h, we added 10 μl CCK-8
solution (Beyotime, Shanghai, China) to incubate cells for
another 2 h under 37°C in accordance with specific proto-
cols. *e spectrophotometer (*ermo Fisher Scientific) was
utilized for measuring the absorbance value (450 nm).

2.13.ColonyFormationAssay. 250 cells/well were inoculated
in 6-well plates separately. 10 days later, the cells grew into
visible colonies. After gently washing cells using PBS thrice,
cells were subjected to 30min of 4% paraformaldehyde
fixation under ambient temperature followed by crystal
violet staining. Colony images were made, and colony
counting process was performed.

2.14. Migration Assays. Transwell assays were performed
with chambers (pore size, 8 μm; Corning Costar Corp, USA).
Cells were cultured within the top chamber covered by
serum-free medium, whereas the bottom chamber was
added with 10% FBS-containing RPMI-1640 (500 μl). After
24 h of incubation under 37°C, cells were subjected to 30min
of 4% paraformaldehyde fixation followed by another 30min
of crystal violet staining. Later, cells on the membrane
surface were eliminated using cotton swabs. Cells on the
membrane bottom surface were observed by using a mi-
croscope (Olympus) at a magnification of 10×.

2.15. Western Blot (WB) Analysis. *e protein expression of
vimentin, E-cadherin, N-cadherin, β-catenin, and GAPDH
was determined by WB assay. *e β-catenin (8480, 1 :1000),
vimentin (5741, 1 :1000), N-cadherin (13116, 1 :1000),
E-cadherin (3195, 1 :1000), and GAPDH (97166, 1 :1000)
antibodies were provided by Cell Signaling Technology
(CST, Danvers, MA, USA).

2.16. Statistical Analysis. GraphPad (8.0) and R software
(4.0) were utilized for statistical analysis. Differences in OS
were evaluated by the log-rank test and KM analysis between
low- and high-risk groups. Univariate together with mul-
tivariate Cox analysis was performed for identifying factors
that independently predicted prognosis. Time-dependent
receiver operating characteristic (t-ROC) curve analysis was
carried out for evaluating the accuracy of our model in
prognosis prediction. p< 0.05 stood for statistical
significance.

3. Results

3.1. Determination of WGCNA Modules. To explore the
potential highly correlatedmodules, we first established gene
coexpression networks based on GBM-TCGA and
GSE108474 data sets (Figures 1(a) and 1(b)). By performing
WGCNA, we obtained altogether 7 modules from
GSE108474 and 9 from GBM-TCGA (the gray module not
clustered to all clusters was excluded). Next, we analyzed the
relationship between gene modules and clinical features
(tumor and normal) by generated correlations heatmaps. As
shown in Figures 1(c) and 1(d), turquoise and blue modules
stood for modules significantly related to normal and glioma
clinical traits.

3.2. Identification of Differential Coexpression Genes. We
found that a total of 5289 DEGs and 2098 DEGs were
screened out from the TCGA-GBM and the GSE108474 data
sets, respectively (Figures 2(a) and 2(b)). Based on the most
significantly related turquoise and blue modules observed
from the heatmap above, we obtained 201 intersected genes
for subsequent experiments (Figure 2(c)).

3.3. Construction of PPINetwork. *e PPI network for those
intersected genes was built based on the STRING database.
After removing unconnected nodes, we mapped 81 edges
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and 201 nodes into the PPI network (Figure 3(a)). Fur-
thermore, we detected hub genes from the network through
MCC of Cytoscape. *ose 10 hub genes identified included
CALB2, EFNB1, ENO2, EPHB4, NES, OBSCN, RAB9B,
RPL23A, STMN2, and THY1 (Figure 3(b)).

3.4. Functional Annotation for Overlapping Genes. To ex-
plore the biological functions of overlapping genes, we
performed GO analysis, including BP, MF, and CC.
According to Figure 3(c), GO analysis indicated significant
enrichment in the BP of cell potassium ion transport,
modulation of sequestered calcium ion production in cy-
tosol, and potassium ion transmembrane transport. CC
analysis suggested enrichment in the neuronal cell body,
presynapse, and axon part. Additionally, the DEGs exhibited
MF enrichment into substrate-specific channel activity.

3.5. Expression Patterns of Hub Genes. We further validated
10 hub gene expressions within GBM and normal tissues by
GEPIA online tool. Compared with normal tissues, RPL23A,
EFNB1, NES, and EPHB4 expression markedly increased in
GBM tissues, while CALB2, ENO2, OBSCN, RAB9B, and
STMN2 were downregulated in GBM cases (Figures 4(a)–
4(j)). According to KM curve analysis, only EFNB1 was
dramatically correlated with poor clinical outcomes of the
GBM cases (p< 0.05) (Figures 5(a)–5(j)). *erefore, we
selected EFNB1 for the next analysis.

3.6. Association between EFNB1 and Immunomodulators.
To detect the role of EFNB1 on tumor-immune activity, we
used the TISIDB online tool to obtain the EFNB1-associated
immunomodulators. After using the TISIDB database, 6
immunoinhibitors (CD160, CD244, CD96, HAVCR2, IL10,
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Figure 1: Determination of coexpression modules correlated with clinical status in the TCGA-GBM and GSE108474 data sets. (a)
Coexpression module of TCGA-GBM. (b) Coexpression module of GSE108474. (c), (d)*e relationship between coexpression module and
clinical status in TCGA-GBM and GSE108474, respectively.
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and PVRL2) (Figure 6(a)) and 11 immunostimulators
(C10orf54, CD276, CD48, CD86, PVR, TMIGD2,
TNFRSF14, TNFRSF8, TNFSF13, TNFSF13B, and
TNFSF14) (Figure 6(b)) were identified significantly asso-
ciated with EFNB1 in GBM.

3.7. Identification of the Prognostic Value of EFNB1-Associ-
ated Immunomodulators in GBM. We further conducted
Cox regression based on LASSO regression for constructing
the prognosis prediction model by incorporating 17 EFNB1-

associated immunomodulators in TCGA cohort
(Figures 7(a) and 77(b)). A total of two risk genes (CD276
and TNFSF14) were identified for signature (Figure 7(c)).
*e formula is as follows: risk
score� (0.3903×CD276) + (0.3976×TNFSF14). As revealed
by K–M curves, high-risk patients had dismal clinical
outcomes compared with low-risk patients. For verifying
our model creditability, we conducted t-ROC curve analysis.
In addition, the CGGA cohort proved our risk model
constructed based on the training set (Figure 8). Univariate
and multivariate Cox analyses were performed for
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Figure 2: Detection of DEGs between GBM and normal tissues. (a) Volcano plot of DEGs in TCGA-GBM. (b) Volcano plot of DEGs in
GSE108474. (c) Venn diagram indicating 201 differential coexpression genes.
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Figure 4: Detection of expression levels of the 10 hub genes between GBM samples and normal counterparts in GEPIA. (a) CALB2.
(b) EFNB1. (c) ENO2. (d) EPHB4. (e) NES. (f ) OBSCN. (g) RAB9B. (h) RPL23A. (i) STMN2. (j) THY1. Red represents cancer group, and
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Figure 5: Continued.
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investigating the independent prognostic ability of our risk
signature. As revealed by results from the univariate re-
gression, the risk score predicted OS of GBM. Furthermore,
according to multivariate regression, our constructed risk
score independently predicted prognosis of GBM
(Figures 9(a) and 9(b)). Similar results were also validated in
the CGGA cohort (Figures 9(c) and 9(d)).

3.8. Inhibition of EFNB1 Decreased GBM Cell Proliferation
and Migration. To be started, we verified differential expres-
sion between GBM (U87, U251) and NHA cells by qRT-PCR
and WB assays. As shown in Figures 10(a) and 10(b), EFNB1
was upregulated inGBMcells relative toNHAcells, especially in
theU251 cell line. Next, we applied siRNAs for silencing EFNB1
within U251 cells and performed qRT-qPCR and WB to
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Figure 5: Kaplan–Meier curves for 10 hub genes. (a) CALB2. (b) EFNB1. (c) ENO2. (d) EPHB4. (e) NES. (f ) OBSCN. (g) RAB9B.
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Figure 6: Correlation between EFNB1 expression levels and its immunomodulators. (a) EFNB1-related immunoinhibitors. (b) EFNB1-
related immunostimulators.
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Figure 8: Prognostic performance of the risk signature. (a, b) Distribution of risk score in the TCGA and CGGA cohorts. (c, d) Survival
outcomes of patients in the TCGA and CGGA data sets. (e, f ) Heatmap displaying signature genes in the two risk groups. (g, h)
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confirm its efficacy (Figures 10(c) and 10(d)).We found that the
downregulation of EFNB1 expression dramatically suppressed
U251 cell growth and migration, which was demonstrated in
CCK8 proliferation assay, colony formation assay, and transwell
assay (Figures 10(e)–10(g)). To detect the potential downstream
pathways of EFNB1, GSEA suggested that the Wnt/β-catenin
pathway was enriched after EFNB1 overexpression
(Figure 10(h)). *e protein expression of β-catenin, vimentin,
and N-cadherin was markedly decreased in the si-EFNB1
group, while the opposite was observed for E-cadherin ex-
pression (Figure 10(i)). *e above findings indicated the pos-
sible oncogenic role of EFNB1 in GBM through the Wnt/
β-catenin pathway.

4. Discussion

Currently, more and more articles suggest that abnormal
mRNA shearing is related to cancer migration, cell prolif-
eration, apoptosis, angiogenesis, and metabolism [15–17].
*erefore, mRNA can be used as a biological marker to
predict prognostic biomarkers of cancer. In this research, we
discovered candidate biomarkers and examined the prog-
nostic value by combining bioinformatics methods such as
DEG screening, functional enrichment, TCGA data set
verification, survival analysis, and PPI network establish-
ment. Initially, we performed a systematic screening of
differential mRNAs. GSE108474 and TCGA data sets were
utilized to generate the gene coexpression network by

WGCNA. Second, DEGs within cancer samples were se-
lected from each of the two databases mentioned above.
After that, we established the PPI network based on the
intersected genes. Functional annotation analysis revealed a
potential role of DEmRNAs in the pathogenesis of glio-
blastoma. GO analysis suggests that genes in this network
were mainly involved in the regulatory mechanism of ion
transport. Remodeling of calcium expression and activity
regulates tumor growth and survival by participating in key
cellular mechanisms and pathways, such as proliferation,
migration, invasion, metastasis, and cell death [18]. Sub-
sequently, we discovered 10 main hub genes from the PPI
network, which included EFNB1, EPHB4, NES, RPL23A,
CALB2, ENO2, OBSCN, RAB9B, STMN2, and THY1.
Combined with survival and differential tissue expression
analysis, EFNB1 upregulation predicted dismal survival of
patients with primary glioblastoma.

*e immune escape of cancer usually creates an immu-
nosuppressive tumor microenvironment by recruiting sup-
pressive cells and facilitating the depletion of immune cells,
thus promoting tumor growth [19, 20]. Immunotherapy for
patients with glioma remains suboptimal, which urgently
requires the discovery of new immune checkpoints as ther-
apeutic targets. In this study, we used the TISIDB online tool
to obtain 17 EFNB1-related immunomodulators, including 6
immunosuppressive agents (CD160, CD244, CD96,
HAVCR2, IL10, and PVRL2) and 11 immunostimulatory
agents (C10orf54, CD276, CD48, CD86, PVR, TMIGD2,
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Figure 10: EFNB1 knockdown inhibited GBM proliferation and migration. (a, b) EFNB1 expression levels in the GBM cell lines were
determined by qRT-PCR and western blot. (c, d) Silencing efficiency of EFNB1 in U251 cell. CCK-8 assays (e), clonogenic survival assay (f ),
and migration assay (g) were utilized to measure the rate after EFNB1 knockdown (scale bar� 100μm). (h) GSEA analysis showed the Wnt/
β-catenin pathway was enriched after EFNB1 overexpression. (i) Western blot was performed to detect the expression of E-cadherin, N-
cadherin, β-catenin, and GAPDH in U251 cells with or without si-EFNB1 (∗p< 0.05; ∗∗p< 0.01; ∗∗∗p< 0.001).
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TNFRSF14, TNFRSF8, TNFSF13, TNFSF13B, and TNFSF14),
whose functional analysis showed that they were relevant to
EFNB1-mediated immune events, such as lymphocyte acti-
vation, leukocyte-cell adhesion, T-cell activation, and regu-
lation of acquired immune responses. Lymphocytes are
known to be an important part of the body’s immune re-
sponse [21, 22]. It includes natural killer cells, T-cells, and
cytotoxic T lymphocytes, and all these are the critical factors
related to the affected the cells- and tumor-targeting adaptive
immune system [23, 24]. Leukocytes specifically express β2
integrin, which is a critical ingredient in the intercellular
communication of immune cells, and perform an essential
function in mediating intercellular adhesion and inhibiting
immune activation [25, 26]. Next, we constructed a two-gene
signature for GBM based on EFNB1-related immune mod-
ulators. Our constructed signature was highly accurate in the
training and the validation data set. Based on clinical features,
this study also developed an individualized predictive prog-
nostic nomogram. *is study might offer an accurate and
simple approach for assessing GBM survival by clinicians.

In addition, we investigated the oncogenic role of EFNB1
in GBM cells by in vitro experiments. Compared with normal
human astrocyte cells, EFNB1 expression was elevated in
GBM cells. Inhibition of EFNB1 expression was able to
significantly suppress the proliferation and migration of U251
cells. Knockdown of EFNB1 resulted in lower expression of
β-catenin, vimentin, andN-cadherin and higher expression of
E-cadherin, indicating that EFNB1 may have a positive
regulatory effect on the Wnt signaling pathway. Hence,
EFNB1 is likely to play a pro-carcinogenic role in GBM.

However, there are several shortcomings to our research.
Our research is mostly based on bioinformatics methods.
*e expression pattern of EFNB1 needs to be verified in the
local cohorts. Moreover, we will further explore the onco-
genic effects of EFNB1 by in vivo experiments.

In summary, we proved that EFNB1 could act as a novel
prognosis marker in GBM. Furthermore, a novel prognostic
signature was developed based on EFNB1-related immu-
nomodulators, which could be used as an independent
predictor of prognosis and provide new clues for immu-
notherapy in GBM patients.
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“Mechanisms of polarized cell-cell communication of
T lymphocytes,” Immunology Letters, vol. 209, pp. 11–20,
2019.

[26] L. Schittenhelm, C. M. Hilkens, and V. L. Morrison, “β2
integrins as regulators of dendritic cell, monocyte, and
macrophage function,” Frontiers in Immunology, vol. 8,
p. 1866, 2017.

Journal of Oncology 15


