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Abstract: Stem cells, identified several decades ago, started to attract interest at the end of the
nineties when families of mesenchymal stem cells (MSCs), concentrated in the stroma of most organs,
were found to participate in the therapy of many diseases. In cancer, however, stem cells of high
importance are specific to another family, the cancer stem cells (CSCs). This comprehensive review
is focused on the role and the mechanisms of CSCs and of their specific extracellular vesicles (EVs),
which are composed of both exosomes and ectosomes. Compared to non-stem (normal) cancer
cells, CSCs exist in small populations that are preferentially distributed to the niches, such as minor
specific tissue sites corresponding to the stroma of non-cancer tissues. At niches and marginal
sites of other cancer masses, the tissue exhibits peculiar properties that are typical of the tumor
microenvironment (TME) of cancers. The extracellular matrix (ECM) includes components different
from non-cancer tissues. CSCs and their EVs, in addition to effects analogous to those of MSCs/EVs,
participate in processes of key importance, specific to cancer: generation of distinct cell subtypes,
proliferation, differentiation, progression, formation of metastases, immune and therapy resistance,
cancer relapse. Many of these, and other, effects require CSC cooperation with surrounding cells,
especially MSCs. Filtered non-cancer cells, especially macrophages and fibroblasts, contribute to
collaborative cancer transition/integration processes. Therapy developments are mentioned as
ongoing preclinical initiatives. The preliminary state of clinical medicine is presented in terms of both
industrial development and future treatments. The latter will be administered to specific patients
together with known drugs, with the aim of eradicating their tumor growth and metastases.

Keywords: cancer stem cells; normal; non-stem cancer cells; mesenchymal stem cells; extracellular
vesicles; niches; tumoral microenvironment; cancer differentiation; cancer progression and relapse;
metastasis; therapy; clinical medicine

1. Introduction

Stem cells are small sub-populations of cell families, generated and concentrated at the
small stroma portions that are present in the tissues of all organs of animals and humans.
The most relevant of these families are the mesenchymal stem cells (MSCs), first recognized
several decades ago; however, they have been of limited interest for a long time. After
1990, interest in these cells increased progressively, starting when MSCs were shown to
participate in unexpected, relevant functions, including tissue regeneration and therapy for
diseases [1,2]. Among the first recognized therapies were those for diseases of bone and
cartilage [1,2], then those of blood, heart, brain, liver, kidney, lung, and almost all other
organs [3–7]. The multiplicity of the discovered effects was show to depend on the limited
heterogeneity of MSCs from various organs. Their mechanisms of action, based on their
paracrine fusion to target cells, were first shown to be reinforced by the cooperation of
soluble bioactive factors, such as cytokines and growth factors. Soon thereafter, however,
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the reinforcement of MSCs was found to be even larger and dependent on the secretion of
their extracellular vesicles (EVs), which included two types, the exosomes and ectosomes.
In order to emphasize their origin from MSCs these EVs are often called MSC-EVs. When
the latter EVs were investigated separately, they were found to recapitulate most of the
therapeutic effects induced by their MSCs of origin. From 2000 to now, thousands of MSC
and MSC-EV studies have appeared in the literature that are focused on various aspects of
their effects against diseases, supporting future perspectives for their possible development
in clinical medicine [3–7].

In view of their limited heterogeneity, MSCs and MSC-EVs are often considered as the
only stem cells and their secreted vesicles, respectively. Such definitions, however, appear
short to other major classes of cells and vesicles, such as those of cancer. Many cancers
express MSCs and MSC-EVs. These, on the one hand, are analogous, and on the other hand
are more variable compared to those of non-cancer cells. In addition, cancer cells express a
second class of stem cells, cancer stem cells (CSCs), discovered about 10 years after MSCs. A
specific study about a human acute myeloid leukemia, published in 1997 [8], illustrated the
small expression of extensively proliferative and self-renewing cells in the severe combined
immunodefinite diseases (SCID) leukemia-initiating cells (SL-ICs), responsible for the
maintenance of tumor clones [8]. Subsequent studies demonstrated that the properties
attributed to SL-ICs also belong to solid cancers, such as brain and breast cancers [9,10].
Further studies revealed that small subpopulations from human brain tumors expressed
the same self-renewal and exact recapitulation of the original tumor [11], maintaining,
however, differentiation properties analogous to MSCs [12]. Upon their isolation, such
tumor cells could be serially transplanted, thus generating protein phenocopies of the
original tumor (Table 1). According to all these results, CSCs were first interpreted as the
basis of solid brain tumors [11]. Subsequent studies extended this hypothesis to other types
of cancers, confirming the validity of CSCs as a working model and identifying some of
their highly robust surface markers, which are appropriate for the specific isolation of CSCs
(see [13,14] for examples).

Table 1. History and properties of CSCs.

Discovery 1997–2004: First discovered in leukemia, then
in cancers of the brain and other organs [8–14].

Concentrated in: Niches and tumor microenvironments (TMEs).

Co-distribution and
co-operation of CSCs with:

MSCs, normal. Cancer cells, fibroblasts,
macrophages, other immune cells [15–17].

Basic functions: Cancer-cell initiation, immortality, self renewal,
multi-lineage divergence, differentiation [18–21].

Peculiar functions: Progression, functional plasticity, metastases,
therapy resistance, cancer relapse [17,19,21–23].

Secretions: Cytokines, interleukins, growth factors [24,25].

Released extracellular vesicles: Exosomes and ectosomes [3–7,19,26].

Replacement (if needed): By surrounding normal cancer cells [20,21].

More recent studies, which started approximately two decades after CSC identification,
led to functional and pathological characterization of CSCs cells. Small populations of
heterogeneous CSCs revealed their capacity for self-renewal and aberrant differentiation
to be specific for immortality and divergent lineages of cancer cells [18]. In cancer tissue
CSC concentrations occur within small volumes, the niches, analogous to the stromas of
non-cancer cells [19]. Niches (Figure 1) are the sites of high-degree CSC plasticity, which
are dependent on transitions from slowly cycling quiescent phases to actively proliferating
phenotypes, with intense secretion of their EVs [19,26]. Within niches, some of the gen-
eral properties of stem cells and their vesicles depend on the cooperation of CSCs with
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MSCs [27,28]. Stem cells and their EVs are not alone but are accompanied by other cells and
EVs: non-stem cancer cells (referred to in this review as normal cancer cells), fibroblasts,
immune cells (macrophages, lymphocytes, and others) and other cells, are all involved as
cooperators in cancer function [24,29–32] (Table 1). The tumor microenvironment (TME)
(Figure 2), which is different from the non-cancer microenvironment, coincides in space
with niches and other areas of cancer development and growth [24,25]. Finally, studies
about CSCs and their associated cells/structures have been developed in areas of potential
interest for therapeutic development [15–17]. Moreover, some of these studies are close to
reaching, or have already reached, the field of clinical medicine [33].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 15 
 

 

More recent studies, which started approximately two decades after CSC identifica-
tion, led to functional and pathological characterization of CSCs cells. Small populations 
of heterogeneous CSCs revealed their capacity for self-renewal and aberrant differentia-
tion to be specific for immortality and divergent lineages of cancer cells [18]. In cancer 
tissue CSC concentrations occur within small volumes, the niches, analogous to the stro-
mas of non-cancer cells [19]. Niches (Figure 1) are the sites of high-degree CSC plasticity, 
which are dependent on transitions from slowly cycling quiescent phases to actively pro-
liferating phenotypes, with intense secretion of their EVs [19,26]. Within niches, some of 
the general properties of stem cells and their vesicles depend on the cooperation of CSCs 
with MSCs [27,28]. Stem cells and their EVs are not alone but are accompanied by other 
cells and EVs: non-stem cancer cells (referred to in this review as normal cancer cells), 
fibroblasts, immune cells (macrophages, lymphocytes, and others) and other cells, are all 
involved as cooperators in cancer function [24,29–32] (Table 1). The tumor microenviron-
ment (TME) (Figure 2), which is different from the non-cancer microenvironment, coin-
cides in space with niches and other areas of cancer development and growth [24,25]. Fi-
nally, studies about CSCs and their associated cells/structures have been developed in 
areas of potential interest for therapeutic development [15–17]. Moreover, some of these 
studies are close to reaching, or have already reached, the field of clinical medicine [33]. 
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Figure 1. Various types of cells and their secreted vesicles that are present and active at cancer niches.
At the top, two stem cells of a large size are shown attached to each other. Both the green cancer
stem cells (CSC, left) and the orange mesenchymal stem cells (MSC, right) illustrate the secretion of
two types of extracellular vesicles (EVs): small exosomes (light blue dots), diffusing out upon the
exocytosis of their intracellular containers, the endocytic vacuoles multivesicular bodies (MVBs),
and large ectosomes (membranes around yellow lumena), released by shedding of surface mini
expansions. EV secretion occurs not only from the large-size cell images, but also from small cells
distributed at the bottom, where, however, secretion is not shown. Secreted EVs navigate in the space
among the cells. In the lower group, the cells with green and orange nuclei are CSCs and MSCs; cells
with red nuclei are normal cancer cells; and cells with blue nuclei are non-cancer cells, for example
immune cells that participate in cancer functions. Among their active functions, EVs mediate various
types of paracrine and autocrine fusions, which are established with target cells of and outside the
niches. Analogously, released fluid agents (interleukins, cytokines, growth factors) and metabolites
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move in all directions in the space, as suggested by the arrows. The red vessel to the right documents
the process of angiogenesis, the generation of new vessels in the depth of cancers. The key role of
CSCs in many processes governing cancer life depends also on their cooperation and signal exchange
with the other cell types distributed within the niches.
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Figure 2. Drawing of a tumor microenvironment (TME) with reference to various types of cells,
their processes, and their functions. The extracellular matrix (ECM) documents properties of the
cancer environment, which is important for direct interaction with the cells. The apparent connection
between the images close to the external line and their names, permits one to distinguish the nature
of the present cells. The two stem cells, cancer (CSC, light blue) and mesenchymal (MSC, green), are
located at the top and top right. Among the other cells, normal cancer cells, which are highly abundant
in their masses (not shown), are known to differ considerably from CSCs. Fibroblasts, macrophages,
and lymphocytes are filtered cells that contribute to the TME activity by their cooperation in cancer-
protective and cancer-associated processes. All cells produce, by secretion, their extracellular vesicles
(EVs). The highly functional and molecular relevance of the vesicles from the two stem cells are
suggested by the close location of their EV to the name of their cell of origin. Cells mentioned so far,
labeled by the same colors, are present also in the central area of the image. The dots at the surface
of the cells are EVs in continuity, possibly involved in release or fusion, which are the processes of
molecular transfer between cells. The terms angiogenesis and circadian clock do not describe single
cells, but instead are complex processes taking place in TMEs. They require the cooperation of CSCs
with various cooperating cells.

The previous paragraphs provide a general introduction to this review. Starting with
my experience of MSCs and MSC-EVs [7], interest has been focused on the expansive
relevance of CSCs and their EVs. So far, most published reviews and articles in the field
have been focused on single or a few specific cancers and their peculiar properties. My aim
is to present a comprehensive review of cancer stem cell developments and progress within
this field, focusing particularly on recently published studies and their interpretation.
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2. CSCs and Their EVs Are Essential for Cancer Initiation and Its Processes

CSCs are small subpopulations of stem cells, which contribute to specific critical
processes. In view of their considerable heterogeneity among various cancers, the effects
of these cells and their EVs are not homogeneous. Most often, however, they can be
envisaged according to general criteria. CSCs share some properties with MSCs, including
broad proliferation and activation of various signaling processes [18–20,34]. Relevant
to CSCs are the cellular cross-talks also involving, together with stem cells, non-cancer
cells accumulated at the niches [15,16,24,25,35] (Table 1; Figure 1). The investigation of
such a process is an attractive way of identifying the properties and vulnerability of most
cancers [15,35].

A critical function of CSCs is immune surveillance, by which many cancers are pro-
tected by resistance to immunotherapy [24,30,32] and also to drugs [36]. Additional cellular
processes that contribute to CSC function, i.e., autophagy and EV secretion, are important
also for cell survival [21,37–40]. Autophagy, which contributes to the traffic, turnover, and
secretion of cytoplasmic proteins and membranes, favors CSCs and their vesicles [37,38].
Inhibitors, which affect EV secretion, are now believed to be highly important and attrac-
tive for anticancer therapy [37,39]. Bypassing autophagy inhibition can be achieved by
drugs [39], thanks to the acute adaptability and plasticity of CSCs [17]. EVs duplicate many
effects of CSCs and are essential for the communication between various types of cells
concentrated in the niches [7,21,28].

However, most key properties of CSCs are specific [17,34]; their modulation appears
largely focused on self-renewal and multi-lineage differentiations [20,21], which is different
from those of the MSC family. CSCs show multi-lineage properties, leading to the gen-
eration of distinct cancer subtypes [18,21]. Moreover, CSCs participate in many critical
processes of cancer, from initiation and progression to formation of metastases, therapy
resistance, and cancer relapse (Table 1) [17,21–23]. Based on their unique role in most
critical processes, CSCs are now recognized as possible key targets of anti-cancer therapy.

For the origin of CSCs, proliferation is predominant and induces many effects reported
in Table 1. The relevance of some differentiation has also been proposed. In normal cancer
cells, such a possibility has been confirmed by experiments showing that, upon their elimi-
nation, CSCs are replaced by surrounding normal cancer cells via the acquisition of specific
properties [20,21]. The sites of CSC differentiation are distributed at the niches, which
are present in all cancers [19,35]. The function of CSCs depend on their secretion of both
soluble factors (interleukins, cytokines, growth factors) and EVs [21,27,28]. Concomitantly,
CSCs receive soluble signaling factors together with EVs that are released by normal cancer
and other niche cells [19]. Figure 1 illustrates the general structure and analogous functions
of a single CSC and MSC shown in a large format. Below the two stem cells is a list of the
various cells coexisting in the niche, with their bidirectional exchange of signals. With their
collaboration with MSCs, normal cancer cells and non-stem/non cancer cells are essential
for many specific CSC activities [20,29–32,35,40].

Important interactions of CSCs, however, are not direct but occur via their secreted
EVs [21,27,28,36,41]. Up until now, a clear distinction between the vesicles secreted by
CSCs and MSCs has not been reported. Therefore, the CSC-dependent vesicles are simply
indicated as EVs, and are abundant within niches. Whenever possible, the molecular
profiling of circulating EVs provides a non-invasive but promising means of diagnosing
cancer, by monitoring its state and predicting its expected development [27,28]. In some
cases, however, due to the similarities and frequent co-localization of the two EV types,
their distinctions remain unclear. It should be emphasized, however, that studies have
been reported showing that EVs from CSCs contribute significantly to tumor progres-
sion. Among the processes involved are tumor resistance, metastasis, angiogenesis, and
maintenance of stemness and immune suppression [21,23,36,41–43]. The main role of EVs
also includes their fusion with macrophages and other immune cells [30,31]. CSCs and
their EVs are able to modulate cancer cell proliferation by the release of proteins [44–46]
and miRNAs [30,47–51]. Examples are increasing, with results in favor or against cancer.
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miRNAs from CSC/EV have been reported recently. The first of these are in favor. The
miR-92/PD-L1 pathway contributes to the suppression of immune cell function [30] and
miR-200c stimulates the metastatic traits in colorectal cancer [47]. On the other hand, human
liver cancer is attenuated in vitro and in vivo by miR-145 and miR-200 [48]; inhibition of
lung metastasis is induced in osteosarcoma by miR-101 [49]; miR-8063 inhibits self renewal
of GSC [50]; miR-663 inhibits the CSCs of a glioma [51]; and miR-1468-5p promotes a tumor
immune escape [52]. Interestingly, many of the effects reported in this section, induced
by CSCs and miRs, are mediated by the activation of various signaling pathways such
AKT [22,46], GSK3-β [22], Wnt/β-catenin [22,23,50,51], and TGF-β/SMAD [53].

3. Role of MSCs and MSC-EVs

MSCs and MSC-EVs are concentrated within niches together with CSCs, other EVs,
normal cancer cells, and non-cancer cells involved in specific processes of cancer relevance
(Figure 1). The role of MSCs/MSC-EVs in the development of cancer, already reported
during the last decade (see for example [27,29,54–57]), has been confirmed recently by
meta-analyses and critical interpretations [58,59]. The different role, positive or negative, of
mesenchymal stem components could be due to their heterogeneity or, alternatively, to the
state of the cancers involved, dependent on their CSCs and EVs [56,57]. Results reported
here often appear due to the cooperation of the two stem-cell types and their EVs, with the
induction of therapy forms such as those against pancreatic and colon cancers [60,61]. In
contrast, the non-small cell lung cancer appears reinforced [17]. Interestingly, the positive
results induced by MSC in some tumors were not confirmed in their metastases where
MSC responses were negative [15,34]. In this case, therefore, different mechanisms taking
place in different areas of cancer pathology, appear to govern an apparently single process.

The cancer role of MSCs has also been investigated via molecules (proteins, lipids,
miRNAs), most often released from the EV cargoes. Identification of miRNAs active at
one or more steps of MSC signaling cascades [59–62], and which are different from those
involved in CSC action [47–51] were already established some years ago. Recent findings
have led to the identification not only of miRs but also of signaling cascades they contribute
to in order to activate. Specifically, miR-193a has been found to impede proliferation,
migration, and invasion of its colon cancer cells via down-regulation of the FAK kinase [60];
miR-133b suppresses glioma cell progression via activation of the Wnt/β- catenin signaling
cascade [63]; and overexpressed miR-34a, active on breast cancers, induces repression of
their cell proliferation and growth [64]. Analogously, miR-199, via stimulation of the mTOR
pathway, increases the chemo-sensitivity of hepatocellular carcinoma cells [65]. In contrast,
miR-208a induces proliferation, migration, and invasion of osteosarcoma cells [66] and two
miRNAs, miR-21-5p and miR-130b-3p, promote the growth and mobility of two types of
lung cancer by regulating their FoxO3 axis [67,68].

The MSC-EV actions reported so far refer to modulations of cancer actions analogous,
but not identical, to those operating in non-cancer organs. This, however, is not the only
function of vesicles. In addition to their release of molecules, EVs operate by fusing with
various types of cells: CSCs, normal cancer, and non-cancer cells [27,28]. Further functions
of MSC-EVs include processes, such as invasiveness, immunology, and angiogenesis, which
are presented in the next TME Section.

4. The Tumor Microenvironment: The Role of CSCs and Cooperative Cells

A TME, a dynamic milieu of stem and other types of cells, corresponds to the peculiar
heterogeneous environment existing within niches. In addition, a TME is distributed in the
spaces surrounding tumor masses [69,70]. For the development of cancer processes, such
as migration and invasion, resistance to antitumor treatments, proliferation, and growth
of metastases, CSCs are required to operate in the specific environment of TMEs, their
immune agents, and other components [24,71,72].

TMEs include components of the extracellular matrix (ECM) together with either type
of stem cell, normal cancer cells and infiltrating non-tumor cells, which are all involved in
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relevant processes (Figure 2). These components govern various peculiar aspects of cancer
volumes. The ECM components, which are different from the corresponding matrices of
healthy tissues, make the various basic properties of the environment possible, including
the pH and various ions together with specific cancer markers, which is of interest for their
binding to cell surfaces [71,72]. EVs, secreted by all cell types present in a TME, operate
together with soluble agents such as interleukins, cytokines, growth factors, and various
metabolites [72,73]. The interactions among environmental cells, mediated by their EVs,
result in their paracrine and autocrine fusions, thereby participating in the modulation of
cancer progression [19,67].

Recent studies have clarified processes by which cancer and non-cancer stem cells,
during their navigation in the TME and upon their crosstalk, stimulate cancer development.
An important contribution depends on the inhibition of immune cells by the so-called
immune escape process [52,69]. Tumor-initiating CSCs shape their microenvironment
into immunosuppressive barriers and pro-tumorigenic niches, all including filtered im-
mune cells, which are most often macrophages and lymphocytes [69,70]. The interactions
between macrophages and CSCs contribute to the development, association, and dissem-
ination of tumor-associated cells dependent on the signaling of miRNAs released from
EV cargoes [31,74]. A few processes, promoted by the miR-1468-5p, induce the immune
escape of tumors via the immunosuppressive reprogramming of lymphatic vessels [52]. B
cell proliferation can be inhibited by EVs secreted by CSCs, which is an approach of future
therapeutic interest [75]. Additional immunosuppressive processes have been reported that
occur in the TME: suppression of immune cell function induced by EVs secreted by cancer-
associated fibroblasts, with ensuing stimulation of cancer progression [30]; and responses
apparently triggered by miR-146a that induces transition from MSCs into cancer-associated
fibroblasts [76] (Figure 2).

In addition to their transition processes already mentioned [68–76], TME governs
angiogenesis (Figures 1 and 2), a process of tumor growth by which new blood vessels
develop from pre-existing ones. Angiogenesis depends on cancer EVs cooperation via their
miRNAs and positive factors (vascular endothelial growth factor and matrix metallopro-
teinases), together with the suppression of another factor inhibiting the hypoxia-inducible
factor [77]. The ensuing effect is an activation of angiogenic signaling pathways in normal
endothelial cells, with ensuing formation of new cancer vessels, where endothelial cells are
differentiated from CSCs [25,77,78]. Immunoblocking of angiogenesis, a sedative process of
cancer progression, could be prevented in TMEsby the crosstalk of stem cells with immune
cells [79]. Analogously, the inhibition of angiogenesis by the transcription repressor FoxO1
can be prevented by the miR-135b of EVs from endothelial cells [80].

A process regulated by a TME is the circadian clock (Figure 2). The connection
established here is due to the high degree of CSC property and its functional plasticity
(Table 1), which is dependent on the transition from slowly cycling quiescent phases to
actively proliferating phenotypes [19,26]. Circadian clocks contribute to cancer growth by
regulating stem cells and the TME. Among TME processes, the circadian clock operates on
immune escape and angiogenesis. The effect of the circadian clock on tumor progression is
probably dependent on its effects on stem cells and the pro-tumor TME [81,82].

5. Development of Therapies: Methods and Tools

The present section, based on the stem-cell properties presented so far about can-
cers and the mechanisms of their development, is focused on the numerous anti-cancer
processes. The interest in stem cells started from their possible development in clinical
practice [3,4]. In most cases, however, such developments did not occur, thus knowledge
about these studies, which is quite variable in nature and mechanisms of action, remained
at preclinical levels. The aim of this section is to summarize the present state of the field
of therapy.

The processes to be considered that deal with the specificity of the miRs that mod-
ulate the CSC gene expression [83] and the cascades involved in their signaling, are
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numerous [41,53,64,84]. The opposite effects of inhibition or reinforcement are induced
by drugs, rather than CSC action [36,84]. Additional promising perspectives have been
identified recently. Details regarding the methods and tools employed in the procedures
mentioned from now on can be found in the relative publications. Among such procedures
are the role of autophagy in the CSC cancer development [44,45]; the reductions in CSC
levels induced by changes of their metabolism [85]; the dependence on CSCs together with
MSCs and EVs for cancer distribution to various organs [16,58,86]; and the relevance of ther-
apy for two types of processes: the immune escapes [24,32] and the epithelial-mesenchymal
and MSC-fibroblasts transitions [31,51,76]. From the multiplicity of these approaches it
is expected that specific therapeutic processes, aimed to eradicate tumors by preventing
their main processes, such as metastases, tumor relapses, and drug resistance, can be
induced by specific effects, such as reverse responses and increased drug efficacy [35,36,47].
In conclusion CSCs, MSCs, and their EVs can be considered as promising tools for the
treatment of cancers and disorders, aimed to overcome the limitations, such as low efficacy
and toxicity, of ongoing cell therapies.

Any strategy against CSCs depends on the efficacy of its cancer therapy. With time,
many pharmacological approaches have been established, affecting critical properties of
their target cells [44,56,64]. However, only a few conventional therapies have been fully
successful. Improved results have been obtained by the combination of distinct treatments.
Nanomedicines [17], which started over 10 years ago, have reinforced therapy by accurate
combinatorial approaches, i.e., by drugs and genes, qualified by targeting and combi-
national deliveries. By such an approach, the poor prognosis observed in patients with
various types of cancers, treated by potentially appropriate, but lunefficient conventional
drugs, is now greatly improved [17,40]. More integrated nanomedicine approaches have
been applied against metastatic prostate and other cancers, based on conventional drugs
combined with drugs of different types, such as docetaxel, a cytotoxic agent that disrupts
microtubule formation and thus halts cell division; meta-tetrahydroxyphenyl chlorin, a
photodynamic drug employed for treatment of peritoneal metastases from carcinomatosis;
or the chemotherapeutic agent doxorubicin, integrated into lipid bubbles [87–89]. Analo-
gous successes have been obtained by the same doxorubicin delivered, however, within
MSC-EVs [90]. The drugs employed in both nanomedicine and EVs are encapsulated
by an engineered technique governed by a GMP technique [33,90]. Such encapsulation
succeeds to target cancers with superior selectivity, thus obtaining therapeutic effects that
are much stronger than those of free drugs [17,86–93]. In conclusion, the introduction of
nanomedicine is interesting, however its medical employment is still under development.

Cancer therapy, such as the one summarized here, has been recently reconsidered
from the point of view of CSCs, the stem cells that have gained special attention as avenues
of intervention. The interactions of CSCs with surrounding cells and their EVs are critical,
operating via several mechanisms including fusions to target cells with the ensuing release
of critical cargo molecules, such as proteins and miRNAs [83]. The innovative understand-
ing of cancer based on specialized stem cells has contributed to new benefits, oriented to
more efficient therapeutic treatments. The intense investigations that are ongoing at present
are expected to develop into efficient therapies in the next few years [94].

6. Progress in Clinical Medicine

As already mentioned in the previous section, the intense cancer CSC studies car-
ried out during the last several years are aimed at the conversion of basic knowledge to
clinical trials and medical employment. However, CSC-target therapy is affected by CSC
heterogeneity. Therefore, more in-depth knowledge and technology are still required to
develop novel therapies. Moreover, novel strategies are needed to effectively eradicate
both tumor growth and metastasis, while taking into account the TME, which plays a
key role in tumor-cell plasticity [95]. At present, studies involving the engineering of
stem cell therapies may ultimately induce the development of new agents employed for
clinical practice. The sites specific for cancer growth may be useful for initial clinical trials
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that remain to be developed and evaluated [96]. While research of CSCs has exploded
during the last few years, its development towards clinical practice is still at a preliminary
stage [36,97]. The present state of the problem will be considered from two points of view
concerning the operative properties of CSC and their EVs that are needed for the entrance
into clinical practice and the clinical therapy needed for various diseases.

Biotechnological and pharmaceutical companies are considering, with interest, the
chance to invest in clinical practice by manufacturing, safety, and efficacy of their products.
For this, they intend to establish sources of cancer cell types and analyze their diseases.
It will be important to identify animal models that are appropriate for the initial exper-
iments and that are essential for future studies based on toxicities and pharmacological
investigations [95]. The manufacturing of molecules will then be started, also keeping in
mind the number of potential patients considered. In view of the critical role of CSCs,
targets of possible cancers will be based on these cells and their secreted EVs. Upon their
characterization, such tools will be purified and then analyzed by pharmacological tools
before the start of their production [97,98].

A form of medical practice, often employed for non-cancer diseases, is regenerative
medicine, which is based on affected tissues including the brain, the blood vessels, and
other organs (for details see [75,99]). In case of cancers, this approach is employed, however
not frequently [88,96]. In the field of cancer, ongoing research is about personalized
medicine [12,20,100]. Cancer EVs associated to a drug delivery system have already
reached early phases in clinical trials [97,101]; however, the clinical application of this is
still far away. Protocols for EV loading, modification, and isolation need to be standardized
for large-scale production. Careful evaluation of the findings concerning qualification,
characterization, and production of the methods employed, include pharmacokinetics,
targeting and transfer of drugs to appropriate sites; assessment of safety profiles; and
others [95–98,100–102].

7. Conclusions

At present, stem cells are attracting great interest, with innovative properties reported
almost every month. MSCs undergo various types of differentiation that contribute to their
heterogeneity. However, the properties and functions of the various forms of MSCs and
their EVs, produced for research and employment in medicine, have been characterized and
are not profoundly different from each other. Most forms of these stem cells are therefore
called by the same nomenclature. However, MSCs participate in, but do not cover, a large
case of cancers. The CSC system is, in fact, more complex than that of MSCs. The two types
of coexisting stem cells, MSCs and CSCs, are able to cooperate, however, only by some
of their properties. The remaining critical properties are specific. In the expression of the
latter properties CSCs and their EVs predominate [19–21,23,27,35,43,47].

In cancer niches and TMEs (Figures 1 and 2), CSCs and their EVs coexist not only with
cells of the MSC family, but also with normal cancer cells and various non-cancer cells,
such as fibroblasts, macrophages, and other immune cells [15,24,25,30–32,67–74]. Processes
of key relevance for cancer, such as immune escape, drug resistance, and cancer relapse, i.e.,
the processes that pose the greatest barriers to cancer care, are driven by the CSC stem cell
program andin some cases withthe specific participation of non-cancer cells [30,31,74,76].
In additional processes, the predominant role of CSC is also sustained by its participation
in apparently independent events, such as drug efflux, involvement of the autophagic
machinery, secretion of cytokines, and other factors [37,64,73]. CSCs’ heterogeneity oc-
curs according to multi-lineage differentiation, leading to distinct cancer subtypes. The
bidirectional exchange of signals between CSCs and the other cells accumulated in the
niches is important for preserving the activity and the specificity of the various cells in-
volved [20,46,51]. The role of CSCs can be envisaged from key steps of its action, such as
cancer initiation and its progression up to metastasis generation, whicha re often conceived
together with the collaboration of the other cells. Relevance of CSCs and their collaborators,
established in the niches and TSEs, are therefore essential for cancer initiation and devel-
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opment [21–23,40,41]. The interactions among cells active in cancer has been interpreted
for years according to a hierarchical concept, which is based on the general predominance
of CSCs. Recently this interpretation has been questioned, based on an alternative in-
terpretation of clonal evolution and stemness phenotype models [103,104]. Due to these
proposals, the predominant CSC role should be postponed until the proximal future. CSC
remains, however, as a possible target of innovative therapies developed by operational
terms; innovative not only for scientific studies, but especially for clinical medicine.
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