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Abstract
The mammalian liver plays a key role for metabolism and detoxification of xenobiotics in the

body. The corresponding biochemical processes are typically subject to spatial variations at

different length scales. Zonal enzyme expression along sinusoids leads to zonated metabo-

lization already in the healthy state. Pathological states of the liver may involve liver cells

affected in a zonated manner or heterogeneously across the whole organ. This spatial het-

erogeneity, however, cannot be described by most computational models which usually

consider the liver as a homogeneous, well-stirred organ.

The goal of this article is to present a methodology to extend whole-body pharmacokinet-

ics models by a detailed liver model, combining different modeling approaches from the lit-

erature. This approach results in an integrated four-scale model, from single cells via

sinusoids and the organ to the whole organism, capable of mechanistically representing

metabolization inhomogeneity in livers at different spatial scales. Moreover, the model

shows circulatory mixing effects due to a delayed recirculation through the surrounding

organism.

To show that this approach is generally applicable for different physiological processes,

we show three applications as proofs of concept, covering a range of species, compounds,

and diseased states: clearance of midazolam in steatotic human livers, clearance of caf-

feine in mouse livers regenerating from necrosis, and a parameter study on the impact of dif-

ferent cell entities on insulin uptake in mouse livers.

The examples illustrate how variations only discernible at the local scale influence sub-

stance distribution in the plasma at the whole-body level. In particular, our results show that

simultaneously considering variations at all relevant spatial scales may be necessary to

understand their impact on observations at the organism scale.
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Introduction
The liver plays a pivotal role for metabolization and detoxification in the mammalian body.
The connection between the whole organism and the liver is mainly given by blood flow: blood
is supplied to the liver via two vascular systems, portal vein (PV) and hepatic artery (HA),
blood is drained via the hepatic vein (HV). The PV and HA provide approximately 75% and
25% of the inflow, respectively [1]. Besides the blood flow, additional exchange between organ
and organism is given by bile [1] and lymph [2] flow.

Clearance contributions of different organs are typically analyzed by pharmacokinetics
(PK) models [3–5]. In particular, specific models for liver clearance were developed [3, 6].

One major challenge for PK simulations, in particular for relevant diseased states, is the
presence of spatial inhomogeneity and multiple scales in time and space that need to be
accounted for appropriately. The most prominent spatial scales in the liver are:

1. individual hepatocytes performing most of the metabolization of diameter 20 to 40μm [1]
in humans, 23.3 ± 3.1 μm in mice [7];

2. sinusoids and space of Disse along which the blood gets in contact with the hepatocytes;

3. lobuli consisting of multiple sinusoids draining to the same central vein. Lobuli have a
diameter of 1 to 1.3 mm and a depth of 1.5 to 2 mm in humans [1]. Their radius is 284.3 ±
56.9 μm in mice [7]. The radius of a lobulus is thus about 19 hepatocyte diameters in
humans and 12 in mice;

4. the liver and its lobes, organized in many lobuli, supplied and drained by the main major
branchings of the hepatic vascular structures. The total liver volume is about 1.5 l in humans
[1] and approximately 1.1 ml in mice [8]. Human livers are classically divided in two lobes
or eight segments [9], but there is no consensus in the literature on the subdivision and its
terminology, neither for mice [10] nor for humans [11].

Two of these length scales of inhomogeneity are most relevant for metabolic processes. On
the sinusoidal length scale, effects occurring in specific regions along sinusoids are denoted by
zonation[12, 13]. In case we do not refer to a small number of zones, we will denote this by
sinusoid-scale heterogeneity. Furthermore, metabolic effects can differ between lobuli found at
different locations in or across lobes. We will denote the latter by organ-scale heterogeneity.
Generally, three main reasons for inhomogeneous metabolization can be distinguished: (a)
The periportal hepatocytes, those near the inflow to the sinusoid, experience a higher concen-
tration of a compound being metabolized than the pericentral hepatocytes, those near the out-
flow. This may lead to concentration gradients even if the cells themselves do not differ in
terms of their metabolic capability. (b) Different gene expression or enzyme levels depending
on the location, either along sinusoids or throughout the organ, may additionally lead to spatial
differences in the metabolic capability. (c) Pathological states can furthermore affect the meta-
bolic capability, see the examples in Fig 1 showing steatosis patterns at different length scales.

The goal of this article is to introduce a generic simulation framework capable of dealing
with both types of spatial inhomogeneity, i.e., sinusoid-scale as well as organ-scale heterogene-
ity. It is intended to mechanistically model the underlying effects and allow predictions in the
case of pathophysiological changes. The key building block of the multiscale model presented
here corresponds to the sinusoidal scale and is denoted by representative sinusoids. Each such
representative sinusoid contains a spatial pattern of metabolization parameters and stands for
one region of the liver exhibiting essentially this same parameter pattern. An organ-scale het-
erogeneity can thus be represented in the model by taking into account multiple representative
sinusoids in parallel.

Representative Sinusoids for Hepatic Four-Scale Simulations

PLOS ONE | DOI:10.1371/journal.pone.0133653 July 29, 2015 2 / 39

role in the study design, data collection and analysis,
decision to publish, or preparation of the manuscript.
The specific roles of these authors are articulated in
the “author contributions” section.

Competing Interests: The authors of this manuscript
have read the journal’s policy and have the following
competing interests: AS and LK are employed by
Bayer Technology Services, the company developing
PK-Sim. The other authors have declared that no
competing interests exist. This does not alter the
authors’ adherence to PLOS ONE policies on sharing
data and materials.



Review of Related Pharmacokinetics Simulation Techniques
Physiologically based pharmacokinetic (PBPK) modeling mechanistically represents whole-
body physiology at an organism level. In contrast to rather generic compartments in classical
PK modeling, PBPK models consider organs explicitly, allowing amongst others for the simula-
tion of time-concentration profiles in specific tissues. PBPK models may comprise systems of
ordinary differential equations (ODE system) in several hundreds of variables and an equally
high number of model parameters. The number of independent model parameters, however, is
significantly smaller, i.e., around 5 to 10, due to the large degree of prior information contained
in the PBPK software tools. For example, physiological model parameters such as organ vol-
umes or organ surface areas are usually available from integrated, species-specific data collec-
tions [15]. To calculate the remaining model parameters, only physicochemical properties of a
compound, such as lipophilicity or molecular weight, need to be provided by the user to
parametrize the PBPK model [15].

For PBPK model building itself, it is essential to have prior information about the governing
physiological processes underlying absorption, distribution, metabolization, and excretion.
The physicochemical properties of a compound are used to estimate, e.g., tissue permeation by
passive distribution. Active processes such as enzyme-catalyzed metabolization or transporter-
mediated uptake or secretion may also be mechanistically considered at the organism level by
using tissue-specific gene expression profiles [16]. The degree of biological knowledge included
in PBPK models hence ranges from tissue-specific gene expression profiles at the cellular scale
to anthropometric parameters at the organism level. For model establishment and model
validation, time-concentration profiles are required. PBPK is nowadays routinely used in phar-
maceutical development specifically supporting the various stages in the research and develop-
ment process for example for risk assessment [17], pediatric scaling [18] and cross-species
extrapolation [19].

Sinusoid-Scale and Organ-Scale Homogeneous Models. Models without spatial resolu-
tion are frequently used if a zonation of metabolic capability is unknown or does not play a
role, e.g., if a compound is not metabolized at all by a given organ. Such models are structured
as compartmental models without spatial resolution of organs [20, 21], or combine multiple
organs in one generic compartment [22, 23], and therefore assume that a description corre-
sponding to a well-stirred setting is appropriate.

Fig 1. Steatosis Inhomogeneity. The left image shows a histological image of a human liver with selected
portal fields and central veins marked as� and⊗, respectively. The right image shows a histological whole-
slide scan of a steatotic mouse liver and a zoom to one lobe. Macrovesicular steatosis, i.e., lipid
accumulations of diameter larger than hepatocyte nuclei, was quantified in all cases using an image analysis
method based on [14] and visualized as an overlay to the histological images, using a color map from violet to
yellow indicating low to high steatosis. The left example shows a pericentrally zonated state of steatosis. The
right example shows both organ-scale and lobe-scale heterogeneity in the steatosis distribution in addition to
a periportal zonation not clearly visible at this magnification. The human image data is by Serene Lee and
Wolfgang Thasler, Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery Ludwig
Maximilians University Munich Medical Center; the mouse image data is by Uta Dahmen, Department of
General, Visceral and Vascular Surgery, University Hospital Jena; the analysis overlay was provided by
André Homeyer, Fraunhofer MEVIS, Bremen.

doi:10.1371/journal.pone.0133653.g001
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Sinusoid-Scale Heterogeneous, Organ-Scale Homogeneous Models. Any metabolic pro-
cess along a sinusoid introduces a spatial concentration gradient, particularly prominent for
compounds subject to significant first-pass elimination [24]. Additionally, metabolic capabili-
ties of neighboring cells along a sinusoid can be distributed inhomogeneously along the sinu-
soid. This can be due to gene/enzyme expression [25, 26] or zonal presence of other cell types
[25]. Examples in this category are carbohydrate metabolism [25], ammonia detoxification
[27], and cytochrome metabolism for which two cases are considered in this article. Zonated
metabolization can also be caused by pathological conditions appearing zonally, two examples
are considered in this article: necrosis after CCl4 intoxication [28] and different states of steato-
sis [29]. Processes involving sinusoid-scale heterogeneity can be modeled by using sequential
well-stirred compartments [4, 5, 30, 31] for the liver. Other approaches build a zonation into
lobule-scale models containing multiple sinusoids and their surrounding cells (cf. [32] model-
ing lobular perfusion and [33, 34] modeling lobular perfusion and PK) or into multiphase con-
tinuum models (cf. [35, 36] modeling lobular perfusion and [37] modeling lobular perfusion
and PK).

Organ-Scale Heterogeneity. Metabolization may additionally be heterogeneous at the
organ scale, due to differences between sinusoids at different position in the organ. This is
mainly due to pathological conditions varying at this length scale. Examples include steatosis
[29, 38], fibrosis due to nonalcoholic steatohepatitis [39] or in case of hepatitis C [40], cirrhosis
[41], granuloma [41], and carcinoma [42, 43]. Another reason can be heterogeneous concen-
tration sources, e.g., due to intrahepatic injection via catheters [44] or targeted drug delivery
[45]. Appropriate modeling techniques for the case of organ-scale heterogeneity without addi-
tional zonation are given by multiple parallel well-stirred compartments per organ [20, 31, 46,
47]. Organ-scale porous-medium-based multiphase continuum models [8] can be used as well.
These are, however, of limited practical applicability if also a sinusoid-scale heterogeneity is
present as they require high spatial resolution in this case. A combination of multiple parallel
and sequential well-stirred compartments [31] per organ can be used in case of organ-scale het-
erogeneity combined with zonation. Also a parallel use of recent cell-based [34] or multiphase
porous-medium-based [37] lobule-scale models is conceivable.

In any case, the structure of the model should be chosen depending on what is relevant for
the application being considered. It should sufficiently detailed to capture relevant effects, but
no more detailed to avoid unnecessary need for parameters and potentially error-prone model
assumptions, and to keep computational workload at bay. This in particular implies that it
can be useful to consider different degree of detail for representing different organs or organ
groups [23].

We point out that this section not meant to be an exhaustive literature review of PK model-
ing. For more detailed reviews, we refer to [4, 5, 31].

Introducing a Multiscale Simulation Framework Based on
Representative Sinusoids
Our concept of modeling the liver as a parallel connection of representative sinusoids, each of
which has cells aligned serially, is based on ideas going back to [20, 30, 47, 48]. The advance-
ment proposed here is threefold: (a) By embedding the representative sinusoids in a multiscale
simulation framework that separates the scales, all relevant hierarchies can be taken into
account efficiently. (b) On the organ scale, our simulation is capable of using individualized
organ geometries and pathology parameters. (c)On the sinusoidal length scale, we model the
blood flow by advection along a sinusoid rather than a serial flow through well-stirred com-
partments. This permits a more accurate temporal resolution at second or sub-second time
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scales and represents the blood flow as a process in its own right. For a more detailed overview
on fluid transport systems in different organs, we refer to [49]. We here use mathematical
advection and reaction equations to model blood flow through blood vessels, trans-vascular
compound exchange, and chemical kinetics. A more detailed description of the biological pro-
cesses we model here is given in [50].

The approach presented here is also an extension of our previous work [8] in which the
organ is resolved at a single scale as a porous medium. We here consider two spatial scales for
the organ tissue: representative sinusoids and individual cells. One such representative sinusoid
can capture sinusoid-scale heterogeneity at the appropriate physiological length scale, while
different representative sinusoids can be assigned to different locations throughout the organ
in case of organ-scale heterogeneity. This approach can be embedded in a simulation frame-
work using multiple spatial scales [51]. At the cellular scale, effective behavior from the finer
intracellular scale is integrated in the model via the parameters in the exchange/metabolization
ODE system. For the coarser organism scale, our technique can act as a ‘liver module’. The
organism scale is currently implemented by an ODE system representing recirculation through
the body allowing for metabolization also in other organs, albeit not at the level of detail as in
the liver. Other multiscale PK modeling approaches include, e.g., the integration of intracellular
signaling [15] or metabolic networks [52] into the cell representation. We refer to [53, 54] for
two overviews on multiscale PK modeling approaches and to [55] for approaches of integrating
intestinal models and an effective description of the body scale.

Comparison to Related Approaches. Our approach has the same goal of multiscale liver
modeling as the two recent models [37] dealing with glucose metabolism and [34] considering
ammonia detoxification. These approaches differ on a technical level and thus have slightly dif-
ferent foci. The model in [37] considers homogenized multiphase flow in a 2D model lobulus
and determines flow velocities as part of the simulation. The model in [34] uses a 3D slice as
part of a lobulus with sinusoids and individual hepatocytes. In addition to performing metabo-
lization, the hepatocytes in [34] can grow, divide, and migrate, which allows modeling regener-
ation in more detail. Consequently, these approaches provide more detail at the lobular level
than the simplified 1D sinusoids used in our approach. This, however, implies a higher compu-
tational workload for simulation when using more detailed lobular models. While it is certainly
possible to extend these to including organ-scale heterogeneity, i.e., many different lobule mod-
els with different parameters, efficiency then becomes a challenge.

On the cellular level, [37] considers model of glucose metabolism obtained by model reduc-
tion from a detailed kinetic model, whereas [34] and our approach use equations of a given
structure with parameters representing biochemical properties and/or parameters fitted to
experimental data. It should, however, be possible to use any of these models or also more
detailed intracellular models in either approach. Similarly, the extrahepatic models differ, but
could in principle be exchanged between the different approaches. In [37], liver inflow concen-
tration profiles are used as model input, corresponding to an isolated perfused liver [56, 57]
model. In [34], a three-compartment body-scale recirculation model is used. We consider an
isolated perfused liver in one of the example applications presented below, the other two appli-
cations involve a multi-compartment body-scale recirculation model representing each indi-
vidual organ in the respective human or murine body. Given appropriate model parameters,
this permits a more detailed investigation of the role of the different organs for the compound
being investigated. Detailed recirculation models increase the computational workload of the
simulation. This is not a major challenge for our purpose as the additional workload for the
extrahepatic model does not scale with the degree of hepatic organ-scale heterogeneity.

Model Structure. Our model consists of four separate building blocks, each representing a
distinct physiological spatial scale as described above, see Fig 2. The connection from body via
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organ and sinusoids to the cells, and back, is provided via the blood flow. Bile flow and lymph
flow, such as considered in [36], are not part of our model as the flowing volumes are negligible
compared to the blood flow.

Recirculation through the organism (body scale) outside the liver as well as possible accumu-
lation and metabolization in other organs are considered in effective form and in particular not
at the same degree of detail as for the liver. For this purpose, an ODE system describing the
whole-body PBPK model for the substance under consideration is used. These ODE systems
are solved numerically using standard backwards differentiation formula (BDF) techniques
[58]. The recirculation takes into account the temporal delay of the blood flowing through the
organism.

On the organ scale, the heterogeneity of metabolization or pathology parameters determines
the number and size of regions of different parameter values needed. To represent the connec-
tion between the organism and the sinusoids, the hepatic vascular systems distributing the
blood throughout the organ are taken into account. The concentrations flowing from the body
to the liver are hereby transported to each representative sinusoid with a given temporal delay.
The outputs of the representative sinusoids with the respective temporal delays are summed up
and form the concentrations flowing from the liver back to the body. In both vascular systems,
only advection is considered. In particular, exchange between red blood cells and plasma and
any metabolization processes are omitted in the blood vessels. As velocities are constant along
each edge and over time, an advection simulation as in [8] is not necessary here and it is suffi-
cient to consider appropriate delay times for different paths through the vascular system. If the
actual geometrical configuration of regions of the same sinusoid-scale parameter patterns does
not need to be reflected in the simulation, in particular if no exact temporal correspondence
between different representative sinusoids is necessary, the vascular systems do not need to be
considered for the simulation. In this case, only the relative contribution of each representative
sinusoid for the whole organ and possibly the respective temporal flow delay are needed. Let
us, however, point out that the simulation results can still be mapped to the actual geometric
position for interpretation or visualization if needed. Depending on the organ-scale parameter
heterogeneity, the liver model contains several representative sinusoids.

The representative sinusoids (sinusoidal scale) are used to model the actual exchange of
compounds between the blood and the liver cells as well as the metabolization in the cells. For

Fig 2. Model Overview. The figure shows the four spatial scales present in our multiscale pharmacokinetics simulation framework. The connection between
the scales is given by the blood flow, indicated by arrows. The ‘representative sinusoids’ are the central building blocks in our framework. For each of these,
we solve an advection-reaction problem. (HA: hepatic artery; HV: hepatic vein; PV: portal vein.)

doi:10.1371/journal.pone.0133653.g002
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this purpose, the sinusoid is viewed as consisting of four subspaces: red blood cells (RBC),
plasma, interstitium, and cells. The interstitium mainly represents the physiological space of
Disse, the cells primarily refer to the hepatocytes. This means that the actual sinusoid only cor-
responds to the red blood cells and the plasma. However, to simplify terminology, we view the
adjacent interstitium and cells as part of the representative sinusoid. The compound under
consideration is exchanged between the subspaces and metabolized in the cellular subspace.
This structure is chosen in analogy to the liver subcompartments in PBPK models [59] and
was previously used in [8]. In addition, the compound concentration is subject to blood flow
with constant flow velocity in the RBC and plasma subspaces. Exchange and metabolization at
the cellular scale are described by cell-specific ODE systems with potentially different parame-
ters to reflect sinusoid-scale heterogeneous patterns. Blood flow is represented by a one-dimen-
sional advection PDE, so that we obtain an advection-reaction problem for each representative
sinusoid. We will apply a combination of a Eulerian–Lagrangian Localized Adjoint Method
(ELLAM) [60] and Runge–Kutta–Fehlberg 4th/5th order [61] time stepping to solve these
numerically. Our approach considers sinusoids at their correct physiological length scale, even
though one sinusoid in the model represents larger regions in the liver. In contrast to models
using a series of well-stirred compartments without delay [20, 30, 47], modeling the blood flow
by advection inherently represents the physiological delay of flowing through a sinusoid with a
given velocity. This provides more accurate temporal resolution at sub-second or second time
scales, which is a relevant time scale for some applications, e.g., [62].

Outline
The present article is further organized as follows: We introduce our multiscale model starting
from a PBPK model; describe the processes included at additional scales; how this is modeled,
discretized, and implemented; and how two pathological cases are modeled. Three example
applications illustrate that this simulation approach is applicable to a broad range of pharma-
cokinetic and physiological questions. We consider (a) the clearance of midazolam in human
livers affected by steatosis, a zonated process subject to a zonated and organ-scale heteroge-
neous pathological condition, (b) the clearance of caffeine in regenerating mouse livers, a
zonated process subject to a zonated pathological condition changing over time, and (c) a
parameter study on different cell entities performing insulin uptake in mouse livers, investigat-
ing different spatial patterns of the cell entities along a single sinusoid. Finally, we discuss the
present limitations and further perspectives.

Methods
In this section, we describe the components of our multiscale model, i.e., the building blocks at
the different spatial scales. We start addressing the body and cellular scale where we use and
extend an existing PBPK model using well-stirred compartments for each organ. Next, geome-
try and flow on the organ scale is considered before we address the sinusoidal scale, introducing
the key component of our approach. The interaction of the building blocks and necessary
translations for models of different dimensionality are presented in. Finally, we introduce two
model perturbations representing diseased states of the liver. An overview of the models and
their dimensionality for the processes at the different spatial scales is given in Table 1. Specific
compounds and their PBPK models for the cellular scale are addressed later in the results
section.

The presented methodology is not limited in the number of compounds. Nevertheless, we
restrict the presentation to the case of a single compound throughout this section. At the
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respective positions, we briefly address how the methods can be extended to multiple com-
pounds, in particular when taking into account the formation of metabolites.

Model Building Blocks at the Body and Cellular Scales
The starting point for our multiscale model is a whole-body PBPK model implemented in
PK-Sim [59] where organs are represented as well-stirred compartments, i.e., zero dimensional.
This model without its liver component will be adapted for simulating recirculation through
the organism, the liver component will be used as the basis of our refined liver model. Let us
point out that the body-scale recirculation can also be omitted if an isolated perfused liver [56,
57] is considered.

Body-Scale Recirculation Model. The body-scale PBPK model [59] describes the blood
flow between the organs, and thus the transport of a compound through the body, as well as
the exchange of compounds between subcompartments of the organs and the metabolization.
These processes are described by a non-linear ODE system in several hundred variables.

On the body scale, it is necessary to consider a temporal delay of the recirculation. In certain
cases, more than one initial pass of an injected compound can be observed experimentally, see,
e.g., [62] for measurements of antipyrine in dogs or [63] for an MRI contrast agent in humans.
An ODE model not taking into account the temporal delay of the blood flow between and
through the different organs is generally not capable of reproducing second and further passes.
This is not an issue for observations on the time scale of hours or days, but should not be
ignored when simulating processes on the time scale of seconds to minutes.

In our model, we integrate this temporal delay of the recirculation as a delay τbody for
blood flowing between the lung and the systemic arterial blood pool, the latter supplying all
organs in the model. This delay thus affects the compound mass flows in the red blood cells
and the plasma from the lung to the arterial blood pool. This location in the PBPK model was
chosen because all recirculating blood passes through the lung. The body delay τbody was
computed as follows: First, let τrec total denote the total recirculation time through the body
obtained as total blood volume in the organism divided by the blood flow rate through the
lung [59], resulting in

trec total ¼
54:8 s in humans;

19:7 s in mice:
ð1Þ

(

We refer to the results section below for a discussion about how these values differ from the
measurements in [63]. The recirculation time [64] and time between peaks can be expected to
differ due to intra-organ retention of compounds. From the values τrec total, two transit times

Table 1. Processes and Numerical Techniques. The table gives an overview of the processes being modeled and the numerical techniques applied in
each of the model building blocks for the distinct spatial scales, cf. Fig 2. The overall model requires an integration of submodels of different dimensionality:
from 0D, referring to models where spatial effects are not explicitly considered, via 1D sinusoids to a 3D organ. Round brackets in the table refer to equations
in this article, square brackets to literature.

Scale Process(es) Mathematical Model and Discretization Equation(s)

Organism recirculation 0D ODE system BDF (CVODE) [58]

Organ distribution by perfusion 0D temporal delay, averaging evaluated directly Eqs 7, 8

3D geometry: Fig 3

Sinusoid blood flow and cellular uptake 1D advection–reaction PDE: advection: ELLAM [60] Eq 9

Cell exchange and metabolization 0D ODE system: reaction: RKF45 [61] Eqs 9, 4, 15

doi:10.1371/journal.pone.0133653.t001
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explained below are subtracted to obtain τbody, namely the sinusoidal transit time, see Eq 6, and
the transit time for the hepatic vascular systems, if present in the model, see Eqs 7 and 8.

Clearly, this recirculation delay model is not mechanistic, highly simplified, and does not
take into account flow delays within or between the individual organs. In a similar manner as
for the whole body, we could use specific transit times for each organ, namely dividing the
respective blood volume by the respective flow rate. This would make the implementation
more technical and increase computational costs for the simulations, but it is not clear to what
extent the overall model accuracy would benefit. As this article focuses on the liver, we will
leave the recirculation delay model open for future model refinement.

The ODE systems describing recirculation turned out to be very stiff. For solving stiff ODE
systems, various numerical methods are available [65, 66]. Based on a brief performance evalu-
ation, we chose a scheme using a BDF scheme available as part of CVODE solvers [58], based
on [67], in the SUNDIALS library [68] to solve the recirculation ODE systems. This part of the
simulation turned out not to be very time critical, so passing values between our simulation
and an external ODE solver is no performance bottleneck.

Physiologically Based Pharmacokinetics Models Used for the Cellular Scale. The recir-
culation ODE systems are expressed in terms of the molar amounts of the compound in differ-
ent organs. For introducing spatial resolution, we use molar concentrations in the other
building blocks of our multiscale model and as the interface to the recirculation model.
Throughout this article, concentration is always meant as molar concentration in units
mM = mol m−3, unless stated otherwise.

To describe the connection between organism and organ, we generally distinguish between
concentrations cf flowing in the blood and concentrations cs in the surrounding tissue. More-
over, let cBLf ðtÞ denote the liver inflow concentration (‘body to liver’). We can then describe
well-stirred flow, inter-subcompartmental exchange and intracellular metabolization in terms
of compound concentrations as

dt

cf

cs

" #
¼ a

cBLf � cf

0

" #
þ E

cf

cs

" # !
þ 0

mðcsÞ

" #
ð2Þ

where we omitted the dependency on time for a more concise notation. The flow rate α> 0
indicates which fraction of the blood volume in the organ is exchanged per time unit. The
function E describes the exchange between the subspaces in the representative sinusoid, andm
the metabolization. For multiple compounds, the exchange terms E typically apply separately
for each compound. In contrast, the metabolization termm can model metabolic conversion
of compounds to the respective metabolites and thus involve concentrations of multiple
compounds.

Throughout this section, we will consider a model structure consisting of red blood cells
and blood plasma as subcompartments subject to flow. Interstitium and cells will be considered
as stationary subcompartments. The corresponding molar concentrations of the compound
being considered are denoted by crbc, cpls, cint, and ccel, respectively. In this setting, the cellular
subcompartment summarizes the contribution of all cells to the exchange and metabolization
of the compound. In the liver, the cellular subcompartment mainly represents hepatocytes,
spatial patterns of which we focus on throughout this article.

This model structure applies to two of the applications below, midazolam and caffeine, and
serves as the example for the presentation of the methods. If only passive, gradient-driven
exchange of compounds takes place, we can write E as the multiplication by a 4 × 4 matrix of
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the form

�Prbc;pls

krbc;plsφrbc

þPrbc;pls

φrbc

0 0

þPrbc;pls

krbc;plsφpls

�Prbc;pls

φpls

þ�Ppls;int

φpls

þPpls;int

kpls;intφpls

0

0
þPpls;int

φint

�Ppls;int

kpls;intφint

þ�Pint;cellkint

φint

þPint;cellkcell

φint

0 0
þPint;cellkint

φcell

�Pint;cellkcell

φcell

2
666666666666664

3
777777777777775

ð3Þ

as used in own earlier work [8]. Here, φ{rbc, pls, int, cell} are the volume fractions specified below
in Eq 5, κrbc,pls, κpls,int, κint, and κcell are dimensionless partition coefficients describing the
equilibrium state of molar concentrations at which the respective individual exchanges vanish,
Prbc,pls, Ppls,int, and Pint,cell are the local effective permeabilities [s−1] between the different sub-
spaces of the representative sinusoid. The metabolizationm is, in our case, described by
Michaelis–Menten kinetics [69] of the form [8]

m ccellð Þ ¼ � V cell
maxkcellccell

K cell
m þ kcellccell

ð4Þ

with parameters V cell
max describing the maximum metabolization rate [s−1] and Kcell

m describing
the molar concentration [mM] at which half V cell

max is attained. In this form, only the removal of
a single compound from our system is represented. More complex functions E andm are
required if several compounds are considered, as demonstrated in the insulin example in the
results section.

The volume fractions φ{rbc,pls,int,cell} are specific for different species, in our case the volume
fractions for humans [59] are

φrbc ¼ 0:077; φpls ¼ 0:093; φint ¼ 0:163; φcell ¼ 0:667: ð5aÞ

where as volume fractions for mice [59] are

φrbc ¼ 0:052; φpls ¼ 0:063; φint ¼ 0:163; φcell ¼ 0:722; ð5bÞ

The exchange and metabolization parameters P?, κ?, V cell
max, and K

cell
m depend on compound and

species and are given below for our example applications.
The typical transit time τtyp for the sinusoidal scale is obtained as the ratio of the sinusoidal

volume fraction φsin = φrbc + φpls over the total liver blood flow, both values taken from [59].
Thus, τtyp satisfies the relation α = 1/τtyp for the flow rate α from Eq 2, its value is

ttyp ¼
4:3 s in humans;

13:6 s in mice:
ð6Þ

(

For a discussion of the precise form of the flow, we refer to Eq 9 and its description. We are
aware that this transit time is not in good agreement with experimental data for sinusoidal flow
velocities for humans [70] or rats [71, 72], using lobular diameters [1, 7] as a lower bound on
sinusoidal length. Due to the large variability of the experimental velocity measurements, we
decided using the values in Eq 6 for τtyp consistent with the underlying whole-body models
[59]. These values can, however, easily be exchanged if a better estimate is available.
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Organ-Scale Model Building Blocks
We will consider a spatially resolved extension of Eq 2 for cells organized along sinusoids as
described below. For being able to describe the extracellular concentrations, inflow values for
the sinusoids need to be obtained from the body scale and the sinusoidal outflow needs to be
passed back to the body scale. For this purpose, a realistic 3D geometric model of the hepatic
vascular systems is used. In these, we model piecewise 1D blood flow.

Blood Flow Model. For simplicity, we only consider a single supplying vascular system
denoted by SV, comprising the physiologically present HA and PV, and already compute the
mixed concentration of arterial and portovenous blood at the liver inflow. This is clearly a sim-
plification and would need to be modified if we wanted to consider locally varying relative con-
tributions of the two blood types [73, 74]—for which, however, we would need appropriate
data. As another simplification, we assume constant flow velocities across vascular cross sec-
tions satisfying Poiseuille’s law [75], which reduces our flow model to flow on a branching one-
dimensional domain. The Fåhræus–Lindqvist effect [76], the decrease of the effective viscosity
of blood in blood vessels of radius� 150 μm, is accounted for in the flow velocities. As we do
not focus on the local flow in the vascular structures, we do not consider the precise velocity
profile across cross sections or near bifurcations. Moreover, we assume that no metabolization
and no exchange between plasma and red blood cells takes place in the vascular systems. This
simplifies the model so that we only need to take into account advection by blood flow for
which explicit formulas can be given. For this purpose, concentrations in the plasma and the
red blood cells as well for all compounds present in the blood flow can be treated in the same
way as explained next, and we omit the respective indices for notational convenience.

Model: For a given point x in the supplying vascular system, we can compute a temporal
delay τSV(x) between the inflow and x, so the concentration cSVf ðx; tÞ in the SV at position x and
at time t can easily be computed from the liver inflow concentration cBLf ðtÞ as

cSVf ðx; tÞ ¼ cBLf ðt � tSVðxÞÞ : ð7Þ

This allows computing the inflow concentrations for all representative sinusoids by substitut-
ing the respective connection point for x.

For a point x in the draining vascular system, this is slightly more technical since the flow
from multiple representative sinusoids contributes to the concentration at x, each with poten-
tially different delay. Let R(x) denote all these representative sinusoids and τHV(r, x) the tempo-
ral delays for all r 2 R(x). Moreover, let wr, x denote the relative contributions of the flows to
the flow at x, determined from flow velocities and cross section areas of the respective edges.
Then the concentration cHV

f ðx; tÞ in the HV at position x and at time t is given as a weighted,

delayed sum of outflow concentrations cr;outf of representative sinusoids r, namely

cHV
f ðx; tÞ ¼

X
r2RðxÞ

wr;x � cr;outf ðt � tHVðr; xÞÞ ð8Þ

to obtain the concentration at point x and time t. The liver outflow concentration cBL (‘liver to
body’) is then easily obtained by evaluating Eq 8 at the root of the HV.

Implementation: The evaluation of Eqs 7 and 8 does not require sophisticated simulation
techniques. The approach merely makes it necessary to store concentration history at the trans-
fer points, but at no other locations. Thus, a spatial discretization of the concentrations in the
vascular systems is not necessary. Storage is only needed for a limited period of time, long
enough so that appropriate interpolation is possible for the maximal transition time, which
limits memory consumption. In contrast, spatial concentration profiles for the vascular trees as
well as data for advection simulation is not necessary at all, saving memory and computation
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time compared to a full-featured advection simulation for the vascular systems as performed in
[8]. Discrete time points are given by the outer simulation loop and may require piecewise
first-order polynomial interpolation of concentrations in time.

Obtaining Realistic Geometric Models of Organ and Vasculature. A realistic 3D geo-
metric model of a human liver and its vascular structures was obtained by applying the same
workflow described in [77] for in vivo μCT scans of mouse livers. In summary, an abdominal
in vivo MRI scan of a healthy 31-year old male Caucasian was used to segment the liver and its
vascular structures [78]. The latter were subsequently skeletonized and converted to a graph
representation using a semi-automatic procedure [78]. The vascular graphs were simplified to
strictly bifurcative trees with cylindrical edges as described in [79]. They were refined algorith-
mically [80] to the desired degree of detail as described in [79]. For this purpose, the same set
of 10 000 end points for the supplying and draining vascular systems were used. Each of these
points represents groups of about 53 physical lobuli, leading to a total of 1.25 million lobuli, a
realistic number [1]. In each group, we assume the same metabolic properties for all sinusoids.
The underlying organ mask an the resulting vascular system are visualized in Fig 3 and pro-
vided as S1 Dataset.

For a fully lobular resolution, one would have to take into account how the blood supplied
by one portal field is distributed to multiple surrounding central veins, an effect we neglect in
the approach here. We could, however, easily incorporate it for applications where such a more
detailed draining pattern is of importance.

Our applications involving mouse models presented here did not require 3D geometric
models as these examples did not include organ-scale heterogeneity. Such geometric models
are available as supporting information to [8] and [77] and could easily be included in the sim-
ulations if organ-scale heterogeneity needs to be included.

Sinusoid-Scale Model Building Blocks
The sinusoidal scale is the central building block for our multiscale modeling framework. The
processes modeled here, in 1D, are relatively simple, but a suitable adaption of parameters, as
described in the model integration below, will still be necessary.

Sinusoidal Blood Flow and Pharmacokinetics Model. For the sinusoidal scale, we again
start with the general model form as in Eq 2 distinguishing flowing and stationary concentra-
tion. The 1D advection-reaction for one representative sinusoid can then be expressed as

@t

cf

cs

" #
þ v@xcf

0

" #
¼ E

cf

cs

" # !
þ 0

mðcsÞ

" #
ð9Þ

where E andm, as above, denote the exchange of concentrations between the subspaces and
the metabolization, respectively, and v is the one-dimensional flow velocity. Boundary values at
the inflow are those provided by the supplying vascular system, outflowing values at the other
end of the sinusoid are computed and passed to the draining vascular system. In the current
model version, we in particular neglect diffusion outside the cells, in particular in the space of
Disse, as well as exchange between neighboring cells due to gap junctions [81].

For the reaction part of Eq 9, multiple compounds may play a role. On the one hand, one
compound may change the exchange or metabolization behavior for another compound if the
underlying bio-chemical processes involve such an interdependence. On the other hand, meta-
bolization itself can produce metabolites (i.e., other compounds) from compounds.

Clearly, the blood flow through sinusoids is probably better described as an intermittent,
corpuscular flow involving a non-Newtonian fluid through sinusoids of complex geometry that
is not much larger than the red blood cells. We refer to Video S1 of [82] for an illustration of
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this blood flow. However, for a representation of the average flow behavior, as intended here,
we believe this strong simplification to constant flow velocity to be an appropriate description.

Discretization and Implementation. As in [8], we discretize the advection and reaction
parts of Eq 9 separately. This avoids a rather technical implementation of a numerical scheme
capable of treating both processes simultaneously, even though this is possible even for a non-
linear reaction term [83]. The simulation moreover does not require a small time step appro-
priate for both processes, but needs appropriate time steps for the two processes separately and
an appropriate synchronization strategy.

We do not resolve the internal spatial structure of hepatocytes and thus assume them to be
well-stirred. It is thus a natural choice to use a resolution of one grid point per hepatocyte for
the spatial discretization of the representative sinusoids. This is also the spatial resolution at
which sinusoid-scale parameter heterogeneity needs to be given.

Advection:While pure 1D advection problems with constant velocity can be solved analyti-
cally, this is no longer possible if a reaction term is present as well, so it needs to be addressed
numerically. The simplest implementation of time stepping for the advection part of Eq 9
could be obtained by choosing the time step such that the velocity is one grid cell per time step.
This, however, would not allow joint time steps if velocities in different representative sinusoids
differ, and might be too large a time step for synchronizing with fast reactions, so we need a
numerical advection scheme that can deal with arbitrary velocities. An ideal such discretization
scheme would conserve mass and neither introduce numerical diffusion nor create spurious
oscillations [84]. However, state-of-the-art methods do not simultaneously satisfy all three
properties, so a compromise is needed. For our purposes, we particularly focus on mass conser-
vation and avoiding spurious oscillations, which might result in overshoots and negative con-
centrations, so we need to accept numerical diffusion effects.

We use a 1D Eulerian-Lagrangian Localized Adjoint Method (ELLAM) [60], going back to
[85] with more details on mathematical analysis in [86]. This method was preferred over other
discretization schemes for advection [87] as it prevents numerical artifacts [88]. To prevent
artificial oscillations, mass lumping as suggested in [89, 90] was used. While ELLAM could, in
principle, treat more than advection simultaneously [83, 91, 92], also for non-linear reactions
[93], we treat flow, exchange/metabolization, and recirculation separately by appropriate meth-
ods. The scheme was implemented in custom C++ code based on own earlier work, Section 1

Fig 3. Human Liver Vascular Dataset. The image shows a visualization of a human liver shape including
algorithmically refined vascular structures. The supplying vascular system, comprising portal vein and
hepatic artery, is shown in red, the draining vascular system (hepatic vein) in blue.

doi:10.1371/journal.pone.0133653.g003
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in the supporting information Text S1 of [8] and [94]. In summary, the ELLAM scheme for
advection amounts to solving a linear system of equations to update the concentrations for the
compounds present in the blood flow in each time step.

Reaction For the reaction part of Eq 9, we observed no issues due to stiffness of the ODE
systems. So we chose a standard Runge-Kutta-Fehlberg 4th/5th order (RKF45) [61] scheme
that automatically adapts the time step size. This method is recommended as a ‘good general-
purpose integrator’ in the GNU Scientific Library [95]. The RKF45 performed well in this case,
so we do not need to apply more sophisticated methods as recommended in [96, 97]. We used
a custom C++ implementation of an RKF45 scheme from [8] to avoid data exchange with
external libraries as these ODE solution steps are rather time-critical in the simulation.

Model Integration in Representative Sinusoids
Besides a connection of the models on the distinct scales, an adaption of parameters due to the
different dimensionality of the models is necessary. This affects the volume fractions, the
respective surface areas and thus the effective permeabilities, and the length of regions along
the sinusoid. Moreover, we discuss an additional model fitting step needed if our cellular
model was not parametrized for the model structure involving representative sinusoids.

One-Dimensional Representation of Sinusoids. To account for increasing sinusoid
diameter from portal fields to central veins in a 1D representation of the blood flow in 3D
lobuli, we need to find an appropriate representation. As variations of the processes in longitu-
dinal direction of the lobulus are of minor importance, we can restrict our view to 2D cross sec-
tions of lobuli. Mathematically, the goal of this subsection is to describe how parameters of the
PBPK liver submodel need to be adapted. This adaption will involve scaling some of the param-
eters and replacing the constant volume fractions φi, i 2 {rbc, pls, int, cell}, by volume fractions
ψi(λ) depending on the position λ along the sinusoid.

For this purpose, our approach is to consider one physiological sinusoid starting from the
portal field. As it combines with other sinusoids towards the central vein, the blood flow from
the one, portally starting, sinusoid is only a certain fraction between 0 and 1 of the blood flow
through the centrally ending sinusoid. For the lack of more detailed data, we assume that the
flow velocity does not change along the physiological sinusoids. Moreover, we assume that the
physiological sinusoids are surrounded by an interstitial and a cellular layer of constant width,
independent of the sinusoid radius.

Radii of periportal and pericentral sinusoids in mice are rsin,pp = 4.4 μm and rsin,pc = 6.85
μm [98], respectively. This range is similar to sinusoidal diameters of 7 and 15 μm reported in
[1], so we will use the following formulas for both humans and mice. Assuming a linear
increase of the cross section area, the sinusoidal radius can be computed as

A⌀;sinðlÞ ¼ A⌀;sin;pp þ lðA⌀;sin;pc � A⌀;sin;ppÞ ¼ pr2sin;pp þ lðpr2sin;pc � pr2sin;ppÞ ð10aÞ

rsinðlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A⌀;sinðlÞ

p

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2sin;pp þ lðr2sin;pc � r2sin;ppÞ

q
ð10bÞ

where λ indicates the position along the sinusoid in units of sinusoid length, i.e., λ = 0 at the
periportal end and λ = 1 at the pericentral end.

For the thickness of the interstitium and the representative cellular layer, denoted by wint

and wcell, we assume that the volume fractions for mice from Eq 5b correspond to the average
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sinusoidal cross-section area, i.e., to the radius rsin, avg = rsin(0.5) = 5.757 μm.We then compute

wint ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ φint

φsin

s
� 1

 !
� rsin;avg ¼ 3:187 μm ð11aÞ

wcell ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ φcell þ φint

φsin

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φsin þ φint

φsin

s !
� rsin;avg ¼ 8:001 μm ð11bÞ

Note that these values refer to volumes representative for the physiological interstitium and
cells and are not meant as their precise actual sizes, in particular for the cells. The radii and
these thicknesses are illustrated in Fig 4.

Using Eqs 10 and 11, the variation of the volume fractions along the representative sinusoid
can be expressed as

csinðlÞ ¼ p½rsinðlÞ�2
p½rsinðlÞ þ wint þ wcell�2

ð12aÞ

crbcðlÞ ¼
φrbc

φsin

csinðlÞ ð12bÞ

cplsðlÞ ¼
φpls

φsin

csinðlÞ ð12cÞ

cintðlÞ ¼
p½rsinðlÞ þ wint�2 � p½rsinðlÞ�2

p½rsinðlÞ þ wint þ wcell�2
ð12dÞ

ccellðlÞ ¼
p½rsinðlÞ þ wint þ wcell�2 � p½rsinðlÞ þ wint�2

p½rsinðlÞ þ wint þ wcell�2
ð12eÞ

The contribution of the periportally starting sinusoid to the representative sinusoid at posi-
tion λ is given by the ratio of the cross section areas,

rðlÞ ¼ p½rsinð0Þ�2
p½rsinðlÞ�2

¼ r2sin; pp

½rsinðlÞ�2
: ð13Þ

We refer to Fig 4 for a sketch of this interpretation of the contributions. The inverse of this con-
tribution is needed when determining the represented volume by one section of the representa-
tive sinusoid. In addition, permeabilities relating to surface areas need to be scaled by a factor
derived from ρ(λ), taking into account the circumference of the representative sinusoid at posi-
tion λ and the fraction of represented there,

sðlÞ ¼ 2prsinðlÞ
2prsinð0:5Þ

� rðlÞ
rð0:5Þ : ð14Þ

This factor is multiplied by the permeability which we assume to be given for the middle of the
sinusoid.
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These adaptions imply a modification of the exchange term Eq 3 to

EðlÞ ¼

�Prbc;pls

krbc;plscrbcðlÞ
þPrbc;pls

crbcðlÞ
0 0

þPrbc;pls

krbc;plscplsðlÞ
�Prbc;pls

cplsðlÞ
þ �sðlÞPpls;int

cplsðlÞ
þsðlÞPpls;int

kpls;intcplsðlÞ
0

0
þsðlÞPpls;int

cintðlÞ
�sðlÞPpls;int

kpls;intcintðlÞ
þ �sðlÞPint;cellkint

cintðlÞ
þsðlÞPint;cellkcell

cintðlÞ

0 0
þsðlÞPint;cellkint

ccellðlÞ
�sðlÞPint;cellkcell

ccellðlÞ

2
666666666666664

3
777777777777775

ð15Þ

whereas the metabolization term Eq 4 is unaffected.
One-Dimensional Representation of Sinusoid-Scale Heterogeneity. A zonation of meta-

bolic capabilities is typically determined by staining enzymes in histological slices. These
images are evaluated by measuring the total cross-section area of different lobuli and the corre-
sponding areas of different staining result. For an enzyme near, e.g., the central veins, the anal-
ysis thus allows defining a pericentral area ratio Apc/A;, whereas we need a pericentral length
ratio lpc/lrep. sin. for the representative sinusoid models. We view lobuli as cylinders around
their respective central vein, which is certainly a simplification from 3D to 2D, but a suitable
approximation of the actual polygonal shape of lobuli [99]). Then, we can easily convert from
central circular area to central length via

Apc

A;
¼ pl2pc

pl2rep: sin:

) lpc
lrep: sin:

¼
ffiffiffiffiffiffiffi
Apc

A;

s
: ð16Þ

This conversion also applies when considering the zonation of pathological changes as these
can be determined similarly, see, e.g., Fig 1, or, more generally, any sinusoid-scale parameter
heterogeneity.

Let us point out that there is no unique ‘periportal’ or ‘pericentral’ zone, they can in particu-
lar not necessarily be identified with zones 1 or 3 in the notation of [29, 100]. The size of such
zones depends on the process considered. In the caffeine example considered in the results

Fig 4. Sketch for the 1D Representation of Sinusoids. The volume rendering in themiddle illustrates our assumption of multiple periportally starting
sinusoids contributing to a thicker pericentrally terminating sinusoid. The width of the interstitial and cellular layer is assumed to remain constant along the
sinusoid. The sinusoidal cross-section sketches on the left and right show that this also has an effect on the respective surface areas, which has an influence
on the respective effective permeabilities.

doi:10.1371/journal.pone.0133653.g004
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section, there are two pericentral regions: one of fixed size where the enzyme Cyp1a2 is
expressed, another one of variable size which is affected by necrosis.

FromWell-Stirred to Representative Sinusoid Models. Frequently, the PK parameters
are fitted for a well-stirred organ-scale model rather than a spatially resolved representative
sinusoid model already taking into account the adaptions described by Eqs 15 and 16. In this
case, they cannot be used immediately for the cellular scale in representative sinusoids. Our
approach is to rescale parameters dominantly causing the differences such that the liver out-
flow concentrations as model output from the organ-scale homogeneous representative sinu-
soid model are close to outflow concentrations from the well-stirred organ-scale model. No
exact match can be expected here, the sinusoid-scale model is designed to represent the transit
time and also exhibits some mixing and other effects due to the advection simulation.

This adaption should clearly be independent of the inflow profile considered. If we were
dealing with a linear time-invariant (LTI) system, we could simply determine the impulse
responses, i.e., the model output when using a Dirac δ impulse as input, of the two models and
use these for comparison. The ODE systems considered here, however, are not necessarily lin-
ear, so standard methodology for LTI systems (see, e.g., Chapter 2 in [101]) cannot be applied.
Instead, we make use of the following pragmatic approach. Assuming that the system behaves
approximately linearly for our ranges of input, we consider an inflow profile roughly approxi-
mating a δ impulse. We then fit a scaling factor for the dominating coefficients in the ODE sys-
tem so that an appropriate deviation is minimized. We will specify this in the results section for
our insulin example. This optimization is performed by iterative interval nesting until a given
tolerance is reached.

Zonated and Organ-Scale Heterogeneous Pathological States of the
Liver
We now consider two proofs of concept how pathophysiological changes can be taken into
account in our model. Steatosis is an example that can occur zonally, organ-scale heteroge-
neous form, and the combination thereof. Necrosis after CCl4 intoxication occurs in zonal
form in a rather homogeneous form across the liver. The damage happens on a time scale of
hours and the liver regenerates within days, so we here consider the time dynamics of this path-
ological state.

Simplified Steatosis Model. Steatosis is a common liver disease in humans, it is often
caused by alcohol abuse, diabetes, protein malnutrition, obesity or the consequence of other
pathological conditions [102]. In steatotic livers, lipids accumulate in the cellular subspace
[103]. Most often, this happens pericentrally, but the lipid deposition can also occur in the peri-
portal zone, see [104] and the references therein. In addition, an organ-scale heterogeneity
between different sinusoids can be observed [105].

Model Perturbation:We represent the effect of steatosis as a change in the equilibrium
between cells and interstitium via the respective partition coefficient κcell, healthy = κcell in the
PBPK equation Eq 3 in the same manner as presented in [8]: Let Δs be the lipid accumulation
due to steatosis, then κcell(Δs) is computed from κcell, healthy via

kcellðDsÞ ¼
1

kcell; healthy

þ 10log P � 1

ccellðlÞ
� Ds

 !�1

ð17Þ

where log P is the lipophilicity of the compound considered. Clearly, this is a strongly simpli-
fied representation of steatosis. It explicitly ignores any other effects of steatosis on the PK
parameters such as on metabolic capabilities of the cells [106] and intra-subcompartmental
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permeabilities [107], any changes in microcirculation [108, 109], organ size (as shown in
Table 6 in [110]), and any other effects of steatosis on the organ and the whole organism.

Synthetic Steatosis Data: The steatosis data used here are synthetic datasets based on
experimental observations from the literature. Besides the healthy case (no steatosis), we con-
sider three types of zonation: predominantly periportal (similar to ‘zone 1’ in the terminology
of Fig 1 in [29]), predominantly pericentral (‘zone 3’), and non-zonal (‘panacinar’ or ‘azonal’).
For this purpose, we assume a total fat accumulation of 9.2% of the liver volume, correspond-
ing to stage 2 steatosis as observed in [111]. We assign pseudo-random [112] steatosis values
Δs to each zone, uniformly distributed in the interval 0.092 � (ρ(λ))−1 � zz(λ) � [(1 − 0.69), (1
+ 0.69)] where 0.69 is the coefficient of variation reported in [111], the factor ρ(λ) from Eq 14
in the denominator cancels when computing the total lipid content, and zz(λ) controls the
zonation via

zzðlÞ ¼
1 non� zonal case

2� 2l predominantly periportal case

2l predominantly pericentral case

ð18Þ

8><
>:

Examples for these zonated states of steatosis are visualized in Fig 5.
For introducing an organ-scale heterogeneity, we multiply the ranges above by an additional

factor

zhðx; y; zÞ ¼ 1þ 0:0398 � x � ðxmin þ xmaxÞ=2
ðxmin � xmaxÞ=2

ð19Þ

where xmin and xmax are the smallest and largest x coordinate of the organ. This factor leads to
a gradient in the steatosis profile with a difference of 2 � 3.98% between the leftmost and right-
most point, given by the smallest and largest x coordinate, respectively. The value 3.98% is the
mean maximum difference between left and right liver as reported in [105] for type-2 diabetic
patients, where lower steatosis values are present on the left. A volume rendering in Fig 5
shows this macroscopic lateral steatosis gradient.

Simplified Regeneration Model. A frequently used experimental protocol to study toxic
liver damage is the administration of CCl4 in animals [28]. It induces a necrotic pericentral
zone [34], similar to effects of acetaminophen overdoses [113], a frequent cause for acute liver
failure in humans [114].

Model Perturbation: In a similar manner as in [8], we represent the effect of the necrotic
area by replacing the cellular volume by interstitial space, changing the volume fractions in the
PK equation Eq 3. As the actual metabolization only takes place in the cellular volume, this
effectively prevents metabolization in the necrotic zone. Let us point out that this is again a
strongly simplified model. It explicitly ignores any interaction of the CCl4 and its metabolites
with the compound, any effects of the fragments of the dead cells, any differences in the meta-
bolic capabilities of the regenerating cells to those of the cells natively at the respective position,
and any additional influence of the CCl4 administration on the whole organism. For a more
detailed model of the interplay of regeneration and metabolism we refer to [115].

Synthetic Necrosis Data: A CCl4 dose of 1.6 mg g−1 body weight leads to necrotic areas
reported in Fig 1S (manually derived data) in the supporting material to [34], with piecewise
affine-linear interpolation in time and the assumption of full regeneration after 7 days. We use
this data as the basis for defining a time-dependent necrotic zone in our representative sinu-
soids, converting, as explained in Eq 16, from pericentral area as visible in the histological
images to pericentral length in the representative sinusoid model. The evolution of the necrotic
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area as input for our simulations is shown in Fig 6. A necrosis value between 0% and 100% is
proportionally mapped to a change of volume fractions as described above.

Applications and Results
We now show three example applications using our four-scale modeling and simulation frame-
work. These applications were chosen to cover a wide range of species, compounds, pathologi-
cal conditions, simulation scenarios, and pharmacologically and physiologically relevant
output quantities. We first considered the clearance of midazolam in a healthy and a steatotic
human liver where both zonation within sinusoids and organ-scale heterogeneity of the steato-
sis were present. Next, we addressed the clearance of caffeine in mice where the metabolization
was zonated already in healthy livers. During the regeneration after CCl4 intoxication, which
induces a zonal necrosis, an additional zonal pathophysiological change of the metabolization
was taken into account, leading to different half-lives of the same amount of caffeine in the
body. Finally, we show results of a parameter study investigating how sinusoid-scale spatially
heterogeneous patterns of different cell entities influenced the uptake of insulin in mouse livers,
representing the cell variation along a single sinusoid. Here, we evaluated how physiologically
released periodic pulses were damped by the liver.

Fig 5. Steatosis Heterogeneity. The left images show four examples of different synthetic zonated patterns
of steatosis in humans, visualized on a color scale from violet to yellow, corresponding to 0% to 27.5%
steatotic lipid accumulation. The three steatotic states correspond to the same total lipid accumulation of
9.2%. The volume rendering on the right visualizes the organ-scale gradient ζh with a difference of 7.96%
lateral direction for a human liver.

doi:10.1371/journal.pone.0133653.g005

Fig 6. Necrosis and Regeneration. The plot shows how the spatial extent of the necrotic region evolves
according to our model of the effect of CCl4 intoxication along a representative sinusoid of a mouse liver. The
representative hepatocytes are separated by vertical black lines in this plot, A color range from white to red
indicates zero to full necrotic damage of the respective representative hepatocyte. Necrosis develops during
the first day, until a maximally necrotic state is attained. Subsequent regeneration starting on the second day
leads to a shrinkage of the necrotic region until the end of day 7.

doi:10.1371/journal.pone.0133653.g006
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The midazolam and caffeine models are of the structure presented in Eq 3. The parameters
needed therein and in Eq 4 for the two compounds are listed in Table 2. The insulin model, in
contrast, has a different structure presented below in Eq 21. It was moreover parametrized
using experimental ex vivo data for cells in a non-flowing medium, requiring a model and
parameter conversion as described above for being able to use the model in our representative
sinusoid approach. The steatotic perturbation in the midazolam model involved an organ-scale
heterogeneity and was thus investigated using a realistic geometric model of a human liver and
its vascular structures. The other two examples considered inhomogeneity only at the lobular
scale and thus did not require organ-scale geometric models.

Midazolam Metabolism of Human Steatotic Livers
Midazolam is a sedative and anesthetic induction agent [116]. It is metabolized by the enzyme
CYP3A4 [117] only expressed in the pericentral region [118].

Pharmacokinetics Model. Based on Fig 1 in [119], we estimated the size of the pericentral
region of CYP3A4 expression to be be slightly over 50% of the lobular cross-section area. By Eq
16, this pericentral area corresponds to 14 of 19 hepatocytes performing the metabolization.

We used the available software [59] to establish a human PBPK model for midazolam based
on physiochemical parameters from [120] and the Human Metabolome Database [121] as well
as to determine the partition coefficients κ and the permeabilities P listed in Table 2. The
parameters V cell

max, K
cell
m , and log P were fitted to data manually derived from Fig 2 in [122].

This model was parametrized for a 19-zonal liver model matching our representative sinu-
soid model for humans, the parameters could thus be used without further adaption.

Simulation Results: Influence of the Body Delay. First, we represented the healthy liver
by a single representative sinusoid and used an intravenous bolus injection of 11.42 mg as in
the experiments underlying the data used above for fitting. Here, we determined the simulated
midazolam concentrations in the plasma entering the liver via the portal vein, comparing a
recirculation model as described above to one without delay during the recirculation.

Results for this simulation in Fig 7 show that, without recirculation delay, our model failed
to predict reoccurring peaks of the second and third pass. With nonzero recirculation delay,
these peaks were captured with a physiologically reasonable temporal delay. In our case, we
observed a temporal spacing of about 75 seconds between the first two peaks. This is clearly
longer than a time span of approximately 23 s which can be estimated from Fig 4 in [63]. The
literature data is for a different compound with potentially different PK characteristics

Table 2. Pharmacokinetics Parameters. For the two compounds whose pharmacokinetics is described by
Eqs 3 and 4, the table lists the respective PK parameters: partition coefficients κ, permeabilities P, metaboli-
zation parameters V cell

max and Kcell
m ; the lipophilicity log P

Compound Species Midazolam Human Caffeine Mouse

κrbc,pls [–] 3.903 � 10−1 5.850 � 10−1
κpls,int [–] 3.842 � 10−1 8.735 � 10−1
κint [–] 6.246 � 10−2 9.731 � 10−1
κcell [–] 1.060 � 10−2 1.192 � 100
Prbc,pls [s

−1] 9.871 � 10−3 4.017 � 10−3
Ppls,int [s

−1] 6.460 � 100 1.548 � 102
Pint,cell [s

−1] 6.776 � 100 1.039 � 100
V cell

max [mM s−1] 2.531 � 10−7 6.609 � 10−3
Kcell

m [mM] 1.0 � 10−8 4.52 � 10−1
log P [–] 3.107 � 100 −7.0 � 10−2

doi:10.1371/journal.pone.0133653.t002
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throughout the body, which could account for part of the difference. Mainly, the difference is
due to our recirculation model not yet accurately representing the flow delays by different
organs and for different paths through the body. However, a more accurate recirculation delay
is beyond the scope of this article where we focus on a detailed liver model and consider the
simplified recirculation delay sufficient for our purposes. In particular, we did not simply pick
our recirculation delay τrec total from Eq 1 such that the time span between two peaks matches
the literature values. Such an approach would merely hide the inaccuracy described and would
probably lead to incorrect amplitude of the second peak because flow delays by slower paths
through the body would not be represented correctly and the circulation speed of the entire
mass would be overestimated.

Results for the Zonated, Organ-Scale Homogeneous Model. We next assumed infusion
of the same dose of midazolam into the blood plasma flowing through the portal vein within 5
seconds. In this case, we determined the simulated spatio-temporally resolved concentration
profiles along the sinusoid in the healthy, predominantly periportal, predominantly pericentral,
and non-zonal steatotic cases.

In Fig 8, we can clearly observe the influence of the different steatosis patterns on the spa-
tio-temporal midazolam distribution. As expected from Eq 17, a higher accumulation of mida-
zolam was predicted for the steatotic regions. In the plots, the apparent velocity of the peak is
particularly noteworthy with an apparent transit time of about 200 seconds for the healthy
state, and slower apparent velocity for the steatotic states. We emphasize that this time scale is
different from the blood flow velocity, for which the transit time is 13.6 s as given in Eq 6, i.e.,
significantly shorter and according to our assumptions in particular independent of the
steatosis.

The simulation results here clearly depend on how the randomized steatosis patterns were
chosen, i.e., on the seed value of the pseudo-random number generator. While it would be rea-
sonable to investigate how sensitive the results are to the seed, and more generally to all the

Fig 7. Influence of the Body Delay. For an intravenous bolus injection in our human whole-body model with
a liver described by a single representative sinusoid, the plot shows the simulated midazolam concentration
in the blood plasma at the liver inflow. Setting the temporal delay of the recirculation to zero (dashed line)
shows that the delay in the model is indispensable for a correct prediction of recurring peaks for a second and
third pass, indicated by circled numbers in the plot.

doi:10.1371/journal.pone.0133653.g007
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model parameters, such a sensitivity analysis is beyond the scope of the present exemplary use
case.

Results for the Zonated, Organ-Scale Heterogeneous Model. Moreover, we considered a
liver model using 10 000 representative sinusoids with the vasculature as shown in Fig 3. In
this case, each representative sinusoid had its individual steatosis pattern (predominantly peri-
portal predominantly pericentral, non-zonal), additionally the lateral organ-scale gradient as
given in Eq 19 was present. Due to the large number of sinusoids, the influence of the individ-
ual patterns, as discussed above, averaged out. For these simulations, we again assumed an
infusion into the blood plasma flowing through the portal vein within 5 seconds. We then

Fig 8. Spatio-Temporal MidazolamConcentration Profiles. The surface plots show the spatio-temporal evolution of the midazolam concentrations in the
blood plasma and the hepatocytes along representative sinusoids assuming an infusion of duration 5 seconds into the portal vein, comparing the healthy
reference case with three different steatotic cases with the same total amount of lipid accumulation. While the height in the graph covers the total
concentration ranges, the color highlights differences in a lower range of concentrations, emphasizing the differences between the four cases. In addition, the
steatosis patterns along the sinusoids are shown below the cellular concentrations. Differences in the transit time of the peak are due to different extent of
storage and release of the midazolam due to the steatotic lipid accumulations. This should not be mistaken for the blood flow transit time, which is 13.6 s for
all four cases and thus much shorter than the peak transit time.

doi:10.1371/journal.pone.0133653.g008
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determined the simulated midazolam concentrations in the systemic venous blood plasma. We
again compared healthy and the three steatotic cases, where we now additionally considered an
organ-scale heterogeneity of the steatosis according to Eq 19.

In Fig 9, differences between the three steatotic states during the first minutes can be
observed. This shows a key property of our spatially resolved model which is capable of distin-
guishing different spatial patterns with the same total steatotic lipid accumulation. In these
liver outflow curves, two concentration maxima can be observed. The first peak corresponds to
the first pass after the blood flow transit time of the organ, which is the same for all four cases.
The second peak corresponds to the different apparent peak velocities for the four cases
observed in Fig 8. This shows that the effect of different apparent peak velocities is also present
in the superposition of 10 000 different steatosis patterns of the four types (healthy, predomi-
nantly periportal, predominantly pericentral, non-zonal) and in particular not an artifact of the
specific single patterns used for the simulations shown in Fig 8.

For longer simulations, only the difference between the healthy and steatotic cases can be
observed. However, the quantitative difference mainly depends on the extent of steatosis,
which is not the focus here. Still, the relatively small difference between the healthy and the
steatotic states fits to the clinical finding in [123] that morbid obesity does not lead to changes
in Midazolam clearance. Despite the qualitative similarity, this comparison is clearly limited.
While obesity and steatosis are associated, the latter was not reported for the individuals con-
sidered in [123]. Moreover, our model did not take into account any aspects of obesity besides
the hepatic steatosis.

Caffeine Metabolism of Regenerating Mouse Livers
Caffeine is a central nervous system stimulant naturally occurring in some plants and it is one
of the most widely consumed xenobiotics [124]. Pharmaceutically, it is commonly used in
combination with analgesics [125] and antihistamines, but also for treatment of apnoea in pre-
mature infants [126].

Pharmacokinetics Model. For caffeine, we used the PBPK model from [19] determined
for an intravenous bolus injection of 5 mg caffeine per kg body weight. Caffeine is metabolized
by Cyp1a2 [127], an enzyme only expressed in the pericentral region [12], which we estimated
to be about 58% of the lobular cross-section area based on Fig 3 in [128]. By Eq 16, this area of
enzyme expression was translated to 9 of 12 pericentral hepatocytes performing the metaboli-
zation, the 3 periportal hepatocytes do not. We hence used the enzyme activity parameters
from the PBPK model assigned above for the 9 pericentral hepatocytes and set the termm
from Eq 2 to zero for the 3 periportal hepatocytes. The intra-subcompartmental exchange took
place in all 12 representative hepatocytes in the model, i.e., E(λ) from Eq 15 is present for all of
them. Despite a direct zonated translation to the hepatocytes, an adaption from well-stirred to
representative sinusoid models as described above turned out not to be necessary for this
model.

Regeneration after CCl4 intoxication was built into the model as described above by syn-
thetic necrosis data. The necrotic region was also located pericentrally and at its maximum
size covered most of the metabolizing region. Besides those two zonated effects, no additional
organ-scale heterogeneity was present in the model, it is thus sufficient to represent the liver by
one representative sinusoid. This model included recirculation with a recirculation delay of
τbody = 15.5 seconds as explained above.

Simulation Results. In our simulations, we considered an intravenous bolus injection of 5
mg caffeine per kg body weight, as in the underlying experimental data of the model. The injec-
tion was assumed to take place at different time points after inducing CCl4 damage, from 0
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days, when necrosis starts to develop, to 7 days, when the fully recovered state according to our
damage model is attained. After the injection, we simulated one day of blood flow and caffeine
clearance in the model, involving spatially and temporally resolved caffeine concentrations for
the representative sinusoid and temporally resolved concentrations for the other compart-
ments in our body-scale model. From these values, we computed the total amount of caffeine
present in the body and in particular the half-life t1/2, i.e., the time it took for half of the initial
caffeine to be cleared from the body, cf. elimination half-life in [129]. While this half-life is easy
to compute in the model by summing up caffeine amounts in all compartments, it is not easily
accessible experimentally. Instead, many studies determine the half-life of the compound in
the systemic blood plasma, leading to slightly different results.

The caffeine concentrations in the plasma in the venous blood pool show a second and
weak third peak after about 30 and 60 seconds, see the small line plot in Fig 10. Later peaks are
of diminishing amplitude and not visible in the curves. These recurring peaks are superposi-
tions of the delays due to the liver model and the recirculation as well as an exchange between
subcompartments of all organs, the spatially resolved liver and the well-stirred remaining
organs. The peaks thus take longer than the total recirculation time for mice of τrec total = 19.72
s, see the discussion of the recirculation time scale in the human midazolam case above. This
effect qualitatively occured regardless of the necrotic state of the model. On the longer time
scale of one day, the necrotic state of the model had a major influence, see large line plot in Fig
10: for injection at day 0, the necrosis developed and slowed down the decrease of caffeine con-
centration in the plasma in the venous blood pool. For injection at day 1, the slowest concen-
tration decrease can be observed. Regeneration lead to an increasingly larger metabolizing
region for the injections at days 2 to 7, leading to faster decrease of the caffeine concentrations,
until the fully regenerated state was reached for the injection at day 7.

Fig 9. Organ-Scale MidazolamConcentration Profiles. For an assumed infusion of midazolam into the
portal vein within 5 seconds, and our human whole-body model with a liver described by 10 000
representative sinusoids, the plot shows the midazolam concentrations in the blood plasma flowing out of the
liver. In these model predictions, the different steatotic cases lead to differences during the first minutes.
Afterwards, only the healthy state leads to concentrations distinct from the steatotic cases.

doi:10.1371/journal.pone.0133653.g009
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Correspondingly, a change in the half-lives listed in Fig 10 can be observed. The maximally
necrotic state at day 1 (t1/2 = 76.2 minutes) and the healthy state at day 7 (t1/2 = 20.2 minutes)
differ by a factor of 3.77. This fits to the experimental findings in [130]. These experiments
involved rats one day after inducing necrosis by CCl4 compared to control rats, thus a different
species. Furthermore, different doses of 0.25 mg CCl4 per kg body weight and 5 mg caffeine per
kg body weight were used as well as a different notion of half-life computed based on concen-
trations in the systemic blood plasma. Still, the half-lives reported in Table 1 in [130] are 1.68
hours (control) and 6.29 hours (day 1) and thus differ by a factor of 3.74, surprisingly close to
our finding. Computing half-lives in a similar way as in [130], i.e., via an elimination rate con-
stant obtained by logarithmic regression analysis to the concentration in the venous blood pool
in the range [30, 300] minutes, we obtain 28.5 and 76.8 minutes, respectively. This is, on the
one hand, in the same range as our half-lives t1/2 for the entire body. On the other hand, they
differ by a factor of 2.69, which is again close to 3.74 obtained from [130].

Murine Insulin Uptake: A Parameter Study
The hormone insulin plays an important role for the regulation of the glucose and lipid metab-
olism [131]. In healthy organisms, insulin is secreted by the β cells of the pancreas into the por-
tal vein in periodic, discrete pulses between 5 and 15 minutes [132]. The liver is the main organ
involved in the insulin degradation and its depletion from the blood. Of the secreted insulin,
40% to 80% are extracted hepatically before reaching other organs [133]. This extraction can

Fig 10. Caffeine Clearance After CCl4-Induced Necrosis. The plot shows the caffeine concentrations in the plasma in the venous blood pool for 24 hours
after intravenous bolus injection at different time points during the necrosis development and regeneration process induced by CCl4. The influence of the
necrotic damage occurred during day 0, leading to slowest decrease of caffeine concentration in the venous blood for the injection at day 1. Regeneration
during days 1 to 7, according to our necrosis model from Fig 6, lead to increasingly faster decrease of the caffeine concentrations for the later injections, until
the fully regenerated state was reached for the injection at day 7. The inset shows the second pass after the first recirculation cycle, in this case after 30.2 s.
The table lists the half-life of caffeine in the organism, i.e., the first decrease by 50%, if it occurs within one day after the administration. These numbers
confirm the observations from the plot which only involves the venous blood pool.

doi:10.1371/journal.pone.0133653.g010
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be observed in terms of the amplitude as well as the integral of inflowing and outflowing insulin
concentrations in the hepatic blood flow, see, e.g., the data reported in Fig 2 in [134] for rats
and in Fig 1 in [135] for dogs. The high insulin clearance by the liver during the first pass leads
to a prominent periportal to pericentral gradient of the insulin concentration in the sinusoid.
The effect of the periodicity of the pulses in the hepatocytes is not well known, but non-pulsa-
tile insulin secretion is a well-known early indicator of type 2 diabetes, indicating a predomi-
nant role in the maintenance of biological functions [136, 137].

Due to the hepatic insulin degradation, the hepatocytes face much larger insulin amounts
than other cells in the body. We experimentally found two entities of hepatocytes differing in
their abilities to bind and endocyte insulin, see Chapter 3 in [138] and Fig 11. These two enti-
ties of hepatocytes are denoted as low-binding and high-binding in the following. Our first
experimental observations do not indicate that there is a noticeable zonation of the two cell
entities along the sinusoids.

We here used the simulation techniques introduced above to predict the impact of different
spatial patterns of low-binding and high-binding cells on the pulsatility of insulin in the blood
flowing out of the liver. Using experimental data obtained ex vivo with freshly isolated hepato-
cytes, we developed a mathematical model for binding and endocytosis of insulin for the two
cell entities at the cellular level. This model is integrated in the representative sinusoids to be
able to study the effect of different spatial patterns formed by the two entities of cells. The frac-
tions of the number of cells are denoted by ηl and ηh = 1 − ηl for the low- and high-binding
entities, respectively. We assume that both cell entities have the same size, so that ηl and ηh can
also be interpreted as the respective volume fractions. In our experiments, we observed a frac-
tion ηl,obs = 0.606 of low-binding cells. As literature data for measurements of insulin concen-
trations flowing into and out of the liver are used for comparison, we here consider an isolated
perfused liver [139], omitting recirculation and thus the body-scale in our model.

The model for cellular binding of insulin correctly describes the dependency on dose and
time observed experimentally for both entities of hepatocytes without considering the intracel-
lular pathway. This indicates that insulin binding and degradation is not strongly regulated by
intracellular pathway feedbacks. Thus, we did not take into account intracellular signalling pro-
cesses involved in insulin uptake such as those in [140]. Similarly, the experiment did not
involve extracellular processes such as those considered in [141], these were also omitted in the
model. We are aware that such an in vitro to in vivo extrapolation is a highly non-trivial task
and involves many sources of uncertainty, see [142, 143] and particularly [144] for hepatocytes,
but consider the model appropriate for the proof of concept application here. In particular,
detailed biological interpretation, discussion of parameter uncertainty and parameter sensitiv-
ity is beyond the scope of this example application.

Insulin Model. The dynamic model of cellular insulin binding consists of eight ordinary
differential equations describing the processes shown in Fig 11 by chemical mass action laws.
For parameter estimation, flow cytometry (FACS) measurements of labelled insulin were used.
The dose-response 15 minutes after stimulation as well as time course data (t = 0, 1, 2, 5, 15, 30
min) for 10 nM, 100 nM and 1000 nM were repeatedly measured and averaged [138]. A selec-
tion of the FACS data is shown Fig 11. In addition, the dose- and time dependency of insulin
depletion in the medium was evaluated by an enzyme-linked immunosorbent assay (ELISA).

The structure of the insulin model is different from the previous two models. The extracellu-
lar medium from the experimental setup is replaced in the simulations by the plasma subject to
blood flow. The plasma is assumed to be in instantaneous concentration equilibrium with the
interstitium (not subject to blood flow). Moreover, red blood cells are here assumed not to be
part of the insulin exchange and we thus have no insulin concentration for the red blood cells
in our model. This allows us to define an extracellular volume fraction φext = φpls + φint where

Representative Sinusoids for Hepatic Four-Scale Simulations

PLOS ONE | DOI:10.1371/journal.pone.0133653 July 29, 2015 26 / 39



φpls and φint are given in Eq 5b. According to these flow assumptions, we scaled the typical
transit time as τtyp � φext/φpls = 15.3 s.

To account for the two different entities of hepatocytes, the cellular subcompartment con-
sists of two volumes φcell,l = ηl φcell and φcell,h = ηh φcell for the low-binding and high-binding
cells, respectively, that add up to φcell from Eq 5b. Additional processes such as insulin binding
by receptors require further concentrations in the model, leading to a form of the equations dif-
ferent from Eqs 3 and 4.

Fig 11. Insulin Model. The top left plots show two datasets for evaluating the amount of insulin binding to individual cells by flow cytometry (FACS). The
upper panel exemplarily shows the raw measurements five minutes after stimulation with 100 nM, the lower panel for 1000 nM. Independent of time and
insulin dose, a bimodal distribution was observed indicating two entities of hepatocytes. Two Gaussian distributions were fitted to the logarithmic intensity
histograms to analyze the time and dose dependency of the average insulin binding within both entities. The top right sketch shows the structure of the model
for cellular insulin binding, internalization and extraction processes described by Eq 21 including the parameters given in Eq 22. This model could explain the
dynamics for both entities of hepatocytes as seen in the bottom plot showing the model fit of time-dependent average insulin binding of both entities for three
different doses. The experimentally observed data for low-binding and high-binding hepatocytes is shown as ‘+’ and ‘×’, respectively. Model predictions for
these cases are solid and dashed lines, respectively. The shaded error bands correspond to the estimated error in the data points.

doi:10.1371/journal.pone.0133653.g011
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Parameters in the cellular insulin model were originally fitted for the experimental setting
with an unphysiological ratio of extracellular to cellular volume. This fit is shown in Fig 11.
The parameters were subsequently rescaled and converted to the volume fractions in the physi-
ological setting. For scaling the parameters derived in the well-stirred experimental environ-
ment to spatially resolved representative sinusoids, we applied the procedure described above.
For this purpose, we first implemented a preliminary organ-scale model by introducing a flow
term as the α in Eq 2 and defined a preliminary representative sinusoid model using these
parameters. For this purpose, the position-dependent volume fractions ψext, ψcell,l, and ψcell,h

are computed in terms of the ψ{pls,int,cell} defined in Eq 12 as

cextðlÞ ¼ cplsðlÞ þ cintðlÞ
ccell;lðlÞ ¼ ZlccellðlÞ
ccell;hðlÞ ¼ ZhccellðlÞ :

ð20Þ

We could observe that the receptor binding and unspecific binding are the fastest processes
described by the ODE system. Hence, we determined an adaption factor ω for these binding
parameters, considering the peak-above-baseline amplitude as the deviation to be minimized
when determining an optimal ω = 0.204. This factor is part of the parameters K{on,off} and
K{a,d},{l,h} in the final organ-scale model
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ccell;hðlÞ
cIcR;h �

sðlÞ � Kd;h

ccell;hðlÞ
þ Kin;h

ccell;hðlÞ

 !
cIR;h þ

Kout;h

ccell;hðlÞ
cðinÞIR;h

@tc
ðinÞ
IR;l ¼ Kin;l

ccell;lðlÞ
cIR;l �

Kout;l

ccell;lðlÞ
þ Kextr;l

ccell;lðlÞ

 !
cðinÞIR;l

@tc
ðinÞ
IR;h ¼ Kin;h

ccell;hðlÞ
cIR;h �

Kout;h

ccell;hðlÞ
þ Kextr;h

ccell;hðlÞ

 !
cðinÞIR;h

ð21Þ

where cI denotes the concentration of free insulin in the plasma and interstitium, cB,u the con-
centration of unspecifically bound insulin, cR,{l,h} are the concentrations of insulin receptors,
cIR,{l,h} those of bound insulin and cIR,{l,h} those of bound internalized insulin, the latter three in
the low-binding and high-binding case, respectively. Permeability-type parameters are scaled
as before using σ(λ) defined in Eq 14. The dependency of the concentrations on space and time
was omitted here such as not to overload the notation. The relations between the concentra-
tions are illustrated in the diagram in Fig 11.

Representative Sinusoids for Hepatic Four-Scale Simulations

PLOS ONE | DOI:10.1371/journal.pone.0133653 July 29, 2015 28 / 39



The constants used in Eq 21 are

Koff ¼ 3:419 � 10�2 s�1

Kon ¼ 6:894 � 10�2 s�1

Kd;l ¼ 3:207 � 10�5 s�1 Kd;h ¼ 1:449 � 10�4 s�1

Ka;l ¼ 1:330 � 10�2 mM�1 s�1 Ka;h ¼ 4:242 � 10�2 mM�1 s�1

Kin;l ¼ 6:425 � 10�6 s�1 Kin;h ¼ 6:020 � 10�6 s�1

Kout;l ¼ 7:826 � 10�7 s�1 Kout;h ¼ 3:961 � 10�7 s�1

Kextr;l ¼ 1:893 � 10�7 s�1 Kextr;h ¼ 1:231 � 10�7 s�1

ð22Þ

The unspecific binding expressed in Eq 21 by the concentration cB,u is viewed as (a) free
insulin which is (b) binding to the cells. Due to (a), it is a concentration in the extracellular
space, hence ψext(λ) in the denominator. Due to (b), binding capability scales with the cellular
surface area, hence the factor σ(λ) in the numerator.

Results of the Parameter Study. As a parameter study, we considered all 4096 possible
configurations of 12 low- or high-binding cells along the representative sinusoid to investigate
how the configuration affects the outflowing insulin concentration. As each position along the
representative sinusoid represents a different contribution to the total volume, the factors ρ(λ)
as defined in Eq 13 needed to be taken into account when computing the total fraction of the
two cell entities for all possible configurations as η{l,h} = ∑λ ρ(λ) � ψcell,{l,h}(λ). This in particular
implies that there are more distinct values for η{l,h} than merely multiples of 1/12. Many of the
4096 possible configurations lead to fractions of low-binding cells highly different from the
experimentally observed ratio ηl,obs = 0.606. Even though we put special focus to ratios close to
ηl,obs in the presentation of the results all possible combinations were studied to be able to com-
prehensively investigate the impact of spatial configurations.

Insulin secretion by the pancreas is pulsatile, where frequency and amplitude can vary and
in particular depend on the organism and on the glucose level in the blood. The typical period-
icity is in the range of 5 to 15 minutes [132]. We considered an inflowing plasma concentration
composed of a basal level of 1 nM in both HA and PV and an oscillatory secretion component
into the PV inflow with a period of 720 s (12 minutes) and a peak-above-baseline amplitude of
9 nM. This results in a total inflow of

IðtÞ ¼ 1nMþ 1:752

2:102
� 9nM
Imax

� ½ð1� e�lnð2Þ=t1 �tÞe�lnð2Þ=t2 �t� t 2 ½0s; 720sÞ ð23Þ

with half life times τ1 = 60 s and τ2 = 10.8 s and a scaling factor 1.752/2.102 being the relative
contribution of the PV for the total blood flow [59]. The normalization factor Imax is given by
the maximum

Imax ¼ 1� t1
t1 þ t2

� �
e
t1
t2
ln t1

t1þt2ð Þ ð24Þ

of the unnormalized product of the two exponentials in square brackets in Eq 23. The profile I
(t) was continued periodically for t� 720 s. Its range of values is chosen to match the experi-
mental setting for which the model was parametrized, it is in particular not meant to approxi-
mate physiological insulin concentrations.

Initial concentrations were obtained by running the simulation for the well-stirred organ-
scale model for 1.8 � 107 s (5000 hours). For this purpose, initial receptor concentrations of
cR,l = 5.686 � 10−2 mM and cR,h = 1.366 � 100 mM from the parameter fit and zero initial
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concentrations for the remaining states, as well as the average of I(t) from Eq 23 as inflow con-
centration were used. This resulted in

cIð0Þ ¼ 1:353 � 10�6 mM

cB;uð0Þ ¼ 2:728 � 10�6 mM

cR;lð0Þ ¼ 5:662 � 10�2 mM cR;hð0Þ ¼ 1:359 � 100 mM

cIR;lð0Þ ¼ 3:150 � 10�5 mM cIR;hð0Þ ¼ 5:370 � 10�4 mM

cIRin;lð0Þ ¼ 2:082 � 10�4 mM cIRin;hð0Þ ¼ 6:227 � 10�3 mM

ð25Þ

In Fig 12, we show the dependency of the peak-above-baseline amplitude of the outflowing
insulin concentration on the fraction of low-binding cells for all 4096 cases, i.e., for the full
range of 0� ηl � 1. Additionally, we plotted the outflowing concentration time curves for
configurations with 0.581� ηl � 0.631 low-binding cells, the range ηl,obs ± 0.025. We can
observe that there is a relatively wide range of outflowing peak-above-baseline amplitudes. The
obtained results indicate that not only the amount of the two entities of cells, but also their spa-
tial configuration along the sinusoids determine the total insulin binding and degradation in
the liver. Despite more experimental work being necessary in order to corroborate theses
observations, it is clear that the insulin outflow from the liver is determined by the existence of
both entities of cells able to bind different amounts of the hormone as well as by their spatial
configuration along the sinusoid. The latter seems to be a new additional diversity factor in the
liver independent from the well-known metabolic heterogeneity related to the position of the
cells along the sinusoid.

Discussion
In the three example applications, we considered two rather distinct cases of organ-scale het-
erogeneity. In the caffeine and insulin examples, only sinusoid-scale heterogeneity is present
and so that the model consists of a single representative sinusoid. In contrast, our midazolam
example is based on highly heterogeneous synthetic data at the organ scale and uses 10 000 rep-
resentative sinusoids. For actual biological or pharmacological applications, the appropriate
number of representative sinusoids and thus the model complexity should be chosen based on
the available data on organ-scale heterogeneity of perfusion and parameters as well as the spe-
cific simulation output quantity of interest.

Computational Performance
The computational performance for our example applications are summarized in Table 3 for
single-threaded simulations on an Intel Core i7 2.8 GHz CPU, compiled using GCC 4.8.4. The
performance clearly depends on the presence of the submodels, the lack of a recirculation ODE
system in the insulin application clearly saves time and memory, but may also vary with the
numerical properties of the equations. The midazolam example with 10 000 representative
sinusoids has rather high organ-scale resolution, but can still be simulated in reasonable time
on a standard desktop PC. In a previous, porous-medium-based approach, a simulation with
merely 800 leaf nodes of the vascular systems was reported to take about 9 times as long (cf.
Table 1 in the supporting information Text S1 of [8]), albeit for a different compound in a
mouse liver and on slightly slower hardware. For high organ-scale resolutions, the memory
requirement and computational performance essentially scale linearly with the number of rep-
resentative sinusoids considered.
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Limitations
Besides limitations already addressed at the appropriate sections above, a number of general
limitations of the approach presented in this article should be mentioned. First and foremost,
obtaining targeted experimental data to validate our simulation results is beyond the scope of
the present article. The comparison to literature data for the midazolam and caffeine examples
above are only a first, albeit successful, step in this direction. In the course of performing
appropriate wet lab and numerical experiments for validation, we may need to refine certain
assumptions as part of our model simplifications and reduction of dimensions, such as that
from the 3D lobuli to the 1D representative sinusoids. Due to the modular structure of the
model and its implementation, we expect this to pose no major challenge. Moreover, our
refinement of whole-body PBPK models by adding spatial resolution has clearly focused on
one organ, the liver. We thus neglect the potential influence of other organs on the clearance of
other compounds, see the examples listed in [145]. While certain concepts presented here may
be transferable, details about modeling the processes taking place in other organs will require a
thorough investigation. As for the steatosis and necrosis models used above, these already con-
tain strong simplifications for the liver. More realistic models should take into account the rele-
vant influences, for all organs, on the pharmacokinetics of the compound being considered.

Fig 12. Parameter Study for the Insulin Model. The left plot shows the relation between the fraction of low-binding cellular volume and the peak-above-
baseline amplitude of the outflowing insulin concentration obtained by the simulation for 4096 different spatial configurations of low-binding and high-binding
cells. Generally, a higher fraction of low-binding cells implies less insulin uptake by the cells and thus a higher simulated outflowing concentration. The
scattering, however, clearly shows that it is not a strict functional dependency. The shaded area in the scatter plot corresponds to the range ηl = 0.606 ± 0.025
near the observed fraction of low-binding cells. It comprises 436 cases, for which the corresponding curves of outflowing insulin concentration are shown in
the right plot. The individual lines are colored according to the low-binding cellular volume, cf. the shaded area in the scatter plot. The fact that these are not
spectrally ordered from blue to red again shows that the simulation result does not only depend on the low-binding cellular volume fraction but also on the
actual spatial configuration.

doi:10.1371/journal.pone.0133653.g012

Table 3. Computational Performance. For our applications with different numbers # rs of representative sinusoids, the table lists the computational perfor-
mance as a multiple of real-time performance (larger is faster) as well as the memory needed for the respective simulation. For the insulin model, the number
refers to one of the 4096 simulations run as part of the parameter study.

application # rs simulated / CPU Time [1] memory [MiB]

midazolam 1 96.919 45

midazolam 10000 0.033 2518

caffeine 1 26.643 68

insulin 1 2441.017 48

doi:10.1371/journal.pone.0133653.t003
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Besides modeling, a major challenge is to experimentally obtain data for appropriately quanti-
fying these influences. While the model perturbations above were based on synthetic data, it is
possible to use experimentally observed patterns if such data is available, e.g., quantifying the
sinusoid-scale and organ-scale heterogeneity of steatosis patterns as shown in Fig 1, see prelim-
inary results in [146] and [147]. Similar steatosis patterns could then be clustered appropriately
to choose the number of representative sinusoids, i.e., the required complexity of the model for
sufficient accuracy of the simulation results.

Outlook
Experimental validation could involve systematic pharmacokinetic measurements with an iso-
lated perfused liver including partial bypassing and retrograde and antegrade drug perfusion
as, e.g., performed in [34]. Besides a thorough validation, an uncertainty and parameter sensi-
tivity analysis is needed to identify critical and less critical parameters, see [148] for an over-
view of sources of variability in PK models. For this purpose, being able to run fast simulations
is an important starting point. An application of the modeling framework described here for
other compounds, species, pathologies, etc., mainly requires the appropriate model parameters
determined for the specific application. Further model integration [149] should involve includ-
ing cellular metabolic models such as described in [37] and investigating how numerically
homogenized model parameters can be employed from or provided to alternative approaches
like [8, 34, 37, 52].

Conclusion
We have presented a generic multiscale physiology-based simulation framework for perfusion
and metabolization in the liver which can deal with inhomogeneity at distinct spatial scales. It
permits high temporal resolution to investigate first-pass effects as well efficiency for simulat-
ing long periods of time and performing parameter studies. Three applications show that this
is a versatile approach applicable to diverse pharmacological questions, in particular investigat-
ing the impact of zonation and organ-scale heterogeneous pathophysiological changes.

Supporting Information
S1 Dataset. Geometric Liver Model. The geometry information used for the human midazo-
lam simulations, i.e., the organ mask and vascular tree datasets shown in Fig 3, are provided as
an online resource. A simple viewer tool for the vascular trees from the supporting information
Data S1 of [8] is included.
(ZIP)
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