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Noncollinear and nonlinear pulse 
propagation
Tomasz M. Kardaś1, Yuriy Stepanenko   1 & Czesław Radzewicz2

A novel method for numerical modelling of noncollinear and nonlinear interaction of femtosecond laser 
pulses is presented. The method relies on a separate treatment of each of the interacting pulses by 
it’s own rotated unidirectional pulse propagation equation (UPPE). We show that our method enables 
accurate simulations of the interaction of pulses travelling at a mutual angle of up to 140°. The limit 
is imposed by the unidirectionality principal. Additionally, a novel tool facilitating the preparation 
of noncollinear propagation initial conditions - a 3D Fourier transform based rotation technique - is 
presented. The method is tested with several linear and nonlinear cases and, finally, four original results 
are presented: (i) interference of highly chirped pulses colliding at mutual angle of 120°, (ii) optical 
switching through cross-focusing of perpendicular beams (iii) a comparison between two fluorescence 
up-conversion processes in BBO with large angles between the input beams and (iv) a degenerate four-
wave mixing experiment in a boxcar configuration.

One of the major achievements in modeling of ultrafast nonlinear processes is a framework for numerical sim-
ulation of second-order nonlinear processes based on only two assumptions: unidirectionality of propagation 
and paraxial approximation1. Even more fundamental approach, which drops the paraxial approximation and 
treats nonlinear polarization (and possibly free currents) in a general way can be derived from the vectorial 
Unidirectional Pulse Propagation Equation (UPPE)2,3. These models enable numerical simulation of nonlinear 
processes in the presence of frequency dependent diffraction, dispersion and spatial walk-off. They do not, how-
ever, immediately enable noncollinear beam propagation. Still, as they were the most accurate models avaiable 
they have been used for noncollinear simulations of Optical Parametric Chirped Pulse Amplifiers (OPCPA)4–7. 
Only a small range of noncollinearity angles has, however, been considered (bellow 1° 7 and several degrees–for 
tilted front pulses6) to preserve the accuracy of calculations.

Accurate as they are these models are also resource consuming. In the case of OPCPA the challenge comes 
from the fact that the interacting pulses are not only extremely broadband but can also be stretched up to nano-
second durations8–10, therefore, their representation requires huge numbers of points in the simulation grid. 
Consequently, the full 3D models are used only when the signal pulses are moderately chirped6,7,11. In other cases 
the numerical reality forces simplifications and, therefore, additional assumptions. For example, three dimen-
sional simulations with neglected higher order dispersion and diffraction are often in use12–14. Another com-
mon practice applied to lower the memory requirements is to reduce the dimensionality. Thus two dimensional 
simulations with one of the Cartesian dimensions dropped15–17, sometimes with no diffraction and no walk-off 
included18,19, are used. Noncollinear OPA geometry is known to provide very large bandwidths20–22, the simpler–
collinear propagation model is, however, often used to model its operation. A good example of this approach are 
the two dimensional models with cylindrical coordinates23. Beams in such simulations are intrinsically collinear. 
To account for noncollinearity ad hoc spatial overlap parameters are sometimes included24,25. Dispersionless 
models with spatial effects26 and finally, one dimensional simulations with dispersion treated up to the second 
order27, or even with no dispersion28–30 can also, without question, be of value in some applications.

The extra assumptions pointed out above are well justified when general qualitative results are of interest. 
However, a more accurate modeling is always tempting as it may reveal some subtle effects obscured by too crude 
approximations. Recently, some of us have shown that the use of a correct ab initio approach to nonlinear pulse 
interaction simulations applied to a design of a nonlinear optical device can result in the threefold efficiency 
increase with respect to the efficiency of previous solutions and an unprecedented reduction in the size of the 
device31. Therefore, a search for more accurate simulation methods and mathematical tools which could reduce 
the computational requirements for these methods is justified.
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The need for a robust noncollinear simulation is even more pronounced in the case of broadband frequency 
mixing at large angles. The fluorescence up and down conversion processes with 10°–30° angles32–34 can serve 
as a good example. Apparently, to this day no propagation simulation approach to these problems have been 
attempted.

Yet another area of interest for noncollinear propagation is a variety of four-wave mixing (FWM) processes. 
Here degenerate and two-color resonant FWM35–37, Raman based38–40 and (with a proper model for the medium 
nonlinear polarization response) 2D-IR41 experiments can be considered. While these experiments are often 
performed in a noncollinear configuration the literature on appropriate propagation models is minimal or 
nonexistent.

Although, the direct solution of Maxwell equations with finite difference time domain (FDTD) methods can, 
in principle, be considered as an alternative to unidirectional methods, it suffers from signifcant flaws42. First, it 
requires resoling the whole simulation domain of interest (not only the vicinity of the pulse) with a resolution 
high enough for the features of the pulse itself to be resolved. Additionally, the time step is limited so to fit the 
spatial grid resolution (Courant condition). Therefore, a supercomputer cluster instead of a laptop and a time of 
several days instead of minutes is required per single simulation performed with FDTD. Also, FDTD presents 
complications when nonlinear effects (especially Raman scatteing) have to be implemented43. Finally, the accu-
racy of FDTD is much smaller than that of the spectral (unidirectional) methods44.

In the present paper we describe a novel method for numerical simulations of noncollinear pulse propagation 
and nonlinear interaction using just the unidirectionality approximation. In this method the angle between the 
interacting beams is limited only by the unidirectionality principle and, therefore can exceed 140° (depending on 
the beam size). The method relies on expressing the separate UPPE describing propagation of each of the beams 
in a single common spatial coordinates system. In this new system the interaction of pulses through nonlinear 
terms can easily be calculated while the rotated linear terms assure accurate propagation. Our approach is valid 
as long as the volumes of the spectral space used for representation of the particular interacting pulses with the 
same polarization do not overlap.

Our method enables simulation of noncollinearly propagating pulses. Some preparation of the input pulses 
(initial conditions) is, however, required. We, therefore, present a Fourier transform based 3D rotation procedure 
inspired by the image processing techniques45. This technique can be easily applied to rotations of a complex 
number based electric field. It is more than three orders of magnitude faster than the linear 3D interpolation even 
for relatively small grids. For large grids the Fourier rotation becomes an enabling tool as the rotation time can 
be reduced from days (as in case of interpolation) to minutes. It is also expected to be more accurate than the 
common interpolation techniques45.

To demonstrate the capabilities of our method, we present a number of linear and nonlinear propagation 
examples:

•	 linear interference of ultrashort pulses.
•	 optical switching through cross-focusing of beams crossing each other at a 90° angle.
•	 a fluorescence up-conversion in a BBO crystal where we compare type II, and type I configurations (with 

mutual angles between the interacting beams of 19°, and 27°, respectively).
•	 a degenerate four-wave mixing experiment in the boxcar configuration for which we observe spectral narrow-

ing as the angle between the beams is increased.

UPPE Framework
The most accurate unidirectional model of propagation in nonlinear media, derived from Maxwell equations with 
a single assumption of unidirectionality is the one based on the vectorial UPPE2,3:
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nents. UPPE describes propagation of electric field along z or more specifically only the part of electric field 
propagating towards positive values of z as this is a unidirectional equation. The ep = Ep/|Ep| is a unit polarization 
vector and |.| describes length of vector. The wavevector component along the propagation axis kz

p is related to the 
frequency, kx, ky and refractive index n(ῶ, kx, ky) via the dispersion relation:
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For the case of birefringent materials Eq. (1). can be written down separately for each of the polarization 
modes i.e.: ordinary (p = o) and extraordinary (e) modes in uniaxial or slow (s) and fast (f ) modes in biaxial mate-
rials. In homogeneous medium representation of two modes is also required and one can select p = 1, 2 in this 
case. The dependence of kz

p on the optical frequency and the wavevector components (kx, ky) is responsible for 
dispersion and diffraction, respectively. The additional dependence of refractive index on kx, ky present in biaxial 
materials is responsible for spatial walk-off (double refraction). All the above mentioned linear effects are treated 
exactly in UPPE. The PNL = PNL(E, ῶ, kx, ky, z) and j = j(E, ῶ, kx, ky, z) are the nonlinear part of the polarization 
vector and the free current vector46,47. UPPE is solved for electric field components perpendicular to z axis. The 
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missing Ez component of electric field vector required for calculation of PNL and j can, however, be obtained from 
Ex and Ey

2,48.
From the numerical point of view it is convenient to use electric field envelope instead of Ep:

= + .
∼ ω−
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where ωR is a certain reference frequency (usually the central frequency of the pulse). This substitution is equiva-
lent to variable change (shift operation) in the Fourier space, the Fourier transform of Eq. (3) reads:

ω ω ω ω= − =
 

E A A( ) ( ) ( ), (4)p p
R

p

where ω = ῶ − ωR is the detuning from the pulse central frequency.

Idea of the Method
The central idea of our work is to represent each of the interacting pulses in a separate discrete cuboid grid and 
write a rotated UPPE for each of the pulses separately (see Fig. 1(a).). The grids’ nodes have to overlap exactly in 
the spatio-temporal domain so that the nonlinear mixing terms can be calculated. Therefore, each of the interact-
ing beams, propagating along axes zl (with l = 1, 2...) in a xl − yl − zl system, will require solution of its own UPPE 
represented in a new coordinate system x′ − y′ − z′:
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where the first term describes the linear and the second term nonlinear effects, respectively. The definitions of 
variables used in Eq. (5), together with the equation derivation are given in Methods section.

The flow chart of the simulation is presented in Fig. 2. for an example of three wave mixing. First, preparation 
of the initial conditions: the electric field envelopes (Ai, i = 1, 2, 3) in the t′ − x′ − y′ space is required. Often it is 
interesting to simulate propagation of complicated shape of electric field. It can involve Hermite and Laguerre 
spatial modes as well as secant, sinc, super-Gaussian or just arbitrary temporal shape known from SPIDER or 
FROG measurement of an experimental pulse. While, discretization of such shapes in arbitrarily rotated coor-
dinates (t′ − x′ − y′) is difficult it is easy in non rotated grids. It is, therefore, of essence to find a procedure for 
arbitrary rotation of electric field within discretized grids. Moreover, this procedure is required at the end of 
simulation for back rotation of the fields and retrieval of output temporal and spatial profiles. In the Methods’ 
“Arbitrary Fourier rotation” section we present such a procedure based on Fourier transform and shear opera-
tions. This method can be faster than interpolation by as much as 3 orders of magnitude (see Fig. 3). An example 
of rotated pulse propagation is presented in Fig. 4.

In the process of simulation the linear phase term (kz from Eq. (1). or K′p from Eq. (5).) has to be represented 
in x′ − y′ − z′ system for each of the beams. To this end a third coordinates system–the crystal optical axes 
xC − yC − zC system has to be considered. For example see Fig. 5, where: κ = ω n(ωR, 0, 0)/c = ω nR/c is the normal-
ized detuning from the reference frequency. Here kz

e was calculated through Eq. (2). for highly birefringent YVO4 
crystal for the angle between z and zC axes of 48° (maximum walk-off). The dispersion comes from slight devia-
tion from linear growth of the phase along the vertical axis in Fig. 5(a). The diffraction manifests itself through 
circle like behaviour of kz along the horizontal axis. And finally the presence of walk-off reveals itself in slight 
asymmetry of the colour pattern around the vertical axis. There are no propagating wave solutions for 

ω+ >


k k n c( / )x y
2 2 2 (black color). In birefringent media the calculation of kz

p requires an iterative procedure 
involving multiple transitions between the three coordinate systems. This procedure is described in the 
“Calculation of the linear phase term” section. Calculation of the nonlinear polarization also require adequate 
vectorial treatment which is given in the section “Calculation of nonlinear coefficients”.

Figure 1.  The scheme of noncolinear simulation. The interacting pulses have to be represented in overlapping 
spatio-temporal grids (red and blue rectangles) (a). Thus, the two UPPE describing propagation of the “blue” 
pulse along z1 axis and “red” pulse along z2, have to be represented in a new coordinates system x′ − y′ − z′. In 
this system the nonlinear terms can be calculated without interpolation. At the same time the spectral volumes 
(red and blue rectangles in b) corresponding to the two pulses cannot overlap (unless the polarization of the two 
are orthogonal) so that none of the plane wave modes is represented in more than one grid.
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Figure 2.  (5)efeq:UPPErot is solved by an ordinary differential equation solver in the ′k x −  ′k y − κ′ space and in 
each step of the simulation the nonlinear term is computed in the x′ − y′ − t′ space.

Figure 3.  Ratio of the time required by interpolation (MATLAB’s griddata function, TI) and the Fourier 
transform based rotation (TF). For different grid sizes. Grid sizes are indicated in the legend.
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In each step of the simulation the nonlinear polarization is calculated in the x′ − y′ − t′ space–this requires 
inverse 3D Fourier transformation and back transformation of the mixing result to the ′k x −  ′k y − κ′ space. 
Finally, Eq. 5. is solved by an ordinary differential equation solver e.g.: integrating factor or exponential 
Runge-Kutta method.

Our approach is valid as long as the volumes of the spectral space (kx − ky − ω) used for representation of 
particular interacting pulses with the same polarization do not overlap (see Fig. 1(b).). Note that this limitation 
is not as strict as the one imposed on the collinear propagation where the optical spectra of the interacting pulses 
cannot overlap49. In our case the extremely broad pulses can be used as long as the sum of their divergence angles 
is smaller then the noncolinearity angle by a certain factor (1.5 for the separation of 3σ for Gaussian beams). We 
have verified that this condition is easily fulfilled for a standard NOPA setup.

Figure 4.  A pulse with Gaussian temporal profile (20 fs FWHM) and a Hermite-Gaussian beam profile (TEM 2,  
1, w0 = 15 μm) propagated collinearly (black) and noncollinearly (blue) with respect to the simulation axes x0, 
y0, z0. Three rotations: by δ = 30° around z0 (to x1, y1, z1), θ = 5° around y0 (to x2, y2, z2) and ϕ = 135° around z0 
(to x3, y3, z3) are performed. After each rotation the pulse is propagated over a 200 μm distance in fused silica.

Figure 5.  Linear phase factor (kz(κ, kx)) calculated for extraordinary pulse propagating in YVO4 at an angle of 
48° with respect to the crystal’s optical axis (a). The white arrows point along the κ and kx axes. The phase factor 
calculated for a pulse propagating at 60° with respect to the simulation’s z axis, but with the same direction with 
respect to medium as in a (b).
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Method’s Accuracy
First the results of forward propagation (θ = 0°) for beam sizes above 10 μm, for which the paraxial approximation 
is valid, have been compared with with SNLO50 and Hussar software31. The results were found to be in perfect 
agreement. Then the results of propagation for various values of θ have been compared to results of the forward 
propagation. Both linear and nonlinear (SHG) propagation through 5 mm BBO crystal have been tested for vari-
ous beam sizes (3–300 μm) and pulse durations (3–300 fs). The linear propagation tests have also been performed 
for constant width of 10 μm and pulse durations down to 1.15 fs (1.4 cycle) and for various width (w0 ≤ 1 μm) and 
constant duration of 10 fs in 1 mm of fused silica. The nonlinear propagation requires multistep solver, thus, the 
Integrating Factor Runge-Kutta 4, 5 Dormand-Prince method (IFRK45)51 with adaptive step-size control52 have 
been used. The linear problem can be solved in a single propagation step as in this case: + ∆ = ∆E z z E z e( ) ( )s

p
s
p ik zz

p
 

exactly. Thus, the Exponential Euler method (EE)53, which does not subdivide the steps into smaller parts was 
used. Both: Integrating Factor and Exponential methods are specially designed for problem with large linear 
therm.

In case of rotated UPPE method the ultimate limitation appears when pulse contains components that would 
propagate in the negative z′ axis direction. These components cannot be propagated with a unidirectional model 
and, thus, the error must grow near the 90° limit. In fact we have verified that for θ ≤ 60° (corresponding to a 120° 
mutual angle for a two beam case) the error in beam waist, pulse duration and energy was bellow 3·10−3 for the 
single step linear cases (for pulses longer then 1.15 fs the errors are bellow 10−5). For the nonlinear case the error 
depends on the step size. We have found, however, that, for a given distance, it can be easily reduced down to 10−4 
for reasonable step sizes–a multiple of the light wavelength (grid size 1024(t) × 1024(x)). The detail description of 
the tests of the method is present in the supplementary material.

Examples
For each of the examples, two z-marching schemes were used–IFRK45 and an EE equipped with Richardson 
extrapolation52 for automatic step size selection. The step sizes were selected automatically so that the relative errors 
bellow 10−6 in each step were assured. The sizes and densities of the grids were increased to a point at which relative 
differences in parameters resulting from consecutive simulations: energies, beam waists and pulse durations were 
below 10−3 (usually much less). Additionally, the spectral, spatial and temporal profiles were also compared vis-
ually. This convergence has occurred for grid sizes that enabled simulation on a 16 GB RAM laptop computer. The 
results have been, however, confirmed with simulations using larger grids run on a 64 GB RAM PC.

Pulse interference.  The noncollinear but linear propagation has a potential application for solving inter-
ference problems. Here an example interference pattern for two pulses crossing each other at a mutual angle 
of 120° is visualized. The pulses are created by propagation of two 3 fs FWHM Gaussian pulses with 3 μm waist 
and central wavelength of 800 nm through 20 μm of ZnSe. A “top view” of the initial pulse and the result of 
propagation are presented in Fig. 6(a,b) respectively. Three stages of interference are presented in Fig. 6(c–e), the 
Supplementary Movie 1. also presents the evolution of the interference pattern during pulse propagation.

Optical Switching through XPM.  The cross-phase modulation and resulting cross-focusing has been con-
sidered as a candidate mechanism for optical switching in dielectric media54–58. It has been obtained eperimen-
tally in gases59 where the band of a supercontinuum of a probe beam was controlled through interaction with 
the pump. In this work apart of phase-modulation the Raman effect played an important role. Beam direction 
switching through attraction of beams traveling in the same direction has been studied for coaxial54, and dis-
placed beams55. It has been studied extensively in fibers56 also for supercontinuum generation purposes57 and 
in fiber gratings58. Cross-focusing of coaxial beams have also been extensively studied in the context of plasma 
physics60–62.

Figure 6.  The 3 fs (FWHM) and 3 μm (waist) pulse before (a) and after (b) propagation through 20 μm of ZnSe. 
The same pulse interfering with a similar pulse approaching the crossing point at mutual angle of 120° at three 
locations: 20 μm before (c), 0 μm (d) and 40 μm after (e) the approximate crossing point (see supplementary 
movie for complete interference pattern evolution).
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In the present section a cross-focusing effect occurring between two beams with polarizations along the y axis 
(see Fig. 7.) crossed at 90° is studied. The nonlinear polarization for SPM and XPM can in this case be written as:
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where indices 1 and 2 refer to the interacting pulses.
The simulation of cross-focusing of two Gaussian pulses (10 fs FWHM and 33 μm of waist and wavelength of 

800 nm) in 50 μm-thick fused silica plate ( = × −n 3 102
20 m

W

2
) is performed. The energy of one of the pulses (the 

pump) is varied while the energy of the second pulse (probe) is set to a constant value of 1 μJ. Figure 8(a) presents 
the relative change of the beam width at three points located 4, 8 and 12 mm away from the pulse crossing point. 
Apparently even for such small interaction length (equal to the beam size) a significant change in size by around 
10% can be observed 4 mm from the crossing point for the pump energy of 6.4 μJ. The “top view” spatial profile of 
the probe beam at this location for 0.1 and 6.4 μJ energy of the pump pulse is presented in Fig. 8(b,c) respectively. 
Figure 9 presents the dependence of the beam waist (spot-size in the beam focus) and the change in the beam 
divergence for different pump pulse energies.

If the probe pulse was focused into another medium the supercontinuum generation could be optically 
switched on as in the presence of the pump pulse the spot size change in the beam focus is as high as by 7% giving 
a 11% increase in the intensity. For energies of the pump pulse above 10 μJ the pump becomes strongly affected 
by SPM resulting in a distorted probe pulse.

Highly noncollinear up-conversion.  In this section we will present the first ever 3D numerical simula-
tion of the fluorescence up-conversion process under high mutual angles of the fluorescence and gate beams. 
The search for optimal conditions for efficient and broadband up-conversion in spectroscopy is a subject of a 
live debate lasting at least since the begining of the century32–34,63. Here, broadband type I (ooe) and II (eoe) 
up-conversion processes in BBO crystal are compared. The fluorescence in range from 500 nm to 900 nm and the 
gate beam at 1020 nm were selected. For type I interaction the following geometry is assumed: θG = 31.9°, θF = 58° 
and ϕ = 90° (deff = 1.4 pm/V) with indexes G and F corresponding to the gate and fluorescence beams, respec-
tively. For type II: θG = 34.3°, θF = 53.4° and ϕ = 0° (deff = 1.18 pm/V). The mutual beam angles are 26° and 19°, 
respectively. The gate pulse with a Gaussian temporal profile (100 fs FWHM), energy of 11 μJ in a Gaussian beam 
was selected to simulate conditions of the experimental setup at IPC PAS63. The beam waist was assumed to be 
w0 = 0.5 mm. The fluorescence was modelled by a pulse with a super-Gaussian (flat top) spectrum ranging from 
510 nm to 865 nm. The fluorescence pulse was chirped with 50 fs2 to the duration of 100 fs (FWHM). Figure 10(a) 
presents the three interacting pulses (see also Supplementary Movie 2). The up-converted light arises where the 
gate pulse overlaps with the fluorescence. In the real life experiment the gating pulse has to be tilted to achieve 
high temporal resolution of the setup. In the present paper pulses without tilt are used to highlight basic proper-
ties of new propagation simulation method.

The spectral power density of the up-converted signal (ISum) normalized to the fluorescence spectral 
power density (IF) for three thicknesses of the BBO crystal and for the two phase-matching types are pre-
sented in Fig. 10(b). The inverse of this quantity is the “correction factor”34 for retrieving fluorescence from 
the up-converted light. The type II phase-matching delivers both: more efficiency and a broad spectrum 
up-conversion. This confirms its superiority over type I phase-matching for 1020 nm gate and is consistent with 
results obtained experimentally for 1340 nm gate34. Note, that for the 150 μm crystal the quantum up-conversion 
efficiency exceeds 0.1.

Figure 7.  Cross-Phase Modulation configuration.
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Degenerate four-wave mixing.  Degenerate four-wave mixing between pulses at 1550 nm in a box car con-
figuration is considered in the present section. Two narrowband pump pulses (super-Gaussian temporal profile 
of the sixth order with FWHM of 1 ps) are sent into a highly nonlinear 5 mm ZnSe crystal (n2 ≈ 10−18 m2/W64) 
together with a broadband (super-Gaussian spectral profile of the third order with FWHM of around 100 nm) 
signal pulse stretched to around 1.1 ps through introduction of 16 000 fs2 of dispersion.

In the case of collinear propagation the different spectral parts of the signal pulse constantly overlap with the 
two long pump pulses as all the pulses have the same group velocities. Through FWM a fourth (idler) pulse is 
created. The idler pulse is broadband and its phase is similar to that of the signal pulse with, however, an opposite 

Figure 8.  Change of the beam width caused by interaction with a pump beam for different pump pulse energies 
at three locations away from the interaction point (a). Top view of the probe pulse 4 mm away from the point 
of interaction with the pump pulse for pump energy of 0.1 μJ (b) and 6.4 μJ (c). Pulses are traveling towards top 
right corner of the figure.

Figure 9.  Dependence of beam waist and beam divergence on the pump pulse energy in the Cross-Phase 
Modulation simulation.
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sign (see inset on Fig. 11(b)). This feature of FWM is well known and it is some times used for phase imprinting 
especially for purposes of “time lens” realization65,66.

When the box car configuration is used the three input beams cross at the center of the crystal. At this point 
different temporal parts of the pulses overlap at different times. Fronts of the pulses interact, as they reach the 
crossing point (where the spatial overlap occurs) first. Then the temporal centers and finally tails of the pulses 
have the chance to interact.

The situation suggests that, as well as in the collinear situation, all the frequencies will be amplified in a similar 
way. This is, however, not the case because the idler pulse is generated mostly in the area where the other three 
beams overlap. Figure 11(a) presents the pulse intensities at the beginning of the sample, the idler pulse (red) 
appears in the overlap area of the pump (green and blue) and the signal (orange) pulses. At the beginning the 
front parts of the pulses have the highest overlap, therefore, the red frequencies from the signal pulse are ampli-
fied the most. Later on, the center frequency, and finally, the “bluest” frequency of the signal pulse is amplified 
as the center parts and tails of the pulses interact, respectively. The central parts of the pulses interact for the 
longest time, therefore, the spectrum of the idler pulse becomes narrower with respect to the collinear case (see 
Fig. 11(c)). Moreover, the generated idler pulse walks-off spatially in a constant manner as it has its direction 
defined trough the phase-matching relation (see also the Supplementary Movie 3). As a consequence the idler 
pulse becomes spatially stretched (see Fig. 11(a)) and tilted–with the pulse front perpendicular to the average 
propagation direction of all the pulses. Obviously, the overall conversion efficiency of the process will diminish 
when the angle between the beams is increased, as the interaction length is decreased (see Fig. 11(b) for the 
energy of the generated idler pulse). A simple non-resonant FWM was considered in our model. A premise, how-
ever, exists that the boxcar configuration should be used with caution also in resonant spectroscopic experiments. 
Proper simulation for particular problems can be performed when the 3D propagation model is combined with 
an appropriate model for the medium (spectroscopic sample) nonlinear response.

We estimate that performing an analogous simulation with FDTD would require ~3500 times more RAM 
(above 1 TB) and ~85 times more computational steps, which can translate into days of simulation instead of 
1 minute with the current approach.

Figure 10.  Spatial overlap of the interacting pulses (a), fluorescence (green), gate (red), up-converted light 
(blue). The normalized spectral power density of the up-converted fluorescence light transposed into the 
fluorescence wavelengths range (b). The type I (green) and type II (red) conversion is depicted for 50, 100 and 
150 μm of propagation in BBO.
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Conclusions
We have presented a novel method for numerical simulation of noncollinear pulse propagation and nonlinear 
interaction. We have found that the method works properly even for the mutual angles between the propagation 
directions of the interacting pulses as high as 140°, it is limited by unidirectional approximation. The techniques 
have been tested on linear and nonlinear propagation examples.

We have also presented a novel method for arbitrary 3D roation of the complex electric field. Our method, in 
comparison to interpolation presents a speed-up on a level of three orders of magnitude.

Our simulations shown that optical switching is possible through cross-focusing even for very short interac-
tion lengths i.e. even in the case of perpendicular pulse routes. We have shown that the type II phase-matching 
delivers both: more efficiency and a broad spectrum up-conversion and, thus, it is a preferable method for 

Figure 11.  Intensity distributions of the pump (blue and green), signal (orange) and idler (red) at the input 
(left) and output (right) of the 5 mm ZnSe crystal (a). Some idler is already generated at the input of the crystal 
in the area where beam tails overlap. The idler pulse energy as a function of the noncollinearity angle (b), phases 
of the signal (green) and idler (red) pulses are displayed in the inset. Spectra of the idler pulse for different 
values of the noncollinearity angle (c).
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fluorescence up-conversion in BBO. Finally, we have shown that increase of noncolinearity angle in degenerate 
four-wave mixing experiment can lead to spectral narrowing of the generated signal pulse.

Methods
UPPE in rotated coordinates.  It is convenient to use three Euler angles and to represent the actual pulse 
direction as a result of three consecutive rotations: around z′ axis by δ (Rz′(δ)), around y′ axis by θ (Ry′(θ)) and 
again around z′ by φ (Rz′(φ)). The “normalized frequency” (κ) and time (ζ = − τc

nR
) are used to simplify notation. 

Apart of the rotation, in the propagation model, the moving reference frame would be welcome67,68. The latter also 
requires the change of variables with “local normalized time” ζ′ = ζ − ηz, where η = c/nRv and v is the velocity of 
the window. The change of variables is thus defined by, first: rotation and then transition to a moving reference 
frame:

ζ η ζ
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′
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where a shorted notation: sα = sinα, cα = cosα have been used. With this in mind the derivative ∂z form UPPE 
can be expressed as:

ζ η∂ = ∂ ′∂ + ∂ ′∂ + ∂ ′∂ + ∂ ′∂ = ∂ + ∂ + ∂ − ∂ζ φ θ φ θ θ θ ζ′ ′ ′ ′ ′ ′ ′ ′x y z c s s s c c (9)z z x z y z z z x y z

which, after Fourier transform (∂ζ′ → −iκ′, ∂x′/y′ → ikx′/y′) becomes:

η κ∂ = + + ∂ + ′φ θ φ θ θ θ′ ′ ′ic s k is s k c i c (10)z x y z

To simplify the notation in this section UPPE (Eq. (1)) is written in the contracted form:

∂ = +A iK A iQ P (11)z s
p p

s
p p NL p,

with:
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s
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and PNL,p = epPNL where the envelope defined by Eq. (3). was used.
With the above described variable change rotated UPPE yields:

η κ∂ ′ = ′ − ′ − ′ − ′ ′ + ′ ′
θ

θ θ φ θ φ
θ

′A i
c

K c s c k s s k A
c

Q P1 ( ) 1
(13)z s

p p
x y s

p p NL p,

where κ′ ′ ′ ′ ′ ′ ′K Q A P k k/ / / ( , , )p p
s
p NL p

x y
,  represent rotated K Q A P/ / /p p

s
p

NL p, . The procedure for calculation of these 
variables is descried in next sections.

Transitions between coordinate systems.  In multi-pulse propagation simulations it is convenient to set 
the direction of one of the beams with respect to the simulation coordinates system and to define the direction of 
all the pulses with respect to the (often birefringent) crystal. We therefore give expressions for transitions between 
the three coordinate systems:

= Rx y z x y z( , , ) ( , , ), (14)B B B BS S S S

= Rx y z x y z( , , ) ( , , ), (15)C C C CS S S S

= Rx y z (x y z( , , ) , , ), (16)B B B BC C C C

where (xB, yB, zB), (xC, yC, zC), (xS, yS, zS) represents the system of the beam, crystal and simulation, respectively.
If the orientation of the beam with respect to the simulation coordinate system is known and defined by the 

angles φB, θB and δB, then:
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φ θ δ=R R R R( ) ( ) ( ), (17)BS z B y B z BS S S

where Ra(α describes rotation about axis a by an angle α. If the orientation of the crystal with respect to the sim-
ulation coordinate system is known and defined by the angles φC, θC and δC, then:

φ θ δ=R R R R( ) ( ) ( ), (18)CS z C y C z CS S S

and:

= −R R R (19)BC CS BS
1

Note that RBS and RCS represent rotations around axes of a system (xS, yS, zS) in which the very matrices are 
represented (xS, yS, zS form a identity matrix), thus, they have a simple classical form, similar to that of the upper 
left part of second transformation matrix in Eq. (7).

If, on the other hand, the crystal orientation with respect to the simulation frame (φC, θC and δC) and the beam 
orientation with respect to the crystal orientation (φ, θ and δ) is known, then:

φ θ δ= .R R R R R( ) ( ) ( ) (20)BS z y z CSC C C

Note that the matrix φ θ δR R R( ) ( ) ( )z y zC C C
 has a much more complicated form. This is a fact, as (xC, yC, zC) are 

not in general parallel to the unit vectors defining the simulation coordinate systems. These vectors are, however, 
available as the columns of RCS matrix and the form of the matrix defining a rotation about an arbitrary vector can 
be found in reference69.

Finally, if beam propagation direction (φB, θB, δB) and the material orientation with respect to the beam (φ, θ, δ)  
are known:

φ θ δ= −R R R Rz R( ( ) ( ) ( )) , (21)CS z y B BS
1

B B

and the directions of (xB, yB, zB) are the columns of RBS matrix. The matrix RBS and angles φ, θ, δ are required for 
calculation of the linear propagation phase term K'p as will be shown in the next section. The angles φ, θ, δ can be 
obtained from RBC

70.

Calculation of the linear phase term.  The iterative procedure of calculating kz
p for forward pulse propa-

gation has been described before1. In case of noncollinear propagation the procedure differs slightly.
First for each set of discrete simulation coordinates (κ′, kx′, ky′) a corresponding set of coordinates from the 

beam reference frame (κ, kx, ky) is calculated through rotation Eq. (14). This operation creates 3 matrices of κ, kx 
and ky values, each numbered by κ′, kx′ and ky′.

Then, matrices of θ(κ, kx, ky) and φ(κ, kx, ky)–angles defining the direction of propagation of each of the plane 
waves (defined by κ, kx, ky) with respect to the crystal orientation are initialized to given values defining the gen-
eral beam direction (θ0 and φ0). Again θ and φ are matrices numbered by κ′, kx′ and ky′, the corresponding values 
of κ, kx and ky are, however, known from the previous step.

At this point the iterative method starts. Based on the values of θ and φ the values of refractive index np = np(ῶ, 
θ, φ) are calculated (where ω ω= +κ



c
n R

R
 is the optical frequency). The refractive index can be calculated from 

Sellmeier formula and properties of refractive index ellipsoid71. Finally the length of the wavevector (| | =
ω∼

k p n

c
p ) 

and the linear phase term ( = | | − −k k kkz
p p

x y
2 2 2 ) can be calculated.

Now a set of wavevectors: k k k( , , )x y z
p  for all the plane waves describing the pulse in the beam reference frame 

is known. With the inverse of rotation Eq. (16) it is transformed to the crystal coordinate system k k k( , , )x
C

y
C

z
pC .

The values of θ and φ can now be updated through:

k k

k

k

k
arctan , arctan

(22)

x
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z
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2 2
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=
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


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and the next iteration can be started.
The iteration can be stopped when the change of kz

p value becomes negligible (around 20 iterations are suffi-
cient to obtain relative accuracy of 10−13 for standard birefringent materials).

Calculation of nonlinear coefficients.  The coefficient matrix Q′p(κ′, kx′,ky′) can already be calculated from 
Kp and Eq. (12). We will describe the treatment of the nonlinear coefficient P′NL,p on the example of second order 
nonlinearity.

Note first that in absence on nonlinearity birefringent media electric field vector of a particular mode (o, e, s, f) 
is uniquely defined by ῶ, kx and ky. The procedure for finding epC–the electric field vector direction in the crystal 
coordinate system–is known72,73 and implemented in Hussar software31. We will assume that this vector does 
not change due to nonlinearity. We have verified that, for a “worst case crystal” with linear properties of highly 
birefringent YVO 4, and Kerr constant of 10−18 m2/W characteristic for highly nonlinear ZnSe64 illuminated with 
intensity of 3400 GW/cm2–the damage threshold intensity of highly resistant BBO crystal for 25 fs pulses at wave-
length of 800 nm73, the actual change of ee components is around 1%. For more common conditions this error will 
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not exceed the one coming from currently obtainable accuracy of the refractive index measurements–10−4 (see 
refractive index measuremnt references in73). Total electric field can, therefore, be decomposed into:

= + = | | + | |E E E E e E e (23)C pC qC p pC q qC

with p≠q. Moreover, ω = | | =f k k E eE( , , ) / 1/x
p

x y
p

x
p

x
p and corresponding fy

p is also uniquely defined. Therefore, 
one can write:

= +f E f EE e e (24)
C

r
p

r
p pC

s
q

s
q qC

with r, s = x, y. Then, for a medium with second order nonlinearity characterized by nonlinear suscetibility χ(2):
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Which for SHG (q + q → p) and SFG (p + q → p) becomes:

ε χ ω χ χ= =k k f E e e e( , , ) , (26)x y s
q

s
q pC qC qC

0 deff
2 2

deff
(2)

and

ε χ ω χ χ= =k k f f E E e e e2 ( , , ) , , (27)x y r
p

s
q

r
p

s
q pC pC qC

0 deff deff
(2)

respectively, where χeff(ω, kx, ky) represents the effective nonlinear coefficients. We have verified that for a set of 
18 nonlinear crystals (including most popular like BBO, BiBO and LBO) if the x axis is selected along the polari-
zation vector for the wave propagating exactly along the z axis ( ω = =� �x̂ k kE ( , 0, 0)p

x y532nm ) the deviation of 
coefficients fs

p from unity is less than 10−2 for Gaussian beams with waist above 1.4 μm at 532 nm (divergence of 
~7°) and less than 10−3 for beam widths above 4.5 μm (divergence of ~2°). Note, therefore, that in practice it is 
safe to assume =f 1s

p  as current methods of measurements of χ(2) (or the experimentalists d tensor) give results 
with accuracy of 5–10% at best73.

Arbitrary Fourier rotation.  Here, we describe a convenient way of rotating an arbitrarily shaped pulse 
without the use of interpolation which is erroneous and time consuming when applied to a 3D case. The inspira-
tion for the method comes from the raster image rotation well known in computer graphics74 and its less known 
implementation with Fourier transform45. The method is based on shear operation which can be performed 
through 1D Fourier transformation of the electric field E(x, y, ζ) to a mixed space, multiplication by a phase factor 
and back transformation to (x, y, ζ). The phase factor has to depend linearly on the Fourier space variable as well 
as on one of the remaining real variables. Two shear operations are required for single rotations. The definitions 
of the operators and corresponding Fourier transform operations are listed in the Table 1.
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Table 1.  Shear and scaling operations used for 3D pulse rotation. The second column presents the geometrical 
shear operation matrices while the third column presents their analytical Fourier transform based counterparts.
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A traditional 3D rotation can be constructed from 3 rotations: Rz(ϕ)Ry(θ)Rz(δ). The three Euler angles corre-
sponding to consecutive rotations around z, y and z axes (by δ, θ and ϕ, respectively) are used to achieve complete 
freedom of pulse manipulation. Figure 4 presents an example - a temporal Gaussian pulse with Hermite-Gaussian 
spatial mode has been propagated in a linear regime after rotation. In our case, however, another construction will 
also have to be used i.e.: Rz(ϕ′)Rx(θ′)Rz(δ′) with second rotation performed around x axis. Therefore, the above 
described rotation can be constructed in the following way:

ζ ζ′ = ϕ ϕ

ϕ θ δ
� �������� �������� � ������� ������� � ������� �������

E x y T g T f T d T a T g T f SE x y( , , ) ( ) ( ) ( ) ( ) ( ) ( ) ( , , )
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k z k x

R

k y k x

R

, ,

( )

, ,

( )

, ,

( )

x y

z

x z

y

x y

z

with the parameter values as follows:

= = = = − =

= = − = = −

θ φ δ φ δ θ θ θ φ θ θ φ
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− −

− −
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It is worth to note that the order of the shear operations for each rotation can be reversed (eg.: 
→ ′ ′T g T f T f T g( ) ( ) ( ) ( ))k y k x k x k y, , , ,x y y x

. In such a case, however, the parameters for the shears as well as for the 
scaling, have to be recalculated. The calculation of the parameters Eqs (29) and (31) have been performed with 
help of a symbolic Matlab tool. The rotation procedure have been verified, first on the geometrical object (cuboid) 
with use of matrix operations (see second column in Table 1), then on the 3D matrix representing electric field 
with use of the Fourier transform operations.

The use of Fourier transform for rotations is limited to around 60° 45. Any rotation by angle α > 45° can be, 
however, decomposed into a trivial 90° rotation and rotation by 90° − α. Thus, to perform rotations by higher 
angle values we propose following procedure:

•	 if ϕ ∈ [0°, 45°] ∩ [315°360°[use standard rotation (second rotation around y axis).
•	 if ϕ ∈ [45°, 135°] set ϕ → ϕ − 90°, δ → δ + 90°, θ → −θ, perform second rotation around x axis.
•	 if ϕ ∈ [135°, 225°] set ϕ → ϕ − 180°, θ → −θ, use standard rotation.
•	 if ϕ ∈ [225°, 315°] set ϕ → ϕ − 270°, δ → δ + 270°, perform second rotation around x axis.

possibly, through adding or subtracting 360° bring δ back into a [0°, 360°[range, then:
•	 if δ ∈ [0°, 45°] ∩ [315°360°[use E − y, x, ζ)
•	 if δ ∈ ]45°, 135°] replace E(x, y, ζ) with E(−y, x,ζ)
•	 if δ ∈ ]135°, 225°] replace E(x, y, ζ) with E(−x, −y, ζ)
•	 if δ ∈ ]225°, 315°] replace E(x, y, ζ) with E(y, −x, ζ)

The scheme presented above can be used for θ ∈ [0°, 60°]. For θ > 60° a scheme involving 90° rotations in 
the x − ζ and y − ζ plane would be required. Small corner regions of the rotated surface are affected by artifacts 
arising from the periodic nature of the Fourier transform algorithm45. This, however, is a minor concern when 
the electric field is concentrated in the center of the x − y − ζ plane, which is the usual case with an optical pulse.

The speed advantage of the Fourier transform base rotation with respect to the 3D interpolation (MATLAB’s 
griddata function) for different grid sizes is presented in Fig. 3. The comparison have been performed on a single 
“interlagos” class node of the Hydra cluster of the Interdisciplinary Centre for Mathematical and Computational 
Modelling. For each grid size 10 rotations were performed. For a grid with a size of 4096 × 256 × 256 the rotation 
through interpolation takes 20 hours, while the same rotation performed with Fourier transform approach takes 
around 46 seconds (around 1500 times faster).

Data Availability
The datasets generated during the current study are available from the corresponding author on reasonable  
request.
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