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Avsec Z, et al. Query to reference single-cell integration with
transfer learning [preprint]. bioRxiv 2020 [accessed on 2020 Oct 8].
Available from: https://www.biorxiv.org/content/10.1101/2020.07.
16.205997v1.

30. Byrd JB, Greene AC, Prasad DV, Jiang X, Greene CS. Responsible,
practical genomic data sharing that accelerates research. Nat Rev
Genet [online ahead of print] 21 Jul 2020; DOI: 10.1038/s41576-020-
0257-5.

Copyright © 2020 by the American Thoracic Society

Epithelial Damage in Children with Sleep-disordered Breathing

Sleep-disordered breathing (SDB) in children is very common. The
hallmark symptom of SDB is snoring, and studies using parental
questionnaires have reported that over a third of preschool children
snore often or always (1). Snoring is also very common in older

children, affecting more than 15% (2). SDB forms a spectrum of
severity of disease from simple or primary snoring at the mild end to
obstructive sleep apnea (OSA) at the severe end. Sleep disruption,
hypoxia/hypercapnea, and/or swings in intrathoracic pressure are
the features of SDB believed to underpin the adverse cardiovascular
effects associated with this condition. All of these alterations lead to
disturbances in autonomic nervous system function and manifest as
increased sympathetic nervous system tone, increased sympathetic
responsiveness, and the presence of sympathetic–parasympathetic
imbalance. In adult patients with OSA, the causal association
between intermittent hypoxemia and elevated sympathetic nervous
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tone has now been conclusively and repeatedly demonstrated (3). In
addition to the autonomic nervous system changes, the systemic
inflammatory pathways activated in the presence of OSA induce
functional and structural disruption of the endothelium and lead to
alterations in vasomotor tone and promote vascular remodeling,
which is characterized by arterial stiffening and reduced vascular
compliance (4). As a result of increased blood flow velocity, epithelial
damage occurs. As a protective response, surface receptors and
adhesion molecules are upregulated on the plasma membrane of
platelets (5), which then adhere to the epithelial walls. In adults,
OSA as an independent risk factor for hypertension and reduced
nocturnal dipping of blood pressure, both of which are associated
with cardiovascular and cerebrovascular disease (6, 7).

Although studies have reported that primary snoring
in children is not associated with hypoxia, hypercapnia, or
sleep disruption, there are now numerous reports of adverse
cardiovascular effects, including elevated heart rate and blood
pressure and impaired cardiovascular control (8).

In this issue of the Journal, Kontos and colleagues (pp. 1560–1566)
provide new evidence that SDB in children leads to epithelial damage
(9). The study was designed to reflect clinical practice and recruited 30
children who were assessed by experienced pediatric ear, nose, and
throat clinicians as having SDB of a severity requiring treatment with
adenotonsillectomy. Control children (n=20) with no history of snoring
were recruited from the community. All children (mean age, 10 yr)
underwent overnight polysomnography to determine SDB severity as
defined by the obstructive apnea–hypopnea index (OAHI), and parents
completed a questionnaire about their child’s snoring at home. In the
morning, a fasting blood sample was taken, and whole blood platelet
aggregation was measured using impedance aggregometry.

As expected, the children recruited from the ear, nose,
and throat clinic had more severe SDB (7.96 16.9 events/h
[mean6 SD]) than the control group (0.66 0.5 events/h). The
children with SDB also had more frequent parental reports of
snoring. The study found that children with SDB had increased
platelet aggregation, and although OAHI was not correlated with
platelet aggregation measures, parental report of snoring was. It
must be noted that this relationship would not have reached
statistical significance if the data had been adjusted for multiple
testing, and further studies in a larger cohort are required to
confirm these findings. In addition, the study found that body mass
index (BMI) percentile was significantly correlated with parental
report of snoring, however it was not correlated with any measure
of platelet aggregation.

Under normal conditions, platelets do not adhere to epithelial
cells; however, if the blood vessel epithelial cells are damaged
because of increased blood flow velocity or reduced vascular
compliance, both of which increase shear stress, then platelet plugs
are formed at the site of epithelia damage. Thus, the findings of the
study by Kontos and colleagues (9) suggest that SDB in these young
children is associated with endothelial damage. The authors
speculate that this epithelial damage may be a sign of early vascular
aging, which may lead to cardiovascular and cerebrovascular
disease in adulthood.

As highlighted by the authors, the findings are concerning.
First, pediatric SDB is significantly underdiagnosed because many
parents and clinicians consider snoring to be benign, and second,
many of the children in the SDB group had only mild disease.
Third, the conventional measure of SDB severity as assessed by

polysomnography, the OAHI, was not correlated with platelet
aggregation measures. Other studies have also shown that SDB of any
severity, including primary snoring (OAHI of 1 event/h or less) is
associated with adverse cardiovascular outcomes (8). Importantly, a
recent study that followed-up children recruited from the community
found that primary school–aged children with moderate to severe
OSA at baseline had a 2.5-fold increased risk of hypertension and 1.3-
fold risk of reduced nocturnal dipping 10 years later (10). A second
paper from the same cohort of children reported that in 30% of
children, OSA spontaneously resolved (OAHI of less than 1 event/h)
(11). The 22% who continued to have OSA were predominantly male
and had a higher BMI z-score at baseline. Furthermore, the study
showed that more severe OSA in children older than 10 years of age
tended to persist, whereas OSA diagnosed in younger children was
less likely to correlate with the persistence of OSA. There is now
evidence that any improvement in SDB severity lowers blood pressure
(12) and improves autonomic control (13), and the reduction in
blood pressure is more marked in children with a higher BMI (14).
Further studies are required to ascertain whether platelet aggregation
measures are also normalized after the resolution of SDB.

The study by Kontos and colleagues (9) adds weight to the
growing body of evidence that supports the urgent need to screen
and treat all children for SDB as young as possible. Importantly,
those children who are overweight or obese require particular
attention and follow-up to reduce the chances of OSA persisting into
adulthood and increasing the risk of hypertension, cardiovascular
and cerebrovascular disease, and end-stage renal disease. n
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Supporting a Comprehensive International Approach to Global
Tuberculosis Eradication Is the Right Thing to Do

In recent years, we have seen several dramatic examples of localized
infectious disease outbreaks spreading regionally or globally and
requiring concerted international public health containment
responses.

The 2014–2016 Ebola outbreak led to immense suffering
and more than 11,000 deaths in West Africa and created
widespread concern about the potential of spread to other
regions, including the United States. Coordination and financial
support from international partners, including the United States
CDC, enabled West African governments and health officials to
use sound public health practices to stem the epidemic and
prevent widespread transmission in the United States and a
number of other countries (1). Earlier, the world came together
to fight polio, one of the most feared diseases of the 20th
century. Jonas Salk, who created the first polio vaccine, did
not patent it, asking, “Would you patent the sun?” (2). From
the distribution of the polio vaccine to current efforts to
eradicate the virus, the struggle against polio has become an
example of how a collective global effort can save lives and
reduce suffering. Now, the coronavirus disease (COVID-19)
pandemic is causing enormous disruption of health systems and
the global economy, highlighting again the importance of
infectious disease surveillance and the ability to respond collectively
and effectively. The message from these examples—and many
others—is clear: effective control of many public health threats
requires local, national, and international cooperation and
investment.

One challenge that has languished in the last half century is the
eradication of tuberculosis (3, 4). Although there has been a reliable
cure for the disease since the early 1950s and a robust epidemic
control strategy since the late 1950s, tuberculosis has persisted
globally and continues to kill more than 4,000 people every day.

This is because until recently, low- and middle-income countries
have not been supported to deploy the epidemic control strategies
that have been so successful in high-income settings (5). The largest
omissions have been in the areas of early identification of
tuberculosis (active case finding using highly sensitive tests and
contact investigation) (6, 7), treatment of active disease (prompt
initiation of effective medical regimens), infection control,
identification of exposed contacts, and treatment of tuberculosis
infection (8, 9). These are not so much knowledge gaps as they are
a lack of political will and funding (10).

In this issue of the Journal, Menzies and colleagues
(pp. 1567–1575) use a modeling approach to estimate the benefit
to the United States of a comprehensive global tuberculosis
eradication strategy (11). Such an approach, which is reflected in
the global End Tuberculosis Strategy—and was affirmed by the
Secretary of Health and Human Resources at the United Nations
High Level Meeting on Tuberculosis in 2018—is widely seen as the
only way to reduce tuberculosis incidence globally by 90% by 2035
(1, 12). Menzies and colleagues show that if the United States
directs funding toward an effective epidemic control strategy
globally—or even simply focuses on the five countries from which
the greatest number of non–U.S.-born tuberculosis cases arise in
the United States—two significant positive outcomes would result.
First, death and suffering would be reduced both in the United
States and globally. Second, there would be direct health-system
savings in the United States (between eight and 32 billion dollars
between 2020 and 2035). Their argument is both morally and
fiscally compelling (13).

The rationale for investing in local tuberculosis control by
supporting public health systems outside the United States is
straightforward (14). Because the majority of new tuberculosis
cases and infections in the United States are detected in people
born abroad (15), ensuring that other countries can build
tuberculosis prevention and control programs based on sound
medical science is of critical importance to tuberculosis eradication
at home. Menzies and colleagues add to previous analyses by using
global tuberculosis epidemiology and a sophisticated model to
demonstrate the merits of a shared epidemic control strategy
for stopping the epidemic. By highlighting dramatic differences
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