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ABSTRACT: Adversarial generative models are becoming an essential tool in
molecular design and discovery due to their efficiency in exploring the desired
chemical space with the assistance of deep learning. In this article, we introduce an
integrated framework by combining the modules of algorithmic synthesis, deep
prediction, adversarial generation, and fine screening for the purpose of effective
design of the thermally activated delayed fluorescence (TADF) molecules that can be
used in the organic light-emitting diode devices. The retrosynthetic rules are
employed to algorithmically synthesize the D−A complex based on the empirically
defined donor and acceptor moieties, which is followed by the high-throughput
labeling and prediction with the deep neural network. The new D−A molecules are
subsequently generated via the adversarial autoencoder, with the excited-state
property distributions perfectly matching those of the original samples. Fine
screening of the generated molecules, including the spin−orbital coupling calculation
and the excited-state optimization, is eventually implemented to select the qualified TADF candidates within the novel chemical
space. Further investigation shows that the created structures fully mimic the original D−A samples by maintaining a significant
charge transfer characteristic, a minimal adiabatic singlet−triplet gap, and a moderate spin−orbital coupling that are desirable for the
delayed fluorescence.

■ INTRODUCTION
Thermally activated delayed fluorescence (TADF) molecules
are widely known to be highly promising materials for making
high efficiency organic light-emitting diode (OLED) devi-
ces.1−11 In TADF, the nonemissive triplet excitons are
harvested via the reverse intersystem crossing (RISC),
provided the singlet−triplet gap is small enough so that the
RISC can be thermally activated. These molecular systems are
considered superior to conventional fluorescent and phosphor-
escent emitters, as they can simultaneously deliver enhanced
internal quantum efficiency and cost-effective molecular design
without the need for heavy atoms. However, the design of
TADF molecules is challenging since it appears to require the
optimization of two opposing quantities, under the approx-
imation that the lowest singlet (S1) and triplet (T1) states have
a charge transfer characteristic and are dominated by
transitions between the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital
(LUMO). The oscillator strength f, which corresponds to
the radiative rate and therefore lifetime of S1, is proportional to
the square of the transition dipole moment ∫ φa(r)rφb(r)d

3r,
where φa and φb are the wavefunctions of the initial and final
states, respectively. An efficient emission requires f to be
maximized. This points toward a strong overlap of the frontier
transition orbitals, i.e., HOMO and LUMO. On the other
hand, the energy gap (ΔEST) between S1 and T1 corresponds
to the exchange integral ∫ φa(r1)φb(r2)(1/r12)φa(r2)φb(r1)-

d3r1d
3r2, where φa and φb are the initial and final wave-

functions, respectively, and r12 is the interelectronic distance.
Qualified TADF candidates need a large RISC rate, which is
equivalent to minimizing ΔEST and effectively reducing the
overlap of frontier orbitals.
Extensive research in the past decade has been dedicated to

the exploration of molecular search space to deliver emitters
exhibiting strong delayed fluorescence. A large family of TADF
compounds has been experimentally12−14 and computation-
ally15,16 uncovered. Currently, most of the TADF architectures
comprise electron donor and acceptor moieties. The molecular
frontier orbitals, i.e., HOMO and LUMO, are deemed capable
of realizing an efficient separation through the donor−acceptor
dihedral twisting provided that the HOMO−LUMO transition
constitutes the major transition in the first excited state, which
is mostly the case in TADF. By having a small ΔEST, the donor,
acceptor, and linker are carefully modulated to keep an
acceptable oscillator strength and a large enough torsional
angle in the meantime. To date, most of the design of new
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materials has tended to focus on large-scale synthetic programs
and trial and error. Given the size of chemical space, this is

both inefficient and unlikely to lead to the development of
transformative new molecules as it will be influenced by human

Figure 1. Integrated modules for the generation and screening of TADF molecules. (a) Algorithmic synthesis for the D−A complexes using
combinatorial chemistry. (b) Deep prediction for the excited-state properties based on molecular ECFP fingerprints. (c) Adversarial generation for
the TADF chemical space. (d) Fine screening of the generated molecules based on high-throughput TDDFT calculations.
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bias. In recent years, approaches based upon high-throughput
screening and the relevant machine learning techniques have
been introduced to expand the possible TADF chemical
space.15,17,18 Goḿez-Bombarelli et al.17 built a virtual library
based on the donor−(bridge)n−acceptor architecture, where
time-dependent density functional theory (TDDFT) was used
to label the molecular excited-state properties and deep neural
network (DNN) model was employed to screen the unknown
candidates. Zhao et al.18 have implemented a high-throughput
virtual screening over the Cambridge Structural Database;
interestingly, novel TADF emitters that go beyond the
conventional donor−acceptor structure were identified leading
to diversified design rules for the delayed fluorescent
molecules.
Adversarial modeling is a rapidly developing field in machine

learning, and it has led to a variety of great successes when
applied to image generation, high-quality speech construction,
and text composition. It is also very attractive to generative
chemistry, since the method can learn the properties of specific
real training examples and then automatically generate new
synthetic entities with similar characteristics.19 Several groups
in industry and academia have reported the use of adversarial
models to inversely design the drug compound and
optoelectronic materials with desired pharmacological and
physicochemical properties20−26 by employing adversarial
autoencoder (AAE), generative adversarial network (GAN),
reinforcement learning assisted GAN, etc.
To further expand the TADF search space, this article

introduces an alternative framework by integrating algorithmic
synthesis, deep prediction, adversarial generation, and fine
screening for the efficient computational design of molecules
with preferentially excited-state properties. Given the empiri-
cally defined donor and acceptor fragments, we employ the
breaking of retrosynthetically interesting chemical substruc-
tures27 (BRICS) route to algorithmically synthesize 160671
D−A complexes. Part of the synthesized samples is selected for
TDDFT calculations and labeled with the excited-state
properties. We subsequently train a DNN model based on
the labeled samples. The developed model is then used to
predict the properties of generated molecules. The synthesized
D−A chemical space is then fed into an adversarial
autoencoder to generate molecules with similar photophysical
properties. Fine screening is finally implemented to screen the
generated samples for qualified TADF candidates, where
extensive quantum chemical computations are carried out with
the molecular excited-state geometry, spin−orbital coupling
(SOC), frontier orbital transition, and adiabatic gap being
examined. We find that the generated molecules can bear
almost the same distributions of the excited-state properties as
the original samples. Based on the structural similarity, the
adversarial generation can perfectly reproduce the charge-
transfer characteristics and the minimal adiabatic gap, pointing
toward a feasible design philosophy for the TADF emitter.
The paper is organized as follows. The second section is

dedicated to the methodology including the four modules we
have for the adversarial generation. The Results and Discussion
Section presents the empirical results and discusses the main
findings of our study. A conclusion is drawn in the end.

■ METHODOLOGY
Algorithmic Synthesis. As depicted in Figure 1, 100

acceptors and 100 donors are first empirically defined (Tables
S1 and S2 in the Supporting Information). The donors and

acceptors follow the molecular components used by Goḿez-
Bombarelli et al.17 The BRICS27 rule is employed to construct
the molecular fragment by introducing the link atoms
according to the BRICS chemical environments (16 environ-
ments in total). A D−A complex is then synthesized in
accordance with the retrosynthetic principle given the
constructed donor and acceptor fragments. For example, the
fragments shown in Figure 1a represent the 16 chemical
environments (aromatic ring system), which are indicated by
the link atoms at the respective reactive sites, where the
combination of the two fragments leads to a synthetic D−A
sample. In principle, there are a variety of combination modes
for TADF: D−A, D−A−D, A−D−A, D−bridge−A, etc. For
the sake of simplicity, we only build D1A1 molecules to
examine how much the adversarial generation profile can
mimic the original chemical space. In total, 160671 samples are
algorithmically synthesized.

Deep Prediction. A total of 13594 molecules within the
D1A1 chemical space are selected for the excited-state
calculations. The samples are first processed with RDKit for
the initial geometry optimization using the MMFF94 force
field.28 Ground-state geometries are reoptimized at the
B3LYP/6-31G(d,p) level using Gaussian 16.29 Excited-state
calculations are carried out with TDDFT/B3LYP/6-31G(d,p)
also using Gaussian 16. The excited-state properties at the S0
geometry, including the first three singlet and triplet excited-
state energies, the first three singlet oscillator strengths, and the
first singlet−triplet splitting, are exported for the sample
labeling. The 13594 labeled molecules are partitioned as 8/1/1
into training, validation, and test sets to be used for the DNN
training, hyperparametrization, and generalization, respectively.
The extended-connectivity fingerprints (ECFPs) are applied to
represent the topological characteristics of molecules.30 We
employ ECFP with 2048 bits for the machine learning training
input and define the iteration number as 2 during the
fingerprint generation. The network topology is set as Input-
2048-1024-Output, where the input is 2048, denoting the
molecular fingerprint, and the output is 1, representing the
regressed target. The learning rate and the maximal training
epoch are set to be 0.001 and 400, respectively. We take on an
early stop by selecting the epoch number for generalization
when the minimum of the loss function is reached in the
validation set. Ten single-target DNN models are trained for
each excited-state property and further employed as predictors
for the property forecasting of generated samples.

Adversarial Generation. In our study, an adversarial
autoencoder is chosen for molecular generation. The model
basically follows the generation frameworks in MOSES31 using
a simplified molecular-input line-entry system32 (SMILES) as
input and output representations. Two neural networks, an
encoder and a decoder, are utilized to map the high-
dimensional string-based data onto the low-dimensional
vector-based latent space. The encoder is a one-layer
bidirectional gated recurrent unit (GRU) of 256 hidden
dimensions, while the decoder is a three-layer GRU of 512
hidden dimensions. Note that a one-hot embedding layer is
applied before the encoder to process the character sequence
into digital information. Teacher forcing33 is employed in the
decoder to lower the autoencoder reconstruction loss. As
shown in Figure 1c, an auxiliary discriminator network is
trained to distinguish samples from a Gaussian prior
distribution and the latent space. The encoder then adapts
its latent space to minimize the discriminator’s predictive
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accuracy. The training process oscillates between training the
encoder−decoder pair and the discriminator until the latent
space and the Gaussian prior are indistinguishable. The latent
space is of dimension 128, and the discriminator network is a
two-layer fully connected neural network with 512 and 256
nodes, respectively. The training is performed for 60 epochs,
with a learning rate of 0.0005 and a batch size of 128.
Fine Screening. The generated samples from AAE are first

fed into the pretrained DNN predictors with the created ECFP
fingerprint to obtain the predicted excited-state properties. Part
of the samples is selected according to the initial screening
criterion where ΔEST < 0.4 eV, and the first singlet oscillator
strength S1_f > 0.02. We set the gap criterion relatively loosely
so that further screening can have more space to choose proper
candidates. Three hundred thirty-five molecules from the
62 276 generated samples are screened in this step. High-
throughput calculations are implemented for these 335
molecules with the same procedure as in the section of the
deep prediction to acquire the TDDFT properties at the S0
geometry. The same screening criterion (ΔEST < 0.4 eV and
S1_f > 0.02) is again applied to the 335 molecules based on the
“true” excited-state properties, where 67 samples are selected.
The selected samples are further processed with the SOC
calculations (at the S0 geometry), which are implemented with
ORCA34 at the level of B3LYP/def2-SVP. Forty-seven
candidates that satisfy the SOC conditions are finally picked
out for excited-state optimizations, where S1 and T1 geometries
are optimized at the B3LYP/def2-SVP level using Gaussian 16.
We also perform TDDFT with the Tamm−Dancoff approx-
imation35 (TDA) in the excited-state calculations to see
whether it can be helpful to reduce the problem of triplet
instability.36 More details in fine screening are discussed in the
following sections.

■ RESULTS AND DISCUSSION

Excited-State Property Predictions. Figure 2 presents
the DNN prediction qualities on the synthesized D1A1 test set

(10% of the 13594 labeled samples). The out-of-sample
precisions are acceptable for both singlet and triplet energies,
with the forecasting accuracy being gradually diminished for
the higher excited state (as seen in Table S3 in Supporting
Information). The observation is consistent with the previous
report37 where the prediction error is found to be larger as the
excited state goes higher. The prediction R2 of ΔEST is 0.8636
with the root-mean-square error (RMSE) being calculated as
0.0814 eV, which is comparable with the predictive error of the
TADF rate constant given in Goḿez-Bombarelli et al.17 The
forecasting of singlet oscillator strengths is less accurate,
especially for the higher excited states. Fortunately, the two
most important properties, the singlet−triplet gap and the first
singlet oscillator strength, are well fitted with R2 above 0.85,
demonstrating that the current model can capture the
characteristics of delayed fluorescence.
Note that as exhibited in Figure 2, there are a bunch of

“true” oscillators with strengths being zero while the predicted
values are not, implying a reduced forecasting accuracy for
molecules with a null f. We carefully checked the molecular
geometry and found that the samples with a null f mostly
possess a near-90° dihedral twisting between the donor and
acceptor. The weakened prediction quality can possibly be
attributed to the employed ECFP fingerprint, which is
essentially two-dimensional and thus cannot incorporate the
three-dimensional (3D) twisting information (known to be
important to the transition probability). The analysis indicates
that further improvement of the excited state forecasting
accuracy may necessitate the 3D information to be encoded in
the model.
To examine the feasibility of training set size in predicting

the out-of-sample properties, we vary the training set size for
the model training and apply the model to predict the same
test set. The prediction R2 is found to converge for both S1_f
and ΔEST (Figure S1 in the Supporting Information), implying
that the current labeled data set is sufficient to train the model
with acceptable generalizability.

Figure 2. DNN predictions of the excited-state properties of TADF molecules. S1, S2, S3, T1, T2, and T3 represent the first three singlet and triplet
excited-state energies, respectively, while f denotes the corresponding oscillator strength and ΔEST the first singlet−triplet gap. Note that the true
data indicate the high-throughput calculations of molecular properties. The blue line is the identity mapping. The singlet and triplet energies and
the energy difference are in the unit of eV, while f is dimensionless.
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Adversarial Generation Profiles. A total of 160671
original D1A1 molecules are put into AAE for the generative
training. The generation performances are measured in terms
of validity, novelty, and uniqueness. Validity represents the
fraction of molecules within the generated samples that can
pass the RDKit’s sanitization check so that the atomic valency
and the consistency of bonds in aromatic rings can be
maintained. Novelty is the fraction of the generated molecules
that are not present in the training set. Uniqueness gives rise to
the percentage of the generated samples that are unique. We
compute the overall generation efficiency for molecules that
simultaneously fulfill the above three criteria, given different
generation sizes. From Table 1, the validity and novelty do not

vary significantly with the generation size, while the uniqueness
is found to decline when more molecules are generated. The
overall generation efficiency reaches a level of 0.3114 when 200
K samples are produced, which is equivalent to 62 276
molecules being effectively generated.
The internal diversity of both the original and generation

sets (160671 original and 62276 generated) are computed to
examine how similar the molecules are in each (see
computational details in the Supporting Information). The
IntDiv1 and IntDiv2 for the original samples are 0.8338 and
0.8233, respectively, and those for the generated samples are
0.8243 and 0.8146, respectively. The computed diversity is
significant and comparable with the diversity measure in
Polykovskiy et al.,31 demonstrating that both the synthesized
and generated molecules are fully diversified.
We employ the pretrained DNN models to predict the

excited-state properties for both the original and generated
D1A1 molecules. The property distributions are shown in
Figure 3a. Perfect matches between the original and generated
distributions are found, indicating a strong structural similarity
of the produced D1A1 space with the synthesized one. Both
original and generated S1 energies are roughly in the range of
2.5−4.5 eV, covering the full visible spectrum for the light
emission. All of the singlet oscillator strengths tend toward a
zero-side distribution. The singlet−triplet gap virtually follows
a normal distribution, with a rather small proportion of
molecules satisfying the gap criterion for TADF (usually 0.25
eV is the accepted upper limit3). We also inspect the synthetic
accessibility (SA)38 based on the fragment contributions and
the molecular complexity. Both the original and generated
samples bear similar distributions of SA, as seen in Figure 3b. A
major peak at around 2.3 is observed, demonstrating that the
D1A1 samples possess a molecular synthesizability approach-
ing the catalog molecules.38

Fine Screening of TADF Candidates. Given the
generated D1A1 molecules, we further take a series of fine
screening procedures to see whether the qualified TADF

candidates can be selected from the generation space. The
initial screening is performed according to the predicted
excited-state properties of generated samples. By applying a
loose criterion (ΔEST < 0.4 eV and S1_f > 0.02), 335 samples
are selected from the 62276 generated molecules. The selected
samples are subsequently processed with DFT calculations (at
the level of B3LYP/6-31G(d,p)) to obtain the ground-state
geometry, based on which the excitation energies, oscillator
strengths, and the energy difference are computed at the level
of TDDFT/ B3LYP/6-31G(d,p). Further screening of these
335 samples with the “true” excited-state properties leads to 67
qualified candidates that can meet the same selection criterion.
We note the discrepancy in the number of molecules satisfying
the criterion based on the DNN-predicted and TDDFT-
calculated properties. A prediction RMSE of 0.1888 for ΔEST
and 0.1053 for S1_f are found for the generated molecules,
which is slightly higher than that obtained from the test set in
the original space (0.0814 for ΔEST and 0.0964 for S1_f).
Additional examinations show that the structural similarity in
terms of ECFP is limited between the original and generated
space (see Tanimoto similarity analysis in the Supporting
Information), which may partially explain the lowered
predictive accuracy. The observation is consistent with the
findings in Popova et al.,39 where the prediction and generative
model are performed in a separated manner with reduced
forecasting precisions being visualized for novelly generated
compounds. We, therefore, claim that the current exercise for
property predictions within the generated space is reasonable
and sufficient for the screening procedure to be performed.
Considering the property predictions in other generative
models,40,41 further enhancement of the forecasting efficiency
may entail a prediction−generation model integration, which is
subject to future research.
SOC calculations are performed on the S0 geometry for

those 67 generated molecules with small enough vertical gaps.
Both T1−S1 and T1−S0 SOC constants are computed. We
found that most candidates have T1−S1 coupling below 5
cm−1, which is consistent with the observation in Zhao et al.18

indicating that the variability of coupling between different
multiplicities might be less important than the adiabatic gap
explored later. The T1−S0 SOC constants are shown to be
relatively large (part of the results are given in Table 2 for the
finally selected candidates). Since the T1−S0 coupling is
responsible for the nonradiative decay of the triplet, we set the
upper limit of T1−S0 SOC to be 15 cm−1 to suppress the
possible nonradiative decay so that the RISC can be promoted.
The lower limit of the T1−S1 coupling is prescribed to be 0.1
cm−1 so that a non-negligible intersystem SOC is guaranteed.
Such screening further leads to 47 candidates for which the
excited-state optimizations are performed.
The geometry optimization at the excited state is conducted

at the level of TDDFT/B3LYP/def2-SVP. We notice that the
selection of density functionals may give rise to a significant
diversity of the computed excitation energies. The employment
of usual exchange−correlation (XC) functionals with lower
Hartree−Fock (HF) fraction, such as PBE0 and B3LYP, leads
to an underestimation of the excitation energies,42 while
functionals with a higher HF fraction, such as M062X,
overestimate the excitation energies and give an enlarged
singlet−triplet gap.43 Experimental identification of the
excitation energy is often done via the spectroscopic
measurement, but the situation of the experiment−theory
matching depends on the individual molecule. Furthermore,

Table 1. Performance Metrics for the Adversarial
Autoencoder Model Applied on the D1A1 Data Set:
Fraction of Valid, Novel, Unique Molecules and the Overall
Generation Efficiency Fulfilling the above Three Criteria
Given Different Generation Sizes

generation size validity novelty uniqueness overall efficiency

1 K 0.8280 0.6490 0.9990 0.4750
10 K 0.8079 0.6587 0.9671 0.4460
100 K 0.8135 0.6503 0.8070 0.3555
200 K 0.8143 0.6537 0.7228 0.3114
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the empirical ΔEST values are known to have significant
experimental uncertainty.17 We hereby claim that we only deal
with the B3LYP-derived excited-state properties in this article,
by particularly focusing on the reproducibility of the generative
algorithm for molecular electronic structures.
S1 and T1 geometry optimizations for the 47 candidates are

implemented in the TDDFT context. We also test the effect of
TDA since it is believed to produce a more accurate triplet
state.36 The adiabatic singlet−triplet gaps with and without
TDA are computed, with the scattered plot being shown in
Figure S3 (in Supporting Information). It is observed that the
B3LYP-TDA gap is mostly smaller than the B3LYP gap,
demonstrating that the screening based on the B3LYP gap
would be reasonable as a more accurate description of excited
states can lead to even smaller gaps, which further justifies the
selection criterion. Table 2 exhibits the samples with B3LYP
gaps smaller than 0.25 eV, where the TDA gaps, T1S1 and T1S0
SOC constants, are displayed as well. These 19 molecules can
be considered as the qualified candidates that are eventually
selected from the generation space.
To validate that the delayed fluorescence originates from the

D−A molecular design in the generation space, we carefully
examine the molecular structure for the 19 TADF candidates,
as shown in Figure 4. For some samples, either acceptor or
donor fragment already exists in the empirical donor/acceptor

lists (Tables S1 and S2); however, the molecule holds the
newly created donor or acceptor respectively. For example, in
mol_8, a phenothiazine-like fragment serves as a known donor,
which is connected to a novel acceptor. In another case, both
fragments appear in the empirical list but simultaneously
belong to the donor family or the acceptor family, such as
mol_6, mol_13, and mol_15. The results indicate that the
existing donor/acceptor lists are extensible based on the
adversarial generated molecules.
It should be noted that the designed TADF candidates are of

essentially D−A structure, since these molecules are screened
out of the generation space, which is structurally similar to the
synthesized original space, as a result of the adversarial
generation algorithm. This actually imposes some limitations
to the design strategy that we can only find molecular types
that are predefined within the original space. For the current
design case, multiple potential TADF configurations, e.g.,
multiresonance and so on, are therefore missing. The issue can
be possibly resolved by more advanced algorithms where the
transfer of chemical space can happen during the model
optimization, which is subject to future research.
The frontier orbital analysis (calculated at the level of

B3LYP/def2-SVP) is also performed for the 19 screened
candidates at the optimized S0, S1, and T1 geometries, with two
typical examples shown in Figure 5. It is clearly seen that the

Figure 3. (a) Distributions of the excited-state properties of the original and generated D1A1 molecules. Note that both the original and generated
properties are computed via the DNN model predictions. The singlet and triplet energies and the energy difference are in the unit of eV, while f is
dimensionless. (b) Distributions of synthetic accessibility of the original and generated D1A1 molecules.
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HOMO and LUMO orbitals are efficiently separated in both
the ground and excited states, which is consistent with the
minimal adiabatic gaps computed for these TADF molecules.

The S1 and T1 geometries are similar to each other, but the
donor−acceptor dihedral twisting is notably enlarged (the case
is more significant in mol_11). The observation is in line with

Table 2. Adiabatic Singlet−Triplet Energy Gaps Computed via the B3LYP Functional with and without TDA and the T1S1 and
T1S0 SOC Constants at the S0 Geometry for the Eventually Screened TADF Candidates

name SMILES
B3LYP gap

(eV)
B3LYP-TDA gap

(eV)
T1S1 SOC
(cm−1)

T1S0 SOC
(cm−1)

mol_1 c1cnc2c(c1)[SiH2:2]c1ccnc(-n3c4ccccc4c4ccncc43)c1-2 0.1333 0.0106 0.3239 1.8620
mol_2 O=C(Cc1cccc2[nH]c3[nH]c4ccccc4c3c12)c1cccc2c1[nH]

c1ccccc12
0.0163 0.0117 1.8729 7.1232

mol_3 c1ccc2c(c1)[nH]c1c2c2ccccc2n1-c1cc2[nH]c3ccccc3c2cn1 0.1223 0.0980 0.1136 0.7360
mol_4 c1ccc2c(c1)[nH]c1ccc3c(c4ccccc4n3-c3cncc4[nH]c5ccccc5c34)c12 0.1759 0.0798 0.1606 0.1746
mol_5 c1cc2c(cc1)[nH]c1ccc3c(c4ccccc4n3-c3cccc4c3ncc3ccccc34)c12 0.0227 0.0144 0.1703 1.3593
mol_6 c1ccc2c(c1)[nH]c1ccc3c(c4ccccc4n3-c3ccc4c5ccccc5c5nccnc5c4c3)

c12
0.0130 0.0117 0.1225 1.0532

mol_7 c1ccc2c(c1)-c1cnc(-n3c4ccccc4c4ccccc43)cc1c1nccnc21 0.0995 0.0926 0.1396 1.6184
mol_8 O=C(c1ccc(C=O)c(-c2ccc3c(c2)Nc2ccccc2S3)c1)c1ccccc1 0.0483 0.0391 0.1507 8.6579
mol_9 O=Cc1ccc(-c2cccc3c2c2ccccc2n3-c2ccccc2)c(C#N)c1C#N 0.1280 0.0367 0.2102 0.7563
mol_10 c1cnc2c(c1)-c1ccc(-n3c4ccccc4c4c5ccccc5[nH]c43)cc1c1[nH]

cnc21
0.0082 0.0078 0.2818 0.8635

mol_11 O=C(c1ccc(-n2c3ccccc3c3nc[nH]c23)cc1)C(F)(F)F 0.0070 0.0065 0.1691 1.7473
mol_12 N#Cc1ccc(C=O)c(-c2ccc(-n3c4ccccc4c4ccccc43)cc2)c1 0.0084 −0.0066 0.1288 9.6389
mol_13 CN1c2ccccc2Sc2ccc(-c3cccc4Nc5ccccc5c(=O)c34)cc21 0.2109 0.1751 0.5778 6.8733
mol_14 c1ccc2c(c1)[nH]c1ccc3c(c4ccccc4n3-c3cnc4ncccc4n3)c12 0.0239 0.0204 0.1868 1.7842
mol_15 CN1c2ccccc2Sc2cc(-c3cccc4[nH]c5ccccc5c(=O)c34)ccc21 0.1956 0.1594 0.8683 14.9823
mol_16 O=Cc1ccccc1N(c1cccc2[nH]c3ccccc3c12)c1ccccc1 0.1579 0.1168 0.4755 6.4195
mol_17 c1ccc2c(c1)[nH]c1c2c2ccccc2n1-c1ncc2c(c1)[SiH2:2]c1cnccc1-2 0.0761 0.0616 0.1962 0.7084
mol_18 CC(=O)c1ccc(-c2cccc3c4ccccc4c4nc[nH]c4c23)c(C#N)c1 0.2286 0.1081 0.1208 1.2150
mol_19 c1cc2c(cn1)-c1c(ccnc1-n1c3ccccc3c3ccccc31)c1ccccc12 0.2335 0.0899 0.5408 1.8974

Figure 4. Generated molecules that fulfill the fine screening criteria with satisfactory quantum chemical properties for the delayed fluorescence.
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the principal TADF designing rule44−46 where a twisted D−A
structure is built to realize the reduced orbital overlap and the
minimized ΔEST.

■ CONCLUSIONS

The article has proposed an alternative design route for the
TADF molecules beyond the current D−A combination and
high-throughput screening. The integrated modules combining
the algorithmic synthesis, deep prediction, adversarial gen-
eration, and fine screening, essentially provide a comprehensive
paradigm for synthesizing and generating molecules with
expected excited-state properties. The simple donor−acceptor
design is adopted where the original D1A1 space is synthesized
according to the BRICS rule. Nearly 14,000 samples are
labeled via high-throughput calculations for the purpose of
DNN model training and property prediction. Satisfactory
forecasting precisions are obtained with deep learning,
especially for the most important factors, the oscillator strength
and the singlet−triplet splitting that to a large extent prescribe
the TADF process. Adversarial autoencoder is applied to
generate novel structures in terms of the molecular SMILES
that can mimic the original D1A1 samples. With the assistance
of DNN predictions, the distributions of excited-state proper-
ties for the generated molecules are found to perfectly match
those of the original samples. Further analysis shows that the
synthetic accessibility for both the original and generated
D1A1 molecules is at a reasonable level, which facilitates
material synthesis and device fabrication. By performing the

fine screening on the generated chemical space, a bundle of
qualified TADF candidates is eventually selected with minimal
adiabatic gaps and moderate spin−orbital couplings. In
addition to the similar structures, the adversarial generation
algorithm can well reproduce the charge-transfer characteristics
and the donor−acceptor dihedral twisting at the excited state,
indicating a strong potential of the generative model in
designing materials with expected photophysical mechanisms.
Our research opens another pathway to the TADF

molecular designs. Given the generative model and the original
molecular space, the methodology can be easily applied to
generate other types of TADF molecules, e.g., molecules with
more complex D−A structures, molecules with resonant
structures,47 and molecules with the negative singlet−triplet
gap48 as recently introduced. The model can be further
improved by incorporating reinforcement learning,39,49,50 with
which a biased property distribution can be generated and
moved along the preferred direction. We expect that the
current framework can lead to a significant enrichment of the
TADF library and a higher vision for “design as we desire” that
is possibly realizable in the near future.
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