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ABSTRACT Infections in immunocompromised patients that are caused by extensively
drug-resistant (XDR) Acinetobacter baumannii strains have been increasingly reported
worldwide. In particular, carbapenem-resistant A. baumannii strains are a prominent
cause of health care-associated infections. Here, we report draft genome assemblies for
two clinical XDR A. baumannii isolates obtained from hospitalized patients in Pakistan.

Acinetobacter baumannii, a Gram-negative opportunistic pathogen of the Moraxel-
laceae family, can carry multiple antimicrobial resistance (AMR) determinants.

Infections and outbreaks caused by multidrug-resistant (MDR) or extensively drug-
resistant (XDR) A. baumannii strains in immunocompromised patients have been
increasingly reported worldwide (1), with isolates often belonging to international
clone 2/sequence type 2 (ST2) (2). Carbapenem-resistant A. baumannii (CRAB) strains
are a significant cause of health care-associated infections in Pakistan, with various
prevalence rates (62% to 100%) (3). The most common �-lactamases in CRAB strains are
acquired (e.g., blaOXA-23, blaOXA-40, blaOXA-58, blaOXA-143, and blaOXA-235) and intrinsic
(e.g., blaOXA-51 and blaOXA-69) carbapenem-hydrolyzing oxacillinases (4).

Draft genomes are reported here for two clinical XDR A. baumannii isolates obtained
from urine (CFSAN059604, isolated in 2004) and throat (CFSAN059618, isolated in 1998)
specimens from hospitalized patients in Pakistan. Patient samples were inoculated onto
nonselective (e.g., blood agar) and differential (e.g., MacConkey agar) plates and
incubated for 24 to 48 h at 37°C. API 20E and Vitek 2 (bioMérieux) systems were used
for species identification and confirmation, respectively. Susceptibility testing against
clinically relevant antimicrobials was performed by conventional broth microdilution (5)
following CLSI and EUCAST guidelines and breakpoints (5–7). The two isolates were
resistant to 17 antibiotics with the same MICs, as follows: �128 �g/ml for pipera-
cillin-tazobactam; �64 �g/ml for cefotaxime and aztreonam; �32 �g/ml for ampi-
cillin, ceftriaxone, and tetracycline; �16 �g/ml for cefoxitin, ceftazidime-avibactam,
gentamicin, and chloramphenicol; and �8 �g/ml for cefazolin, doripenem, mero-
penem, ertapenem, ciprofloxacin, levofloxacin, and trimethoprim-sulfamethoxazole.
CFSAN059604 and CFSAN059618 were also resistant, but with different MICs, to
ampicillin-sulbactam (�32 and �16 �g/ml, respectively), ceftazidime (�128 and �16
�g/ml, respectively), cefepime (�32 and �16 �g/ml, respectively), and imipenem (�8
and �16 �g/ml, respectively). Both isolates were susceptible to colistin (�2 �g/ml) and
minocycline (�4 �g/ml). Finally, CFSAN059604 and CFSAN059618 had markedly dif-
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ferent resistance profiles for amikacin (�2 and �64 �g/ml, respectively) and tobramy-
cin (�1 and �16 �g/ml, respectively).

Isolates were grown overnight in lysogeny broth (Lennox), and DNA was extracted
using the DNeasy blood and tissue kit (Qiagen). Libraries were prepared using the
Nextera XT DNA library preparation kit and sequenced on a MiSeq (CFSAN059618) or
NextSeq (CFSAN059604) sequencer (Illumina), with paired-end sequencing technology
(2 � 250-bp and 2 � 150-bp sequencing, respectively). Minimum sequence quality was
represented by average coverage greater than 50� and Q scores for reads 1 and 2
greater than 30 (8). Absence of contamination was confirmed with Kraken (9). Default
parameters were used unless otherwise noted. De novo assemblies were obtained with
Shovill v0.9 (https://github.com/tseemann/shovill), available in the GalaxyTrakr pipeline
(10). The “trim reads” option was selected, and 500 bp was set as the minimum contig
length. Draft genomes were annotated using the NCBI Prokaryotic Genome Anno-
tation Pipeline (11). Table 1 lists the number of reads, number of contigs per assembly,
genome size, and GC content for each isolate. The isolates were assigned to ST2
(CFSAN059604) and ST23 (CFSAN059618), based on the multilocus sequence typing
Pasteur scheme (https://pubmlst.org/abaumannii). NCBI Pathogen Detection (PD)
(https://www.ncbi.nlm.nih.gov/pathogens) was used to identify 14 (CFSAN059604) and
8 (CFSAN059618) AMR genes. NCBI PD uses AMRFinderPlus to assign the most specific
AMR protein by using a hierarchy of gene families/symbols/names (https://www.ncbi
.nlm.nih.gov/pathogens/antimicrobial-resistance/AMRFinder). Results are available in
Table 1 and from the NCBI PD website (CFSAN059604 and CFSAN059618).

The described draft genomes will be useful in comparative genomic analyses of
A. baumannii strains from different regions and clinical settings. These data can also
provide phylogenetic insights into the emergence of XDR A. baumannii strains and
support epidemiological investigations of outbreaks.

Data availability. The complete genome sequences of A. baumannii CFSAN059604
(SRA number SRR8837010) and CFSAN059618 (SRA number SRR8837150) are avail-
able in GenBank under accession numbers SSMO00000000 and SSMN00000000, re-
spectively (first versions).
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