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Abstract: Winter’s advent invokes physiological adjustments that permit temperate 

ectotherms to cope with stresses such as food shortage, water deprivation, hypoxia, and 

hypothermia. We used liquid chromatography (LC) in combination with tandem mass 

spectrometry (MS/MS) quantitative isobaric (iTRAQ™) peptide mapping to assess 

variation in the abundance of hepatic proteins in summer- and winter-acclimatized wood 

frogs (Rana sylvatica), a northerly-distributed species that tolerates extreme dehydration 

and tissue freezing during hibernation. Thirty-three unique proteins exhibited strong 

seasonal lability. Livers of winter frogs had relatively high levels of proteins involved in 

cytoprotection, including heat-shock proteins and an antioxidant, and a reduced abundance 

of proteins involved in cell proliferation, protein synthesis, and mitochondrial function. 

They also exhibited altered levels of certain metabolic enzymes that participate in the 

biochemical reorganization associated with aphagia and reliance on energy reserves, as 

well as the freezing mobilization and post-thaw recovery of glucose, an important 

cryoprotective solute in freezing adaptation. 

Keywords: anuran; hibernation; LC-MS/MS; iTRAQ™; metabolism; seasonal variation 

 

OPEN ACCESS



Int. J. Mol. Sci. 2011, 12             

 

 

8407

1. Introduction 

Ectotherms inhabiting temperate regions must cope with seasonal variation in resources and 

environmental conditions that challenge their survival. Amphibians that hibernate terrestrially must 

contend with prolonged aphagia, limited availability of environmental water, impairment of gas 

exchange, and potentially extreme hypothermia that may cause tissues to freeze. Physiological 

adaptation to these stresses commonly requires changes in gene expression that tune the quantities of 

various proteins to maintain cellular integrity and regulate metabolic processes. Such alterations 

become conspicuous in the proteome, and quantification of these changes can provide important 

insights into the adaptive mechanisms functioning at multiple levels of biological organization. 

In this profiling study, we used liquid chromatography (LC) in combination with tandem mass 

spectrometry (MS/MS) quantitative isobaric (iTRAQ™) peptide mapping to investigate seasonal 

variation in the abundance of proteins in liver of the wood frog, Rana sylvatica. While overwintering 

beneath duff in upland forests, these frogs survive many months without feeding and must endure 

dehydration and the freezing of up to 65–70% of their body water [1]. Our aim in this project was to gain 

insights into the macromolecular responses contributing to winter survival in this freeze-tolerant species. 

2. Results and Discussion 

Considering that the genome for R. sylvatica has not been published, we used a highly conservative 

criterion for identifying proteins at the 95% level of confidence. A total of 1406 distinct peptides were 

identified from 1860 spectra, and the peptides were matched to an initial set of 340 proteins. We 

discarded any protein whose iTRAQ™ ratio (a relative measure of abundance) varied by ≥20% between 

the two members comprising each seasonal group. Of the remaining 67 proteins, we considered further 

only those proteins that differed in abundance between summer and winter groups by at least 20%, the 

combined maximal error rate of the iTRAQ™ technique used in conjunction with MALDI ToF/ToF [2]. 

Identification of the remaining 37 proteins was aided by the diverse taxonomic representation in the 

NCBInr database (including several species of amphibians, such as Xenopus spp., for which a sequenced 

genome is available) and by the evolutionary conservation of many of the proteins of interest, such as 

those of the major metabolic pathways [3]. Nevertheless, because the functions of homologous proteins 

are not necessarily identical, we deem our conclusions tentative until confirmed by more targeted 

methodologies. In four cases, distinct peptide fragments from a given protein were matched to two 

database entries; consequently, we discarded the duplicate exhibiting the lower of the two ratios. 

Of the remaining 33 unique proteins exhibiting marked seasonal variation, most (19; 58%) were 

reduced in abundance in winter relative to summer. This group included mitochondrial enzymes as 

well as proteins involved in cell growth and proliferation (Table 1). The smaller set of up-regulated 

proteins contained relatively few metabolic enzymes and was dominated by proteins important for 

preserving cellular integrity and function (Table 2).  
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Table 1. Proteins identified from extracts of liver from Rana sylvatica that were more 

abundant in summer than in winter. 

GI Protein AR 1 Species Function 

129730 protein disulfide isomerase precursor 2.34 Oryctolagus cuniculus protein folding 

9755362 acetaldehyde dehydrogenase 2.28 Mus musculus alcohol metabolism 

85719973 peptidylprolyl isomerase B  2.22 Ictalurus punctatus protein folding 

57087309 mRNA transport regulator 3 1.74 Canis familiaris protein synthesis 

47498070 aspartate aminotransferase 1 1.68 Xenopus tropicalis amino acid metabolism 

146415164 RNA recognition motif (hypothetical) 1.65 Pichia guilliermondii protein synthesis  

5921957 carbamoyl-phosphate synthase I 1.53 Rana catesbeiana urea metabolism 

148226795 binding immunoglobulin protein (BiP) 1.51 Xenopus laevis protein folding/stress 

121594245 protein DUF891 1.51 Acidovorax sp. unknown 

47210694 glutamate dehydrogenase 1 1.49 Tetraodon nigroviridis nitrogen metabolism 

45383354 histidine ammonia-lyase 1.38 Gallus gallus amino acid metabolism 

124266729 acetyl-CoA C-acetyltransferase 1 1.34 Methylibium petroleiphilum protein/lipid metabolism

58332740 aconitase 2 1.33 Xenopus tropicalis TCA cycle 

148230238 homogentisate 1,2-dioxygenase 1.32 Xenopus laevis amino acid metabolism 

126632707 long-chain acyl-CoA dehydrogenase 1.26 Danio rerio fatty acid metabolism 

50417404 alanine-glyoxylate aminotransferase 1.24 Xenopus laevis amino acid metabolism 

56377788 elongation factor 1-α 1.22 Pelodiscus sinensis protein synthesis 

89886140 phosphoenolpyruvate carboxykinase 1 1.21 Xenopus tropicalis gluconeogenesis 
1 AR, abundance ratio: protein abundance in summer frogs relative to that in winter frogs. 

Table 2. Proteins identified from extracts of liver from Rana sylvatica that were more 

abundant in winter than in summer. 

GI Protein AR 1 Species Function 

147901600 glycogen phosphorylase 2.04 Xenopus laevis glycogen catabolism 

145545139 protein kinase C 1.72 Paramecium tetraurelia signal transduction 

148227386 pyruvate carboxylase, gene 1 1.67 Xenopus laevis gluconeogenesis 

134254218 pyruvate carboxylase, gene 2 1.51 Xenopus tropicalis gluconeogenesis 

118083730 1,4-α-glucan branching enzyme 1.42 Gallus gallus glycogen synthesis 

63146078 heat shock protein 70 (hsp70) 1.34 Oxyuranus scutellatus stress response 

2196882 heat shock cognate protein 70 (hsc70) 1.32 Pleurodeles waltl protein folding 

148225037 pyruvate kinase type M2 1.32 Xenopus laevis glycolysis 

147902026 peroxiredoxin 6 1.30 Xenopus laevis antioxidation 

91084329 protein phosphatase-1 α 1.29 Tribolium castaneum glycogen metabolism 

148234835 β-ureidopropionase 1.27 Xenopus laevis amino acid metabolism 

54020777 hydroxyacyl-CoA dehydrogenase 1.24 Xenopus tropicalis fatty acid metabolism 

148224534 Arp2/3, subunit 2 1.24 Xenopus laevis actin polymerization 

148223127 glyceraldehyde-3-phosphate 

dehydrogenase 

1.21 Xenopus laevis glycolysis;  

non-metabolic processes 
1 AR, abundance ratio: abundance ratio: protein abundance in winter frogs relative to that in summer frogs. 

Gene ontology (GO) analysis using the computer program STRAP [4] revealed that the seasonally 

labile proteins were well represented in the cellular and metabolic process bins of the biological 

process domain (Figure 1). Most of these proteins were localized to the cytoplasm or mitochondrion, 
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although the latter’s complement primarily exhibited reduced abundance in winter. Proteins having 

catalytic and binding activity showed either increased or decreased expression in winter frogs, whereas 

ER proteins were only reduced (Figure 1).  

Figure 1. Gene ontology (GO) annotation by STRAP analysis of 33 differentially-expressed 

proteins from livers of summer- and winter-acclimatized Rana sylvatica. Filled and unfilled 

segments of each bar indicate the numbers of proteins that were downregulated and 

upregulated, respectively, in winter frogs. 

 

The caveat that changes in protein expression do not necessarily alter the functional processes in 

which they participate notwithstanding, seasonal dynamics of hepatic proteins are interpretable in the 

context of the unique physiological demands and stresses imposed on R. sylvatica during winter. 

Downsizing the machinery of cell proliferation and somatic growth are hallmark responses to dormancy 

in diverse taxa [5] and, accordingly, observed alterations in winter frogs seemingly support a regulated 

reduction in biosynthetic functions. Diminished protein synthesis is reflected in the lowered abundance 

of regulatory proteins, including mRNA transport regulator and elongation factor 1-α (EF1-α), a central 

component of the active translation and elongation machinery. R. sylvatica up-regulates translation of the 

ribosomal protein L7 gene, whose product is thought to inhibit translation, during cold acclimation [6]. 

Several of the seasonally labile proteins have roles in preserving cellular and macromolecular 

integrity in the face of low temperature, dehydration, and limited energy flow. For example, the winter 

up-regulation of actin-related protein, an important regulator of filament polymerization, could offset 

the depolymerizing effect of cold. Winter frogs had higher levels of certain heat-shock proteins (Hsps), 

members of a family of molecular chaperones that assist in the folding and translocation of 

intracellular proteins and, under stress, refold and inhibit the aggregation of denatured proteins. 

Induction of Hsp synthesis preparatory to winter or in cold acclimation is seen in diverse taxa, 

suggesting that these chaperones play a general role in stabilizing proteins at low temperature [7]. Both 

the inducible Hsp70 and its cognate counterpart, Hsc70, were among the proteins most strongly  
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up-regulated in winter frogs. This response could help preserve the extant pool of functional proteins at 

a time when protein turnover is curtailed; it may also contribute to freezing survival, since Hsp gene 

expression in R. sylvatica is not further increased during freezing [8]. 

Winter frogs exhibited not a rise, but rather a decrease, in the level of BiP (=GRP78), another 

chaperonin of the Hsp70 family. This ER resident exhibits variable and tissue-specific expression in 

dormancy, but decreases markedly in the liver of some hibernators [5]. Maintaining a relatively low 

abundance of this protein, an important stress sensor, in winter potentially enhances sensitivity of  

the unfolded protein response (UPR), a conserved cellular pathway that mitigates stress-induced 

proliferation of unfolded proteins [5,9]. 

Various proteins with antioxidation properties commonly are seen to increase during chilling or 

dormancy [7] and, accordingly, our winter frogs had increased levels of peroxiredoxin, a member  

of a ubiquitous family of sulfhydryl-linked antioxidants. Besides its role in reducing organic 

hydroperoxides, this protein is transformed under oxidative stress, such as occurs when R. sylvatica 

freezes, to a high-molecular-mass complex that exhibits molecular chaperone activity [10]. GAPDH, 

which was also up-regulated in winter frogs, has several non-glycolytic functions, including DNA 

repair and antioxidation [11]. 

Winter frogs apparently altered metabolic processes to accommodate a reduced energy demand and 

increased use of energy reserves. Among temperate amphibians, fat-body lipids are consumed chiefly 

in the pre-hibernal period [12] and, accordingly, R. sylvatica has little adipose remaining by the time 

our winter frogs were sampled [13]. Changes in certain enzymes of lipid metabolism that curtail lipid 

use in hibernating frogs included a reduction in acetyl-CoA acetyltransferase 1 (ACAT1), which in 

liver plays an essential role in the degradation of fats and proteins, and long-chain acyl-CoA 

dehydrogenase. The latter, which requires FADH2 as a co-factor and thus can function in redox 

balancing in both β-oxidation and electron transport, contributes to the oxidation of C12-C18 fatty 

acids, which are key components of the triacylglycerides comprising storage lipids. On the other hand, 

winter frogs apparently up-regulated levels of hydroxyacyl-CoA dehydrogenase, a mitochondrial 

oxidoreductase that catalyzes the β-oxidation of medium chain-length fatty acids, which, derived 

primarily from sources other than storage fats, enter the mitochondria without need of the carnitine 

transport system and undergo preferential oxidation. Increased levels of the latter enzyme in liver 

could help aphagic frogs produce energy and synthesize ketone bodies, an important source of energy 

in brain, muscle, and other tissues during fasting. The presumed increase in glycolytic activity (see 

below) could also contribute to ketogenesis in hibernating frogs. 

Enzymes mediating the interconversion and catabolism of amino acids, as well as nitrogenous 

waste formation, are commonly down-regulated in winter dormancy in various species [5]. This seems 

also true of R. sylvatica, as a reduction in amino acid and urea metabolism in winter frogs was 

evidenced by a lowered abundance of glutamic-oxaloacetic transaminase 1, alanine-glyoxylate 

transaminase, histidase, acetyl-CoA acetyltransferase 1, glutamate dehydrogenase 1, homogentisate 

1,2-dioxygenase, and, rather strongly, carbamoyl phosphate synthase 1 (CPS I). Immunoblotting 

studies also indicate that the latter enzyme, which controls the rate-limiting step in the ornithine cycle, 

is down-regulated in winter R. sylvatica; however, its activity is nevertheless maintained, apparently 

though regulation via posttranslational modification and/or feedback inhibition [14]. Preserving a 

heightened activity of CPS I throughout autumn and winter presumably allows this species to 
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accumulate urea as a cryoprotectant [1] and metabolic depressant [15]. Among other temperate frogs, 

urea synthesis rate is markedly lower during fall/winter as compared to spring/summer [12]. 

Metabolic reorganization in the hibernating phenotype of R. sylvatica also involved marked changes 

in quantities of key glucoregulatory enzymes. Control of carbohydrate metabolism in hibernating frogs 

is complex in that cold acclimation and starvation can independently modify activities of glycolytic 

and gluconeogenic enzymes; however, fasting typically reduces flux through pathways of protein 

catabolism and glucose synthesis [12]. The coupled increase in pyruvate kinase and decrease in 

phosphoenolpyruvate carboxykinase (PEPCK) in winter indeed suggest that hibernating R. sylvatica 

undergo a stimulation of glycolysis and diminished reliance on gluconeogenesis. This interpretation 

concurs with a report that, in bullfrog (R. catesbeiana) liver, the activity of PEPCK in winter is only 

about 20% of that measured in summer, when gluconeogenesis is the predominant pathway for the 

large dietary influx of amino acids [16]. The increased abundance of pyruvate kinase probably bears 

little on the ability of R. sylvatica to accumulate glucose during freezing episodes, as tissue freezing 

imposes a block on glycolysis by inhibiting phosphofructokinase [17]. 

In hibernating frogs, the hepatic glycogen reserve is an important source of glucose that provides a 

metabolic fuel and, in freeze-tolerant species, a cryoprotectant that enhances freezing survival [12]. 

Accordingly, activity of glycogen phosphorylase is relatively high during winter in both freeze-tolerant 

and freeze-intolerant frogs [18–20]. The greater abundance of this enzyme in our winter frogs 

undoubtedly increases their capacity to rapidly mobilize glucose in response to tissue freezing.  

After thawing, R. sylvatica quickly replenishes the hepatic glycogen reserve from the copious free 

glucose, and this process could be expedited through the observed rise in protein phosphatase-1, a 

serine/threonine-specific phosphatase that regulates a host of cellular functions, including glycogen 

metabolism. Under insulin activation, this enzyme dephosphorylates both glycogen synthase 

(activating reaction) and glycogen phosphorylase (deactivating reaction), thereby promoting  

glycogen deposition. Rebuilding the reserve would be further aided by the up-regulation of the 

glycosyltransferase observed in winter frogs. 

Seasonal changes in the metabolic organization of R. sylvatica involved not only certain enzymes  

of glycolysis, gluconeogenesis, and amino acid and lipid metabolism, but also those that drive the  

TCA cycle. Reduced abundance in winter frogs of key cataplerotic enzymes, including PEPCK, 

aspartate aminotransferase, and glutamate dehydrogenase, a chief enzyme of the malate-aspartate  

shuttle, presumably reflects a limited need for gluconeogenic flux from amino acid metabolism.  

Down-regulation of these enzymes, coupled with the observed increase in pyruvate carboxylase, a 

primary anaplerotic enzyme, potentially leads to accrual of oxaloacetate (OAA) in the mitochondria. 

This intermediate could be converted to citrate, which then enters the TCA cycle via (winter  

up-regulated) aconitase; ultimately, however, OAA would be regenerated. Speculation suggests that a 

putative accrual of this intermediate could contribute to antioxidation in hibernating frogs, as OAA is a 

known inhibitor of complex II [21], a major contributor to superoxide formation via reverse electron 

transfer to complex I [22]. Muller et al. [22] suggested that OAA inhibition of complex II is an 

adaptive mechanism to minimize superoxide formation, and this effect may partially explain the 

extraordinarily low level of oxidative damage found in frozen/thawed R. sylvatica [23]. Further 

investigation into possible accumulation of OAA and its potential role in antioxidation in this and other 

freeze-tolerant species may prove rewarding. 
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3. Experimental Section 

Male R. sylvatica were collected in February from breeding pools in southern Ohio and 

subsequently kept in an outdoor enclosure that provided naturalistic thermal, hydric, and photic 

regimes [1]. They were fed crickets thrice weekly, but also consumed other invertebrates incidentally. 

In August, two “summer” frogs were transferred to our laboratory and kept in a moist terrarium at  

21 °C (12:12, L:D) for 3 day before their livers were removed. Other individuals were gathered in 

early November, soon after they had ceased feeding and entered hibernacula. Two of these “winter” 

frogs, were kept in a moist terrarium at 4 °C in total darkness (conditions simulating natural 

hibernation) until they were sampled for liver tissue, in early February. 

Frogs were euthanized by double-pithing and rapidly dissected, and a portion of the medial hepatic 

lobe was excised, rinsed in phosphate-buffered saline (PBS), blotted dry, and frozen in liquid nitrogen. 

Following brief storage at −80 °C, tissue samples were weighed, homogenized under liquid nitrogen, 

suspended in PBS, and assayed for soluble protein (Bradford; BioRad). Homogenates containing  

~110 mg·mL−1 soluble protein were briefly stored at −80 °C before being shipped on dry ice to 

Michigan Proteome Consortium, University of Michigan (Ann Arbor, MI, USA), for proteomic 

analysis. Institutional Animal Care and Use Committee (IACUC) of Miami University approved the 

experimental protocols. 

Protein abundance was evaluated using isobaric tag for relative and absolute quantitation (iTRAQ™) 

reagent in an assay designed to characterize protein mixtures in complex biological systems [24]. This 

high-throughput workflow labels samples with multiple, independent reagents of the same mass that, 

upon fragmentation in MS/MS, yield unique reporter ions that allow peptide quantification. Liver 

homogenates were conjugated to 4-Plex iTRAQ™ reagent and then separated by 2D LC 

Multidimensional Protein Identification Technology (MudPIT) [25]. Cysteines were alkylated using 

MMTS prior to analysis by MS/MS on a 4800 MALDI ToF/ToF instrument (Applied Biosystems, 

Inc.). Samples were prepared and analyzed by laboratory staff under the supervision of Philip C. 

Andrews, Director, Michigan Proteome Consortium, under contractual agreement. 

Peptide spectra were analyzed using ProteinPilot™ 2.01 software (Applied Biosystems, Inc.), 

implementing the Paragon™ and Pro Group™ algorithms, and identified by matching the reported 

sequences to proteins culled from the NCBInr database (GenBank/NCBI). This software requires that 

at least one unique peptide spectral signature be assigned to a given protein, thus removing it from the 

available pool of spectra, before rendering a positive identification. This approach precludes making 

multiple assignments of peptide spectra to different proteins, thus providing the currently most 

defensible criteria for accurate protein identification [26]. 
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