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Abstract

During the biogenesis of small ribosomal subunits in eukaryotes, the pre-40S particles formed in the nucleolus are rapidly
transported to the cytoplasm. The mechanisms underlying the nuclear export of these particles and its coordination with
other biogenesis steps are mostly unknown. Here we show that yeast Rrp12 is required for the exit of pre-40S particles to
the cytoplasm and for proper maturation dynamics of upstream 90S pre-ribosomes. Due to this, in vivo elimination of Rrp12
leads to an accumulation of nucleoplasmic 90S to pre-40S transitional particles, abnormal 35S pre-rRNA processing, delayed
elimination of processing byproducts, and no export of intermediate pre-40S complexes. The exportin Crm1 is also required
for the same pre-ribosome maturation events that involve Rrp12. Thus, in addition to their implication in nuclear export,
Rrp12 and Crm1 participate in earlier biosynthetic steps that take place in the nucleolus. Our results indicate that, in the 40S
subunit synthesis pathway, the completion of early pre-40S particle assembly, the initiation of byproduct degradation and
the priming for nuclear export occur in an integrated manner in late 90S pre-ribosomes.
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Introduction

The formation of ribosomes in eukaryotic cells requires the

production and subsequent assembly of four rRNAs and <80

ribosomal proteins into small (40S) and large (60S) ribosome

subunits. In the yeast S. cerevisiae, three out of those four

rRNAs (18S, 5.8S and 25S) are transcribed together in the

nucleolus in the context of a common polycistronic 35S pre-

rRNA (see scheme in Fig. 1A) [1,2]. This primary rRNA

precursor is bound by ribosomal proteins, as well as by the U3

small nucleolar ribonucleoprotein (snoRNP) and <70 non-

ribosomal factors, to form the large 90S pre-ribosomal particle

[3]. This process involves the recruitment of smaller multi-

protein subunits that associate to the nascent transcript in a

stepwise manner [4,5,6]. The 35S pre-RNA then undergoes

serial cleavages at the A0, A1 and A2 sites to generate the 20S

and 27SA2 pre-rRNAs (Fig. 1A) [1,2]. These three cleavages

can also occur co-transcriptionally within the so-called small

subunit (SSU) processome, a complex very similar in compo-

sition to the 90S pre-ribosome [7,8]. The disassembly of the 90S

pre-ribosome leads to the formation of pre-40S and pre-60S

particles containing the 20S and the 27SA2 pre-rRNAs,

respectively [2,9]. This process is accompanied by the release

of the non-ribosomal components originally present in the 90S

pre-ribosome and the rapid degradation of processing bypro-

ducts [2].

The early pre-60S particles contain .40 associated factors,

and undergo multiple maturation steps that are accompanied

by major changes in composition until exiting the nucleus

[2,10,11,12]. In contrast, the early pre-40S particles are

thought to have a relatively low compositional complexity

and are rapidly exported, consistent with the fact that the 20S

pre-rRNA is not further processed inside the nucleus

(Figure 1A) [2,10,11,13]. Final maturation of 40S subunits,

which includes a proofreading step through association to 60S

subunits and the cleavage of the 20S pre-rRNA at site D, takes

place in the cytoplasm [14,15,16,17]. Due to the rapid kinetics

of transit thorough the nucleoplasm, it is assumed that the

major events of pre-40S particle assembly take place concur-

rently with the 35S pre-RNA cleavage steps in the nucleolus.

Despite this, the pre-40S particles released from 90S pre-

ribosomes have to undergo some transformations before

leaving the nucleus. These include the recruitment of factors

that will participate in cytoplasmic maturation processes as

well as transport proteins involved in particle transit through

nuclear pores [18,19]. Pre-40S particles are also known to
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undergo a kinase-dependent conformational rearrangement

that might be required for nuclear export [20].

Despite the significant progress in the understanding of the

compositional changes that take place between 90S and pre-40S

pre-ribosomes, there are still many questions about the

nucleolar assembly and nuclear maturation of 40S subunits

that remain unanswered. For example, it is still unclear how the

early pre-40S particles are assembled within the 90S pre-

ribosome and how similar they are, at the structural level, to the

pre-40S particles that reach the cytoplasm. It is also unknown

how and when pre-40S particles become competent for export,

and how the export process itself takes place. The Ran GTPase

and the Crm1 exportin are both essential for pre-40S particles

to exit the nucleus [19,21], but the factors or mechanisms that

mediate their interaction with those particles are not known.

Tackling these questions has been difficult so far due to the large

number of components involved, the transient nature of

nucleoplasmic transit and nuclear exit, and the lack of success

in dissecting these activities in separable or mechanistically

simple steps.

Rrp12 is a karyopherin-like protein previously described as

essential for the export of pre-40S and pre-60S particles out of the

nucleus [22]. In addition, Rrp12 has been found to facilitate

ribosome-unrelated nuclear import processes [23]. In relation with

the role of Rrp12 in pre-ribosome export, it is presently unclear

whether such function is due to an implication in the assembly of

pre-ribosomal complexes, their maturation in the nucleus, the

actual transport event, or compound roles in some of the above

processes. To address those issues, we studied in detail the

consequences of a partial or total loss of function of Rrp12 in S.
cerevisiae. Our results show that Rrp12 is required for nuclear

export of pre-40S particles. However, and unlike previously-

published observations, we found that Rrp12 is not essential for

60S subunit production. During the course of our experiments, we

additionally uncovered that this protein, together with the Crm1

exportin, is important for the last processing events of the 35S pre-

rRNA within the 90S pre-ribosome, and for the rapid elimination

of the 59-A0 byproduct. The characterization of these new roles

indicates that the completion of assembly and the nuclear export

of the pre-40S particle are intertwined processes.

Results

Rrp12 is primarily required for the synthesis of 40S
ribosomal subunits

A previous report described that Rrp12 was required for export

of both pre-40S and 60S ribosomal subunits from the nucleus to

the cytoplasm [22]. However, we observed using a yeast strain

with the RRP12 gene under a galactose-inducible promoter

(GAL::HA-rrp12) that this protein was specifically involved in the

biosynthesis of 40S subunits. Evidence in favor of such conclusion

included: (i) Polysome profile analyses showing that the loss of

Rrp12 was associated with reductions in the content of free 40S

subunits and polysomes, but not of free 60S subunits (Figure 1B
and Figure 1C). In fact, the relative abundance of the large

subunits was clearly increased in the absence of Rrp12

(Figure 1B and Figure 1C). (ii) Northern blot analyses dem-

onstrating a decrease in the steady-state amount of the 18S rRNA

(present in 40S subunits) but not in those of the 5.8S and 25S

rRNAs (present in 60S subunits) in Rrp12-depleted cells

(Figure 1D, left panels; and Figure 1E). Such alterations were

found to be associated with an increase in the abundance of the

20S pre-rRNA, the immediate upstream precursor for the 18S

rRNA (Figure 1D; see scheme in Figure 1A), indicating that the

cleavage at site D is inhibited. Consistent with previously

published data [22], we also observed some accumulation of the

35S and 32S pre-rRNAs, a reduction in the content of the 27SA2

pre-rRNA, and the generation of the aberrant 21S pre-rRNA (a

species produced from direct cleavage of the 32S pre-rRNA at site

A3) (Figure 1D; see scheme in Figure 1A). These results indicate

that, in addition to the major defect in the cleavage at site D, the

loss of Rrp12 causes partial defects in the early cleavages at sites A0

and A1 and, to a larger extent, at site A2. We also detected a delay

in the processing events of 5.8S rRNA precursors manifested by

the presence of both the 7S pre-rRNA and aberrant 39-extended

forms of the 5.8S rRNA (5.8S+30) in Rrp12-depleted cells

(Figure 1D and Figure 1E). Curiously, we found that the

absence of Rrp12 led to an increase in the abundance of the 59-A0

fragment (Figure 1D), a byproduct produced when the rRNA

precursor is cleaved at site A0 (Figure 1A). Similar defects,

although milder in intensity, were observed in a constitutive

manner when pre-rRNA analyses were performed in a yeast strain

(rrp12-D198) expressing a hypomorphic version of Rrp12

(Figure 1D, right panels; Figure 1F). Taken together, these

data indicate that Rrp12 is absolutely required for the generation

of the 18S rRNA from 20S pre-rRNA and, in addition, important

for both the rapid elimination of the 59-A0 fragment and the

normal processing of both 32S and 5.8S pre-rRNA precursors.

Despite this latter function, Rrp12 does not seem to have any

major influence on the overall production of 60S ribosomal

subunits.

Rrp12 is present in both 90S and pre-40S particles
Our group and others have previously shown that Rrp12

copurifies with components of 90S and pre-40S particles

[3,18,22,23]. However, there is no detailed information about its

relative content in different subsets of pre-40S complexes. Using

coimmunoprecipitation experiments, we observed that endoge-

nous Rrp12 interacted with green fluorescent protein (GFP)-

tagged versions of factors present in nucleolar 90S (Pwp2, Enp1,

Dim1, Pno1; Figure 2A and Figure 2B, lanes 1 to 4 and lanes

19 to 22) and nucleoplasmic pre-40S (Enp1, Dim1, Pno1, Tsr1;

Figure 2A and Figure 2B, lanes 3 to 6 and lanes 19 to 22)

particles. These interactions took place within the context of

ribonucleproteic complexes, because they were eliminated by

Author Summary

During the synthesis of small ribosomal subunits in
eukaryotes, the pre-40S particles formed in the nucleolus
are rapidly transported to the cytoplasm. The mechanisms
involved in the nuclear export of these particles and its
coordination with other steps of the 40S synthesis
pathway are mostly unknown. In this work we studied
the function of Rrp12, the only major non-ribosomal factor
of nuclear pre-40S particles that does not remain stably
associated to them during maturation in the cytoplasm.
We demonstrate that Rrp12 is required for the exit of pre-
40S particles to the cytoplasm. Remarkably, we also found
that Rrp12, together with the Crm1 exportin, participates
in processes that occur in early pre-ribosomes in the
nucleolus, including the processing of the pre-rRNA and
the elimination of processing byproducts. Thus, Rrp12 and
Crm1 participate in maturation steps that take place
upstream of nuclear export. Our results indicate that, in the
40S subunit synthesis pathway, the completion of early
pre-40S particle assembly, the initiation of byproduct
degradation and the priming for nuclear export occur in an
integrated manner in nucleolar pre-ribosomes.

Functions of Rrp12 and Crm1 in 40S subunit synthesis
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RNase treatment (Figure 2B, lanes 1 to 6 and lanes 19 to 22). By

contrast, we did not detect any association of Rrp12 in these

experiments with either Nob1 or Rio2, two proteins mostly present

in cytoplasmic pre-40S particles (Figure 2A and Figure 2B,

lanes 7,8 and lanes 23,24). Rrp12 did show an interaction with

Ltv1, a protein that, like Nob1 and Rio2, is mainly detected in

Figure 1. Defects in Rrp12 function block the synthesis of 40S subunits but not of 60S subunits. (A) Structure of the 35S pre-rRNA and
major intermediates of the rRNA processing pathway. The names of the initial pre-rRNA species are highlighted in brown. Those for the 18S pre-rRNA
precursor, 5.8S/25S precursors, and 59-A0 processing byproduct are highlighted in blue, green and grey, respectively. For simplicity, an alternative
pathway to form 27SBL pre-rRNA is not shown. Binding sites for oligonucleotide probes (01 to 08) used in Northern blot experiments are indicated in
the upper diagram. Those included probe 03 for the DA2 region, probe 04 for the A2–A3 region, probe 01 for the 59-A0 region, probe 02 for the 18S
region, probe 07 for the E-C2 region, probe 08 for the 25S region, probe 06 for the 59EC2 region and probe 05 for the 5.8S region. (B) Sucrose-gradient
sedimentation analysis of ribosomal fractions (40S, 60S, 80S and polysomes) of cell lysates from GAL::HA-rrp12 cells that have been grown in galactose
(Gal)-containing media or shifted to a glucose (Glu)-containing media for 9 hours. Depletion of Rrp12 protein was analyzed by Western blot (C). (D
and E) Northern blot (NB) analysis of total RNAs extracted from RRP12, GAL::HA-rrp12, and GAL::HA-rrp12 cells containing plasmids encoding either
wild type Rrp12 or the hypomorphic Rrp12 (deletion D1-198) mutant. Cells were grown at 30uC in galactose-containing media and shifted to glucose-
containing media for the indicated times. The specific region of the 35S pre-rRNA recognized by the Northern blot probe is indicated on the right.
This will be similarly indicated in the rest of analyses presented in this work. The thin white lines between lanes 6 and 7 indicate the presence of in-
between lanes in the same blot that have been removed. The experiment shown in E also includes, as a loading control, the RNA of the signal
recognition particle scR1. (F) Sucrose-gradient sedimentation analysis of ribosomal fractions (40S, 60S, 80S and polysomes) of cell lysates from
GAL::HA-rrp12 cells containing plasmids encoding either wild type Rrp12 or the hypomorphic Rrp12 (D1-198) mutant. Cells were grown continuously
in glucose-containing media.
doi:10.1371/journal.pgen.1004836.g001
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cytoplasmic pre-40S complexes (Figure 2A and Figure 2B,

lanes 25,26). This interaction is the only one that cannot be

disrupted by RNase treatment (Figure 2B, lanes 25,26), indicat-

ing that it survives pre-40S particle disassembly or, alternatively,

that takes place outside those particles. In agreement with the

results presented in Figure 1, we could not detect interactions of

Rrp12 with proteins present in early (Ssf1, Nop7; Figure 2A and

Figure 2B, lanes 9 to 12), intermediate nuclear (Rix1; Figure 2A
and Figure 2B, lanes 13,14), late nuclear (Arx1; Figure 2A and

Figure 2B, lanes 15,16) or cytoplasmic (Kre35; Figure 2A and

Figure 2B, lanes 17,18) pre-60S complexes. These results suggest

that Rrp12 is predominantly associated to both nucleolar and

nuclear pre-40S pre-ribosomes while it is weakly associated, or not

bound at all, to the cytoplasmic ones. Further analyses of Rrp12-

MYC immunoprecipitates by Northern blot confirmed the

predominant presence of this protein in the 40S synthesis pathway

and, in addition, evidenced that its interactions with nucleolar and

nucleoplasmic particles exhibit differential features. Thus, we

observed that the association of Rrp12 to pre-40S particles had to

be rather strong, as inferred by the stable coimmunoprecipiation

of the 20S pre-rRNA with Rrp12-MYC (Figure 2C). Indeed, the

amount of this pre-RNA in those complexes is even higher than

that seen in the case of immunoprecipitations performed with

Tsr1, a factor that stably associates with both nucleolar- and

cytoplasmic-located pre-40S particles (Figure 2A and Fig-
ure 2C). By contrast, we could not detect any significant amount

of 35S and 32S pre-RNAs in the Rrp12-MYC immunoprecipi-

tates, suggesting that the association with the 90S particle is either

labile or restricted to a minor pool of Rrp12-containing complexes

(Figure 2C). As control, we found that these two pre-RNAs do

coimmunoprecipitate with Pwp2 (Figure 2C), an integral com-

ponent of the 90S pre-ribosome (Figure 2A). Consistent with the

lack of Rrp12 in the purifications of pre-60S complexes (see above

Figure 2B), we could not observe any interaction of Rrp12-MYC

with the 27S or 7S pre-rRNAs. As expected, these two pre-rRNAs

do coimmunoprecipitate with the early pre-60S particle compo-

nent Nop7-MYC (Figure 2D, see scheme in Figure 2A). These

results indicate that Rrp12 does not stably associate with pre-60S

particles.

Rrp12 is not required for pre-40S particle assembly
We next focused on the cause of the block in the maturation of

20S pre-rRNA to 18S rRNA found in Rrp12-depleted cells. Given

the restricted presence of Rrp12 to nucleolar 90S and nucleoplas-

mic pre-40S complexes, this phenotype could be due to defects in

the assembly of the pre-40S particle inside the nucleus. However,

this does not seem to be the case because the depletion of Rrp12

does not affect the stability of both early and late nuclear pre-40S

components (Enp1, Dim1, Tsr1, Rio2, Nob1; Figures 3A to 3C;

top panels). Likewise, it does not block the interaction of those

proteins with the 20S pre-rRNA (Figures 3A to 3C; bottom

panels). However, the depletion of Rrp12, although not affecting

the steady state levels of Ltv1 in cell lysates prepared by TCA

precipitation (Figure 3D, compare lanes 7 and 9), does cause a

destabilization of that protein under the conditions used for the

pre-rRNA coimmunoprecipitation analyses (Figure 3C; top

panel, compare lanes 4 and 6). Such behavior may reflect a

functional relationship of Rrp12 and Ltv1 in vivo, because we

observed using sucrose gradient fractionation experiments that the

loss of Rrp12 leads to a substantial decrease in the amount of Ltv1

that is stably incorporated onto ,40S complexes (Figure S1A).

This effect is specific, because the depletion of Rrp12 does not

affect the incorporation of both Enp1 and Rio2 onto those

complexes (Figure S1B and Figure S1C).

Mass spectrometry experiments further confirmed that the absence

of Rrp12 does not have a major effect in the composition of pre-40S

complexes. Indeed, we found that both the pattern and strength of

the associations exhibited by four pre-40S factors (Enp1, Tsr1, Nob1

and Rio2) with the rest of major pre-40S particle components are

quite similar to those observed in wild-type cells (Figure 3E,

compare columns 1 to 4 with columns 5 to 8). The only exception

observed is the loss of the interaction of both Enp1 and Tsr1 with

Ltv1 (Figure 3E, compare columns 1 and 2 with columns 5 and 6), a

defect probably derived from the impaired recruitment of Ltv1 to the

pre-40S particle seen in above experiments. Interestingly, we

observed that the loss of Rrp12 promotes the formation of new

interactions of both Enp1 and Tsr1 with the tRNA methyltransferase

Ncl1 and the abundant hnRNP protein Npl3 (Figure 3E, compare

columns 1 and 2 with columns 5 and 6). Likewise, Tsr1 and Nob1

interact with the 90S particle component Nop1 (Figure 3E,

compare columns 2 and 3 with columns 6 and 7). These results

indicate that Rrp12 is not required for the formation of the core

structure of the pre-40S particle, although it may contribute to the

release of specific nucleolar factors such as Nop1. In addition, they

show that Rrp12 appears to be dispensable for the recruitment of

some factors with hitherto unknown roles in the synthesis of 40S

subunits (i.e., Ncl1, Npl3). Also consistent with a correct particle

assembly in the absence of Rrp12, we found using Western blot

analyses that Prp43 and Mex67 [24,25,26,27], two factors that are

not usually detected in this type of proteomics analysis due to their

weak interaction with pre-40S particles, remain particle-associated in

the absence of Rrp12 (Figure S2). Interestingly, the absence of

Rrp12 does promote a reduction in the association of Enp1 with

some, but not all, of its usual partners within the 90S particle

(Figure 3E, compare columns 1 and 5). These data indicate that the

lack of Rrp12 may affect either the composition or maturation

dynamics of 90S pre-ribosomes.

Rrp12 is required for nuclear export of pre-40S particles
The above findings indicated that the lack of Rrp12 blocks the

40S synthesis pathway at a step downstream the assembly of pre-

40S particles. To investigate if this block occurred in the nucleolus,

nucleoplasm or cytoplasm, we analyzed the subcellular localization

of GFP-tagged versions of pre-40S particle (Enp1, Dim1, Pno1,

Tsr1, Ltv1, Nob1, Rio2) and mature 40S subunit (Rps2)

components in control and Rrp12-depleted cells. Consistent with

previous reports [18,28,29,30,31], we found that these proteins

exhibit nucleolar (Enp1, Figure 4A), nucleolar and nucleoplasmic

(Dim1, Tsr1; Figure 4B and Figure 4C, respectively), and

nucleoplasmic plus cytoplasmic (Pno1, Ltv1, Nob1, Rio2 and

Rps2; Figures 4D to G, and Figure S3, respectively) localiza-

tions in both wild type cells and control GAL::HA-rrp12 cells.

However, in Rrp12-depleted GAL::HA-rrp12 cells, we detected

that most of those proteins undergo a major relocalization towards

the nucleoplasm (Figures 4A to G; and Figure S3). The only

exception was again Ltv1, since its subcellular distribution is fully

Rrp12-independent (Figure 4E). The nuclear accumulation of

Rio2, but not of the cytosolic Pgk1 control protein, in the absence

of Rrp12 was demonstrated using independent subcellular

fractionation experiments (Figure 4H). This effect is specific for

the 40S subunit synthesis pathway, because the loss of Rrp12 does

not alter the normal subcellular distribution of Rpl25 and Rpl11

(Figure S3), two 60S subunit components. These results show

that pre-40S particles are blocked in the nucleoplasm when Rrp12

is absent. Collectively, our data indicate that Rrp12 does not

participate in the major assembly events of pre-40S particles in the

nucleus, and that it is essential for some event that immediately

precedes or is concomitant to nuclear export.

Functions of Rrp12 and Crm1 in 40S subunit synthesis
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Figure 2. Rrp12 is present in both 90S pre-ribosomes and pre-40S particles. (A) Scheme of the maturation of pre-ribosomes. The names of
specific factors frequently used for purifying each pre-ribosome are indicated on the right. In rapidly growing cells, ,60% of primary transcripts are
cleaved at A0–A1–A2 co-transcriptionally within the small subunit (SSU) processome and, after this, the precursor of the large subunit (pre-LSU) is
assembled onto the nascent pre-rRNA. When not cleaved co-transcriptionally, the full-length 35S pre-rRNA is assembled into the 90S pre-ribosome, a
particle very similar to the SSU-processome. The order of incorporation of the seven major maturation factors present in cytoplasmic pre-40S particles
is shown on the left. Enp1, Dim1 and Pno1 are recruited to 90S/SSU particles. Tsr1 is recruited to early pre-40S particles in the nucleolus. Ltv1 and
Nob1 join pre-40S particles in the nucleus. The step of incorporation of Rio2 remains ill defined. (B) Western blot analysis showing
coimmunoprecipitation of Rrp12 (second panels from top) and of the control protein Rpl1 (bottom panels) with the indicated 90S pre-ribosome and
nuclear pre-40S factors (top) in the presence (+) or absence (2) of RNase A in cell lysates. Factors present in 90S, pre-40S and pre-60S particles are
shaded in brown, blue and green, respectively. The amount of GFP-Trap purified bait is shown in the first panels from top. The asterisk indicates a

Functions of Rrp12 and Crm1 in 40S subunit synthesis
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Rrp12 influences an intermediate maturation step within
a 90S transitional particle

In addition to the block in pre-40S particle export, the depletion

of Rrp12 causes defects in the cleavage of the pre-rRNA at site A2

and in the elimination of the 59-A0 fragment. The accumulation of

this byproduct appears to be a rather specific feature, because it is

not observed upon depletion of other factors, like Pno1, that do

not affect the A0 cleavage but are essential for the A2–A3 cleavages

(Figure S4A). We also found that the 59-A0 fragment associates to

Rrp12 in wild type cells (Figure S5), suggesting that Rrp12 might

influence directly the elimination of this fragment. As a first

approximation to obtain clues about the role of Rrp12 in this

process, we decided to study the sedimentation behavior of the 59-

A0 fragment on sucrose gradients in the presence and absence of

Rrp12. These experiments corroborated the increase in the

abundance of the 59-A0 fragment already seen by Northern blot

analyses in Rrp12-depleted cells (see above, Figure 1D) and, in

addition, revealed that this fragment was present in complexes that

sediment broadly between the 60S and 90S regions of the gradient

(Figure 5A; right panels, gradient fractions 12 to 15). A significant

proportion of these entities cosedimented with the 32S pre-rRNA

and U3 snoRNA (Figure 5A; right panels, gradient fractions

14,15), suggesting that they form part of a 90S transitional particle

that has initiated, but not completed, the processing of the 35S

pre-rRNA. This interpretation is consistent with the delay in the

A2 cleavage evidenced by the formation of aberrant 21S pre-

rRNA (see above, Figure 1D), and the increased coimmunopre-

cipitation of the 59-A0 fragment with the 90S pre-ribosome-specific

Pwp2 protein in Rrp12-depleted cells (Figure 5B, compare lanes

10 and 12). The interaction of Pwp2 with the 59-A0 fragment

appears to take place in the context of a 90S pre-ribosome-like

particle, as inferred from the presence of Pwp2 in 80–90S

complexes in Rrp12-depleted cells (Figure 5C). In agreement

with an abnormal accumulation of a 90S transitional particle, we

observed by microscopy experiments that Pwp2 shifted from an

exclusively nucleolar localization to a more disperse distribution

between the nucleolus and the nucleoplasm upon depletion of

Rrp12 (Figure 5D). These results indicate that the loss of Rrp12

delays some event during pre-40S particle assembly in the

nucleolus, leading to both the accumulation and delocalization

of 90S transitional particles in the nucleoplasm.

The Rrp12-dependent maturation step precedes the A2

cleavage and the exosome-mediated degradation of the
59-A0 fragment

We next characterized by mass spectrometry the complexes

formed by Pwp2 in the absence of Rrp12 to investigate possible

differences in the composition of 90S pre-ribosomes. Although

highly similar to those formed in control cells, we observed the

presence of new Pwp2 partners in the absence of Rrp12

(Figure 6A). Those included 90S pre-ribosome components

involved in the cleavage of the 35S precursor at the A0–A1–A2

(Utp20, Rcl1) and A1–A2 (Dim1, Pno1) sites [29,32,33,34,35,36].

Interestingly, we observed using RNA coimmunoprecipitation

experiments that two of the above partners, Dim1 and Pno1,

preferentially bind the 32S rather than the earliest 35S pre-rRNA

(Figure 6B). This suggests that they become stably assembled

onto the 90S pre-ribosome upon cleavage of the 35S precursor at

the A0 and A1 sites (see above, Figure 1A). We also found among

the new partners the nuclease Rrp44 (also known as Dis3), an

exosome subunit shown to be involved in the direct physical

interaction with the 59-A0 fragment [37]. This finding was quite

interesting for us, because previous results have shown that this

interaction seems to be crucial for poising the 59-A0 fragment for

productive degradation [37,38]. Thus, we surmised that the

Rrp44-Pwp2 interaction detected in Rrp12-depleted cells could

indicate that the exosome is normally recruited to 90S pre-

ribosomes and that, in the absence of Rrp12, there is an

enrichment or stabilization of some of those exosome-containing

90S pre-ribosomes. In agreement with this idea, we found using

sucrose gradient sedimentation analyses that Rrp44 is indeed

present in 80–90S complexes both in control and Rrp12-depleted

cells (Fig. S1D). These data raised the possibility that the defect in

the elimination of 59-A0 fragment found in Rrp12-depleted cells

could be due to an impairment of exosome function. Consistent

with this idea, we found that the elimination of the exosome

cofactor Mtr4 (also known as Dob1) elicited the expected

accumulation of the 59-A0 fragment (Figure 6C and Figure 6D)

[39] and, most importantly, that such accumulation occurs in the

context of 80–90S complexes, similarly to what is observed in

Rrp12-depleted cells (Figure 6D; see above, Figure 5). Interest-

ingly, Rrp12-depleted cells do not exhibit the sustained high levels

of the 59-A0 fragment seen in Mtr4-depleted cells (Figure 1D and

Figure 6C), indicating that the exosome activity is affected but

not fully compromised upon the loss of Rrp12. Consistent with

this, we have seen that the loss of this protein does not trigger other

terminal defects typically observed in exosome-deficient cells, such

as the abnormal accumulation of the 35S pre-rRNA, the total

block of 7S pre-rRNA maturation, and the balanced decrease in

the contents of both ribosomal subunits (Figure 6C and

Figure 6D) [39,40]. Taken together, our data indicate that the

loss of Rrp12 causes a 90S pre-ribosome maturation defect that

precedes the A2 cleavage and the exosome-dependent 59-A0

fragment degradation steps. As a result, it promotes either a delay

or partial inhibition, but not a block, in the A2 cleavage of the pre-

rRNA and the elimination of the 59-A0 fragment.

The Crm1 exportin is also involved in the Rrp12-
dependent 90S pre-ribosome maturation step

Given the implication of Rrp12 in the export of pre-40S

particles (see above, Figure 3 and Figure 4), we decided to

investigate whether the pre-40S export step was associated to the

Rrp12-dependent 90S pre-ribosome maturation step. If that were

the case, we expected that the elimination of any other protein

involved in pre-40S export would induce the same defects seen in

Rrp12-depleted cells. To test this idea, we chose a yeast strain that

constitutively expressed a mutant version of the Crm1

(Crm1T539C) exportin. This mutant protein, unlike its wild type

counterpart, can be specifically inhibited by leptomycin B [41].

Using this strategy, we found that the inhibition of Crm1

recapitulates all the defects observed in Rrp12-depleted cells,

including increased abundance of the 35S, 32S and 21S pre-RNA

species (Figure 7A), abnormal levels of the 59-A0 fragment

(Figure 7A and Figure 7B), accumulation of this fragment in

protein species in the Enp1-GFP purification lane that probably corresponds to a partial degradation product. (C and D) Northern blot analysis
showing coimmunoprecipitation of pre-rRNA species (second to bottom panels on the right) with the indicated MYC-tagged proteins in normal cells.
As control, parallel Northern blots were performed on total RNAs prepared from the same total cell lysate samples used for the immunoprecipitations
(second to bottom panels on the left). Western blot experiments were performed to analyze the amount of MYC-tagged protein present in the total
cell lysates (top panel on the left) and immunoprecipitations (top panel on the right). TCL, total cell lysates. IP, immunoprecipitation.
doi:10.1371/journal.pgen.1004836.g002
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Figure 3. Rrp12 is not involved in pre-40S particle assembly. (A to C) Bottom panels, Northern blot analysis showing coimmunoprecipitation
of the 20S pre-rRNA with Enp1-GFP (A), Dim1-MYC (B), Tsr1-GFP (C), Ltv1-GFP (C), Rio2-GFP (C), Nob1-GFP (C) and Nop7-GFP (C) before (0) and upon
depletion of Rrp12 for 9 hours. Top panels, Western blot analysis showing the amount of immunoprecipitated proteins in these experiments. Mobility
of pre-RNA species is indicated on the left of each bottom panel. Antibodies used in the immunoblots and Northern blot probes are shown on the
right of the top and bottom panels, respectively. The thin white lines between lanes 3 and 4, and 9 and 10, shown in A and B, indicate the presence of
in-between lanes in the same blot that have been removed. (D) Western blot analyses of trichloroacetic acid (TCA) precipitated cell lysates showing
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80–90S complexes (Figure 7B) and, as expected [19], an increase

in the content of the 20S pre-rRNA due to the halt in pre-40S

particle nuclear export (Figure 7A). These results indicate that

the 40S subunit export machinery facilitates a late 90S pre-

ribosome maturation event that promotes the rapid cleavage of the

pre-rRNA at site A2 and the efficient degradation of the 59-A0

fragment. This function is quite specific for export regulators,

because the elimination of factors specifically involved in the

cytoplasmic maturation of pre-40S complexes (Rio2 and Ltv1)

does not trigger any of the above defects [16,28,42] (Figure S4B).

The above results led us to investigate whether Crm1, like

Rrp12, was present in 90S pre-ribosomes. We first assessed the

potential interaction of Crm1 with two 90S pre-ribosome

components, the 35S pre-RNA and Pwp2, using coimmunopre-

cipitation analyses similar to those that detect Rrp12 in 90S and

pre-40S particles (see above Figure 2). This approach however

did not reveal associations of Crm1 with any pre-ribosomal

component, not even with pre-rRNAs or proteins present in the

pre-40S and pre-60S complexes transported by this exportin. We

therefore decided to change the experimental conditions of our

coimmunoprecipitation assays. In particular, we changed the

Triton X-100-containing lysis buffer by a NP-40-containing

buffer that was similar to buffers used by others to detect

interactors of Crm1 in vivo [43,44,45]. Notably, when we

purified Crm1-GFP using the NP-40 buffer, we could readily

observe that it interacts with the 35S pre-rRNA, the 20S pre-

rRNA, 27S pre-rRNAs and the 25S rRNA (Figure 7C). The

associations with these RNAs were specific because in the same

Northern blots Pwp2-GFP coprecipitated the 35S and 23S pre-

rRNAs, but not the 20S, 27S and 25S RNAs. These results

indicate that Crm1 binds to pre-40S and pre-60S particles, as

expected from its role in export, and also that it is already

recruited to early 90S particles. Consistent with this, we found

using sucrose gradient sedimentation analysis that Crm1 is indeed

present in large 80–90S complexes that co-sediment with Pwp2

(Figure 7D). Furthermore, when 90S pre-ribosomes were purified

from sucrose gradients using Pwp2 as bait it was confirmed that

they do contain Crm1 (Figure 7D, right set of panels). Western

blot analysis of Rrp12-containing complexes from total cell

lysates evidenced that Crm1 interacts with Rrp12 (Figure 7E), a

result consistent with the common presence of the two proteins in

both 90S and pre-40S pre-ribosomes.

In our final set of experiments, we investigated whether the

recruitment of Crm1 to 90S pre-ribosomes was Rrp12-

dependent. For this purpose we analyzed the sedimentation

behavior in sucrose gradients of a HA-tagged version of Crm1

that was coexpressed with the endogenous Crm1 either in wild

type or in rrp12D198 cells. We found that in wild type cells the

Crm1-HA protein is recruited to large assemblies, including

80–90S-like complexes (Figure 7F, left two panels). This

sedimentation in large complexes is drastically reduced in

rrp12D198 cells (Figure 7F, right two panels), suggesting that

the incorporation of Crm1 onto large 80–90S pre-ribosomal

particles is Rrp12-dependent. Altogether, our data indicate

that Rrp12 and Crm1 act on 90S pre-ribosomes in a concerted

manner.

Discussion

The results presented here identify Rrp12 as a factor required for

a number of intertwined steps of the 40S ribosomal subunit

synthesis pathway (Figure 8). We have observed that Rrp12,

together with Crm1, is first recruited to the pathway to facilitate the

processing of the 35S pre-rRNA and the elimination of the 59-A0

fragment in the context of a late 90S transitional particle

(Figure 8). A lack of Rrp12 or Crm1 at this step delays but does

not halt the assembly and release of early pre-40S particles.

Interestingly, this early function of Rrp12 occurs immediately

upstream and temporally close to the export of the pre-40S

particles, a process that absolutely requires Rrp12 and Crm1. In

addition to revealing a hitherto unknown role for export-related

factors in a specific maturation step in the nucleolus, our results

shed light onto the dynamics of 90S pre-ribosome factors upon

cleavage of the 35S pre-rRNA at site A2. Indeed, some authors

previously suggested that, after the A2 cleavage, the non-ribosomal

components of the 90S particle are released en bloc in association

with the 59-A0 fragment [3,18]. However, the formation of such

disassembly complexes, and when and how was the exosome

recruited, remained unclear. We find no evidence for the formation

of a post-disassembly complex containing the 59-A0 fragment upon

which the exosome acts (Figure 6D). Rather, our results indicate

that the exosome is present in transitional 90S pre-ribosomes to

degrade the 59-A0 fragment, either in the last step of pre-40S

particle assembly or at the very time of pre-40S particle release

(Figure 8). The implication of Crm1 in steps of ribosome

synthesis, other than nuclear export, is also a new finding in yeast.

In human cells, Crm1 has been implicated in the targeting of

snoRNP complexes to the nucleolus [43,46]. Whether Rrp12 and

Crm1 utilize the same domains for the export-related and

maturation-related functions, and whether the two proteins need

to interact directly to exert their functions, remains to be

determined. We have found that Rrp12 and Crm1 purified from

bacteria do not stably interact in vitro (unpublished data).

However, we cannot exclude the possibility that such interaction

could require the participation of other proteins. Indeed, it has been

shown before that the interaction of Crm1 with other molecules

involves the participation of additional factors, including the Ran

GTPase in its GTP-bound state. Ran can in fact be involved in

these interactions, as suggested by the identification of allele-

specific Ran mutants that elicit defects in the degradation of the 59-

A0 fragment [47]. Based on the present results, we hypothesize that

such defects could be associated to the Rrp12- and Crm1-

dependent mechanism reported here. An involvement of Ran on

the association of Crm1 with pre-ribosomes could also explain the

difficulties for detecting Crm1 in purified 90S and pre-40S pre-

ribosomes, because these complexes are normally prepared under

conditions that favor the conversion of Ran-GTP to Ran-GDP.

Here we describe that, using a buffer that contains 0.2% NP-40, it is

possible to detect the specific association of Crm1 to both pre-

rRNAs and pre-ribosomal components by coimmunoprecipitation

analysis. The reason for the efficiency of this buffer is unclear, but it

must somehow favor the maintenance of some Ran-GTP levels

and/or affect other currently unknown features that improve the

stability or solubilization of Crm1-containing complexes.

the amount of Rrp12 (top panels) and the indicated GFP-tagged proteins (middle panels) under the indicated growth conditions. The amount of
Cdc11 was used as loading control (bottom panel). (E) Pre-ribosomal factors (listed on the left) copurifying with the indicated GFP-tagged proteins
(top) in the presence (columns 1 to 4) or absence (columns 5 to 8) of Rrp12. Copurification of a factor with the bait is indicated with a dot. For Rrp12
depletion, GAL::HA-rrp12 cells were shifted from galactose-containing media to glucose-containing media for 12 hours. The pre-ribosomal particles
that contain the prey proteins are indicated on the left. Size of dots represents the relative amount of coimmunoprecipitated protein in each case
(see Materials and Methods).
doi:10.1371/journal.pgen.1004836.g003
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Figure 4. Rrp12 is required for the export of pre-40S particles out of the nucleus. (A to G) Top panels, epifluorescence microscopy analysis
of the subcellular distribution of GFP-tagged Enp1 (A), Dim1 (B), Tsr1 (C), Pno1 (D), Ltv1 (E), Nob1 (F) and Rio2 (G) in the indicated yeast strains and
culture conditions (top). Bottom panels, differential interference contrast (DIC) images of the above preparations. (H) Western blot analysis showing
the distribution of Rio2-GFP (top panel) and Pgk1 (bottom panel) in whole cell lysates (W), cytosolic (C) and nuclear (F) fractions obtained from either
control rio2-GFP cells (lanes 1 to 3) or GAL::HA-rrp12/rio2-GFP cells growing in galactose-containing medium (lanes 4 to 6) or upon a shift to glucose-
containing medium for 9 hours (lanes 7 to 9).
doi:10.1371/journal.pgen.1004836.g004
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In our model we propose that Rrp12 is an export factor rather

than a nuclear maturation factor (Figure 8). Consistent with this,

we have observed that the elimination of Rrp12 leads to the

accumulation of pre-40S particles that, in addition to being

dissociated from the 90S pre-ribosome machinery, are fully-

assembled. This is evidenced by the recruitment to those particles

of factors that are predominantly cytoplasmic in normal cells

(Rio2, Nob1), and that therefore must join the pathway just before

nuclear exit. One important inference of our results is that the

major assembly events involved in the formation of pre-40S

particles are separable and fully independent from the subsequent

export step. A direct participation of Rrp12 in the export process is

also supported by the previously-described interactions of this

protein with some nucleoporins and with Ran [22]. Unexpectedly,

we could not find any significant role for Rrp12 in the export of

pre-60S subunits, as it had been previously published [22]. In

addition to the phenotypic analysis of Rrp12-depleted cells, the

prominent role of Rrp12 in the 40S rather than the 60S subunit

pathway is supported by the RNA-protein interaction data

showing the specific binding of Rrp12 to the 20S but not the

27S and 7S pre-rRNAs. The reason for these different results is

not readily apparent. We have found that the loss of Rrp12 elicits

the 40S subunit-specific phenotype both in the W303 and in

BY4743 strains, indicating no influence of the genetic background.

Still, it is worth noting that the depletion of Rrp12 causes delays in

the processing of 5.8S rRNA precursors in the nucleus by a

hitherto unknown mechanism. According to our results, such

delays do not impact the overall production of 60S subunits, but it

could be possible that, under some experimental conditions or in

strains with genetic modifications that subtly affect ribosome

biogenesis, the defect in 5.8S rRNA production became exacer-

bated and caused nuclear accumulation of pre-60S particles. It is

also plausible that Rrp12 could interact either weakly or very

transiently with some pre-60S particle subpools, as it would be

expected if its influence on the processing of 5.8S precursors were

direct. This possibility would be in agreement with the previously-

Figure 5. Loss of Rrp12 causes accumulation of 59-A0-containing 90S pre-ribosomes. (A) Top panel, sucrose-gradient sedimentation
analysis of ribosomal fractions (40S, 60S, 80S and polysomes) of cell lysates from the control wild type strain grown in glucose-containing media, and
the GAL::HA-rrp12 strain grown in galactose-containing media and shifted to glucose-containing media for 9 hours. Bottom panels, Northern (second
to sixth panels from top) and Western (bottom panel) blot analyses of indicated components of pre-ribosomal particles in fractions obtained in the
gradients. Numbers of fractions are shown at the bottom. Blotting probes and antibodies are indicated on the right. (B) Northern blot analysis
showing copurification (second to fourth panels on the right) of the indicated pre-RNA species, U3 snoRNA and 59-A0 fragment with Pwp2-GFP in the
indicated yeast strains and culture conditions (top). As control, parallel Northern blots were performed on total RNAs prepared from the same total
cell lysate samples used for the immunoprecipitations (second to third panels on the left). Western blot experiments were performed to analyze the
amount of Pwp2-GFP present in the total cell lysates (top panel on the left) and GFP-Trap purified complexes (top panel on the right). Asterisks
indicate pre-rRNA species that do not correspond to any major processing intermediate, which probably are 35S partial degradation products. (C)
Sucrose gradient analysis showing the sedimentation behavior of Pwp2-GFP and Rps8 in the presence (top two panels) and absence (bottom two
panels) of Rrp12. The positions of the gradient where 40S, 60S and 80S complexes sedimented are indicated by arrows. (D) Top panels,
epifluorescence microscopy analysis of the subcellular distribution of Pwp2-GFP before (top left panel) and upon depletion (top right panel) of Rrp12.
Bottom panels, DIC images of above preparations.
doi:10.1371/journal.pgen.1004836.g005
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reported detection of Rrp12 bound to 27SB pre-rRNAs using

primer-extension analyses [22]. Despite the possibility of these

alternative scenarios, we believe that our data clearly indicate that

Rrp12 is not essential for 60S subunit synthesis. Consistent with

this idea, it is also worth noting that mammalian Rrp12 has been

shown to be required exclusively for 40S subunit synthesis [48,49].

One distinctive feature of the intermediate particle formed in

the absence of Rrp12 is the lack of Ltv1, a factor not essential for

nuclear export. Previous studies indicate that this protein is

recruited in the nucleus [31,50], but some evidence suggests that

its interaction with the nuclear pre-ribosomes that are about to be

exported might be weak [20]. Thus, a possible explanation for the

absence of Ltv1 in the pre-40S particles of Rrp12-depleted cells is

that those particles are ready to be exported and have Ltv1 loosely

associated. Alternatively, it is possible that Rrp12 could be actively

required for the docking of Ltv1 to those particles during the

export process. We currently favor the latter possibility, since we

have observed that the interaction of these two proteins can occur

in a pre-rRNA-independent manner. Based on the present data,

we believe that Rrp12 probably promotes the recruitment of Ltv1

onto the pre-40S particle immediately prior to the step of transport

(Figure 8). Upon this docking step, Rrp12 is carried along with

Figure 6. Rrp12 is required at a 90S particle-mediated maturation step that precedes exosome action. (A) Protein complexes formed by
Pwp2-GFP in control and Rrp12-depleted cells. Bands and proteins identified by mass spectrometry are indicated on the right. Molecular weight
markers (in kDa) are indicated on the left. (B) Northern blot analysis showing copurification (lanes 6 to 10) of the indicated pre-RNA species with GFP-
tagged Pwp2, Enp1, Dim1 and Pno1 in normal cells. As control, parallel Northern blots were performed on total RNAs prepared from the same
samples used for the immunoprecipitations (second and third panels on the left). Western blot experiments were performed to analyze the amount
of the GFP-tagged protein present in the corresponding total cell lysates (top panel on the left) and GFP-Trap purifications (top panel on the right).
(C) Northern blot analysis of total RNAs extracted from MTR4, and GAL::HA-mtr4 cells to show the relative contents of pre-rRNA species and 59-A0

fragment. Cells were grown at 30uC in galactose-containing media and shifted to glucose-containing media for the indicated times. Northern blot
probes are indicated on the right. (D) Top panel, sucrose-gradient sedimentation analysis of ribosomal fractions (40S, 60S, 80S and polysomes) of cell
lysates from control (MTR4) and Mtr4-depleted (GAL::HA-mtr4 (Glu 9 h)) strains. Bottom panels, Northern blot analysis of indicated components of pre-
ribosomal particles in gradient fractions obtained in the above experiment. Numbers of fractions are shown at the bottom. Blotting probes and
antibodies are indicated on the right.
doi:10.1371/journal.pgen.1004836.g006
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Figure 7. Crm1 participates in the Rrp12-mediated 90S maturation step. (A) Northern blot analysis showing the amount of the indicated
pre-RNA intermediaries and 59-A0 byproduct (left) in control CRM1 and mutant crm1 (T539C) strains treated with leptomycin B (LMB) for the indicated
periods of time (top). (B) Top panel, sucrose-gradient sedimentation analysis of ribosomal complexes (40S, 60S, 80S and polysomes) of cell lysates
from crm1 (T539C) cells that were either nontreated (left panels) or treated (right panels) with leptomycin B for 15 min. Bottom panels, Northern blot
analysis of the indicated pre-rRNA species in the gradient fractions. Numbers of fractions are shown at the bottom. Blotting probes are indicated on
the right. (C) Northern blot analysis showing copurification (second to fifth panels on the right) of the indicated pre-RNA species with GFP-tagged
Crm1 (lane 4) and GFP-tagged Pwp2 (lane 6) in normal cells. Control samples were wild-type cells expressing endogenous untagged Crm1 and Rrp12.
Parallel Northern blots were performed on total RNAs prepared from the same total cell lysate samples used for the purifications (second to fifth
panels on the left). Western blot experiments were performed to analyze the amount of Crm1-GFP and Pwp2-GFP present in the total cell lysates (top
panel on the left) and GFP-Trap purified complexes (top panel on the right). The asterisk in the EC2 blot indicates the signal of the 23S pre-rRNA from
previous hybridization with the DA2 probe. (D) Sucrose gradient analysis of Crm1-HA, Pwp2-GFP and Rps3 in pwp2-GFP/crm1D cells containing a
pRS315-crm1-HA plasmid. Gradient fractions were analyzed by Western blot with anti-HA, anti-GFP and anti-Rps3 (left three panels). The right panels
show copurification of Crm1-HA with GFP-Trap purified complexes from pooled fractions of the 80–90S gradient region (pool 2). A GFP-Trap
purification on pooled fractions of the 10–20S gradient region (pool 1) was used as a control. Parallel Western blots analyzed the amount of Crm1-HA
in each one of the pool samples used for the GFP-Trap purifications (input) (right bottom panel). (E) Western blot analysis showing copurification of
Crm1-HA with GFP-tagged Pwp2 (lane 5) and with GFP-tagged Rrp12 (lane 6) in pwp2-GFP cells containing a pRS315-crm1-HA plasmid (lane 5), and in
GFP-rrp12 cells containing a pRS315-crm1-HA plasmid (lane 6), respectively. Parallel Western blots were performed to analyze the amounts of the
coimmunoprecipitated proteins in total cell lysates (lanes 1 to 3). (F) Sucrose gradient analysis showing the sedimentation behavior of Crm1-HA and
Rps3 in RRP12/CRM1 (left panels) and rrp12-D198/CRM1 (right panels) cells containing a pRS315-crm1-HA plasmid. The positions of the gradient where
40S, 60S and 80S complexes sedimented are indicated by arrows.
doi:10.1371/journal.pgen.1004836.g007
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the particle through the nuclear pores to be finally released when

the particles reach the cytosol. Consistent with this hypothesis, our

co-purification experiments and other proteomic analyses have

shown that Rrp12 is not a major component of cytoplasmic pre-

40S particles. Alternatively, it is also possible that Rrp12 could

remain associated to cytoplasmic pre-40S particles and only

becomes released upon completion of a specific maturation event

that takes place right after the nuclear export step. This model

would explain previous results indicating that Rrp12 can associate

with di-methylated 20S pre-rRNA, a modified form of the 20S

Figure 8. Model for the integration of different processes in the nucleolus during synthesis of 40S subunits. The 90S pre-ribosome
contains ,70 factors (represented in orange) that are specifically required for the cleavage of the primary pre-rRNA at sites A0, A1 and A2, and for the
assembly of ribosomal proteins (not represented). In addition, the 90S pre-ribosome engages two other sets of proteins that participate in activities
that will be initiated at the time of, or immediately after, the A2 cleavage: the exosome complex, and Rrp12/Crm1. The exosome degrades the 59-A0

fragment, allowing the liberation and recycling of bound 90S proteins. Rrp12 and Crm1 act as export factors for the released pre-40S particle. The
cleavage of the pre-rRNA at site A2 is intertwined with the initiation of 59-A0 degradation and the priming of the emergent pre-40S particle for nuclear
export. During the rapid transit of the pre-40S particle from the nucleolus to the cytoplasm, a few maturation factors (Tsr1, Rio2, Nob1) that will be
required in the cytoplasm are incorporated in a manner independent of nuclear export. Another maturation factor, Ltv1, requires Rrp12 for its stable
incorporation onto pre-40S particles, but whether or not it is dependent on the export process itself remains to be ascertained. Further details about
this model, and the evidence supporting it, is given in the text.
doi:10.1371/journal.pgen.1004836.g008
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pre-rRNA that is generated in the cytoplasm [22]. Further work

will be required to dissect the fate and specific roles of Rrp12 in

these late maturation stages.

The reason for using the pre-40S export machinery to facilitate

late 90S pre-ribosome-mediated processes is unknown. We propose

that such mechanism could ensure a timely coordination of the

recycling kinetics of 90S pre-ribosome components with pre-40S

particle release and rapid export (Figure 8). An inter-relation

between these three processes is indicated by our data, which shows

that the impairment of nuclear export causes defects in the function,

disassembly and subcellular localization of the 90S pre-ribosome.

Future work will be needed to explain the precise mechanisms by

which the export factors influence the activities of the exosome and

A2 cleavage complexes within the 90S pre-ribosome.

Materials and Methods

Yeast strains, genetic methods and plasmids
The Saccharomyces cerevisiae strains and plasmids used in this

study are listed in Tables S1 and S2, respectively. The conditional

strain for RRP12 under the control of the GAL1 promoter

(YPM7) was generated by one-step insertion of a KAN-MX6-

GAL1 cassette upstream of the ATG of the RRP12 gene [51].

This strain (referred to in the text as GAL::HA-rrp12), and the

other GAL1-driven strains used in this study, JDY144, WDG72,

YGM168, YO470 and YGM174 (referred to in the text as

GAL::HA-spb4, GAL::rsa4, GAL::HA-pno1, GAL::rio2-ProtA
and GAL::HA-mtr4, respectively) were cultured at 30uC in media

containing galactose (YPGal, 0.4% yeast extract, 0.8% peptone,

0.1 mM adenine, 2% galactose) or glucose (YPD, 0.4% yeast

extract, 0.8% peptone, 0.1 mM adenine, 2% glucose). For protein

depletion, the incubation times in YPD varied from 9 to 18 h, as

indicated in figure labelings. The ltv1D strain was cultured at

25uC, the temperature at which the 40S subunit biogenesis defects

of this strain are more exacerbated. For the experiments of

inactivation of Crm1 we employed a strain with the CRM1 gene

depleted that carried a plasmid for the expression of the crm1-
T539C-HA allele (strain MNY8, plasmid pDC-crm1-T539C). As

a control for those experiments, we employed the corresponding

strain carrying a plasmid for the expression of crm1-HA (strain

MNY7, plasmid pDC-CRM1). MNY7 and MNY8 cells were

treated with 100 ng/ml of leptomycin B (LMB) for 5–15 min. All

strains with MYC, hemagglutinin (HA) or green fluorescent

protein (GFP) carboxy-terminal tagged alleles, except the crm1-
HA and GFP-rrp12 ones, were generated by in-frame one-step

integration of PCR cassettes in the corresponding locus of wild

type cells. In these strains, the epitope-tagged versions are the only

source of the proteins in the cell, and their expression is driven

from the endogenous gene promoters. All epitope-tagged alleles

were fully functional, as measured by normal growth rates and

normal contents of rRNAs, pre-rRNAs and ribosomal subunits.

The sedimentation analysis of Crm1-HA shown in Figure 7D was

performed on the YGM193 strain (referred to in the figure as

pwp2-GFP, crm1D, pRS315-crm1-HA). The coimmunoprecipita-

tion experiment in Figure 7E was performed with the YMD6

strain carrying the pDC-CRM1 plasmid (referred to in the figure

as pwp2-GFP, crm1-HA) and with the YPM7 strain carrying the

pGM58 and pDC-CRM1 plasmids (referred to in the figure as

GFP-rrp12, crm1-HA). The sedimentation analysis of Crm1-HA

shown in Figure 7F was performed on the following strains

maintained in glucose-containing media: YPM7 carrying the

pBN18 and pDC-CRM1 plasmids (referred in the figure as

RRP12, CRM1, pRS315-crm1-HA), and YPM7 carrying the

pBN19 and pDC-CRM1 plasmids (referred in the figure as

rrp12D198, CRM1, pRS315-crm1-HA). Preparation of media,

yeast transformation and genetic manipulations were performed

according to established procedures.

RNA preparation and northern blot analysis
RNAs from total cellular lysates, gradient fractions and

coimmunoprecipitations were prepared by the hot-phenol method

[52]. Oligonucleotide labeling, RNA separation, Northern blotting

and hybridization were performed as described previously [53].

The sequences of the oligonucleotides used as probes are shown in

Table S3.

Protein purification and analysis
Preparation of total celular lysates for immunoblot, Western

blot analysis, purification of GFP-tagged proteins and mass

spectrometry analysis were performed as described previously

[23], except for the Pwp2-GFP/Crm1-HA and GFP-Rrp12/

Crm1-HA coimmunoprecipitation analysis in Figure 7E. In this

case, instead of lysing cells in IP buffer (20 mM Tris-HCl, pH 7.5,

5 mM MgCl2, 150 mM potassium acetate, 1 mM dithithreitol,

0.2% Triton X-100, supplemented with Complete [Roche]), cells

were lysed in IP-NP40 buffer (15 mM Na2HPO4, 10 mM

NaH2PO4, pH 7.2, 150 mM NaCl, 2 mM EDTA, 50 mM NaF,

0.1 mM NaVO4, 0.5% NP-40 Alternative [Calbiochem], supple-

mented with Complete). Before purification of Pwp2-GFP and

Rrp12-GFP with GFP-TRAP (Chromotek), the pre-cleared lysates

were diluted to 0.2% NP-40. The anti-Rrp12 antibody used for

Western blot in Figure 2B is a rabbit polyclonal antibody raised

against a peptide mapping at the C-terminus of yeast Rrp12 (this

study). Other antibodies used in Western blot analysis were: anti-

MYC (Roche), anti-GFP (Clontech), anti-HA (Covance), anti-

Nop1 (Pierce), anti-Mex67 (kind gift of C. Dargemont, Institut

Jacques Monod), anti-Rps3 (kind gift of M. Seedorf, University of

Heidelberg), anti-Rps8 (kind gift of G. Dieci, University of Parma),

anti-Rpl1 (kind gift of F. Lacroute, Centre de Génétique

Moléculaire, Gif-sur-Yvette), anti-Pgk1 (Abcam), and anti-Cdc11

(Santa Cruz). For the represention of the results of the proteomic

analysis shown in Figure 3E, the four different dot sizes are

indicative of the amount of the copurifying protein relative to the

amount of bait: .80%, 60–80%, 40–60%, and ,40%.

Polysome preparation and sucrose gradient analysis
Cell cultures (200 ml) were grown to an optical density at 600

(OD600) between 0.8 and 0.1 and, before harvesting, cycloheximide

was added to a final concentration of 0.1 mg/ml. After an

incubation on ice for 5 min, cells were collected and lysed in

700 ml of HK buffer (20 mM HEPES, pH 7.5, 10 mM KCl,

2.5 mM MgCl2, 1 mM EGTA, 1 mM dithiothreitol (DTT) and

0.1 mg/ml cycloheximide) using a Fastprep apparatus. Cell lysates

were pre-cleared by high-speed centrifugation, and extracts equiv-

alent to 5–20 absorption units at 260 nm (A260) were loaded on 7–

50% sucrose gradients (10 ml), which had been prepared in HK

buffer without cycloheximide. Ultracentrifugation, subsequent

fraction collection and polysome profile recording were performed

as previously described [53]. For Western blot analysis, 40 ml

samples of each fraction were mixed directly with 10 ml of SDS-

PAGE loading buffer (SPLB) and loaded onto SDS polyacrylamide

gels. For Northern blot analysis, total RNA was prepared by the hot-

phenol procedure from 100 ml samples of each fraction and

separated on 1.2% agarose-formadehyde gels. For the analysis of

purified complexes shown in Figure 7D, two sets (pools 1 and 2) of

four combined fractions were concentrated 6-fold by spinning on

Microcon-10 (Millipore) filters. The recovery of proteins after the

concentration step was ,10 fold more efficient for pool 1 than for
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pool 2, probably due to the higher sucrose concentration in pool 2.

Before performing the GFP-Trap purification, each concentrated

pool was taken to 1 ml with NP-40 buffer (0,2% final concentration).

Protein-RNA coimmunoprecipitation experiments
Cell cultures were grown to OD600 between 0.8 and 1.0, and

polysome extracts were prepared as described above. Extract

equivalents to 15 A260 units were taken to 250 ml with HK buffer

and mixed with 0.5 ml of IP buffer containing Complete and

600 U/ml of RNasin (Promega). In the Crm1-RNA coimmuno-

precipitations shown in Figure 7C, instead of using IP buffer it was

used IP-NP40 (0.2% final concentration) buffer. For evaluation of

protein content in total cell lysates, a 30 ml aliquot of the pre-

cleared lysate was mixed with 30 ml of SPLB and kept frozen until

analysis by Western blot. The rest of the extract was incubated

with 2 mg of anti-MYC 9E10 (Roche) antibody or with 25 ml of

GFP-TRAP beads at 4uC for 2 h. When using anti-MYC

antibody, immunoprecipitates were immobilized with Gamma-

Bind sepharose beads (GE Healthcare). Immunoprecipitates were

washed four times at 4uC with IP or IP-NP40 buffer. For protein

analyses, one fifth of the immunoprecipitated material was

resuspended in SPLB and analyzed, in paralel with the samples

of total protein, by Western blot. For RNA analyses, the rest of the

immunoprecipitated material was resuspended in 400 ml of

50 mM sodium acetate, 10 mM EDTA (pH 5.2), and processed

for RNA extraction by the hot phenol method. After ethanol

precipitation, the whole amount of recovered RNA was resus-

pended in formaldehyde loading buffer, separated on 1.2%

agarose-formadehyde gels and analyzed by Northern blot. In

parallel, in the same Northern blot experiments, it was evaluated

the pre-rRNA content in cell lysates before immunoprecipitation,

using 5 mg of total RNA prepared by the hot phenol method

directly from extract equivalents to 10 A260 units of the

corresponding polysome preparations.

Fluorescence microscopy
Cells were visualized using a Zeiss Axioplan 2 microscope

equiped with a 636objective, a Hammamutsu ORCA-ER digital

camera and Openlab (Improvision) cell imaging analysis software.

The Rpl25-EGFP and Rps2-GFP reporter assays to monitor pre-

40 and pre-60S nuclear accumulation were performed as

previously described [54].

Subcellular fractionation
Cells were grown to OD600 between 0.8 and 0.1, harvested and

spheroplasts prepared by incubation in S buffer (50 mM Tris-HCl,

pH 7.5, 10 mM MgCl2, 1.2 M sorbitol, 1 mM dithiothreitol, 5 mg/

ml Zymolyase T-100 (Seikagaku) at 30uC for 15 min. After two

washes with the same buffer, the spheroplasts were lysed using a

manual homogenizer in Ficoll buffer (10 mM Tris-HCl, pH 7.5,

20 mM KCl, 5 mM MgCl2, 3 mM dithiothreitol, 1 mM EDTA,

1 mM PMSF, 180 mg/ml Ficoll-400, supplemented with Complete).

Pre-cleared lysates were ultracentrifuged in a TLA 100.3 rotor at

23.000 rpm for 15 min, and the supernatant cytosolic fraction

collected. The nuclei pellet was resuspended in 50 mM Tris-HCl,

pH 7.5, 100 mM NaCl, 30 mM MgCl2, 0.25% NP-40 supplement-

ed with Complete. Aliquots of the precleared whole lysate (W),

cytosolic fraction (C) and nuclei (N) were mixed with SPLB and

loaded onto a SDS polyacrilamide gel for Western blot analysis.

Supporting Information

Figure S1 Recruitment of maturation factors to pre-40S

particles in the absence of Rrp12. (A–C) Sucrose gradient analysis

showing the sedimentation behavior of Ltv1-MYC (A), Enp1-

MYC (B), Rio2-MYC (C) and Rrp44-GFP (D) in the presence (top

two panels) and absence of Rrp12 (bottom two panels). Each set of

gradient fractions was analyzed by Western blot with anti-MYC

(A, B and C) of anti-GFP (D), and anti-Rps3. The positions of the

gradient where 40S, 60S and 80S complexes sedimented are

indicated by arrows.

(TIF)

Figure S2 Rrp12 is not required for the association of Prp43 and

Mex67 with pre-40S particles. (A) Northern blot analysis showing

coimmunoprecipitation of the indicated pre-RNA species with

Prp43-MYC in the presence and absence of Rrp12. Total RNAs

(middle and bottom panels, lanes 1 to 6) and RNAs present in

Prp43-MYC immunoprecipitates (middle and bottom panels,

lanes 7 to 12) obtained from the indicated strains, grown under

the indicated conditions, were analyzed with a probe that maps to

the pre-rRNA D-A2 region. Western blot experiments were

performed to analyze the amount of Prp43-MYC present in the

total cell lysates (top panels, lanes 1 to 6) and immunoprecipita-

tions (top panels, lanes 7 to 12). (B) Western blot analysis showing

copurification of Mex67 with Tsr1-GFP in the presence and

absence of Rrp12. Total cell lysates (lanes 1 to 6) and GFP-Trap

purified complexes (lanes 7 to 12) obtained from the indicated

yeast strains, grown under the indicated conditions, were analyzed

with anti-MYC and anti-Mex67 antibodies. The thin white lines

between lanes 3 and 4, and lanes 9 and 10, shown in A and B,

indicate the presence of in-between lanes in the same blot that

have been removed.

(TIF)

Figure S3 The loss of Rrp12 causes accumulation of pre-40S,

but not pre-60S, complexes in the nucleus. Epifluorescence

microscopy analysis of GAL::HA-rrp12 cells (A, C), control

GAL::HA-spb4 cells (B), and control GAL::HA-rsa4 cells (D)

expressing 40S (Rps2-GFP; top and second panels in A and B),

60S (Rpl25-GFP, third and bottom panels in A and B; and Rpl11-

GFP, top and bottom panels in C and D) subunit reporters. These

cells were grown in galactose-containing medium or shifted to

glucose-containing medium for 18 h as indicated. The GFP signal,

the DAPI-stained nuclei and the GFP-DAPI merge are shown in

the left, middle and right panels, respectively.

(TIF)

Figure S4 The loss of Pno1, Rio2 or Ltv1 does not cause

accumulation of the 59-A0 fragment. Northern blot analysis of total

RNAs extracted from GAL::HA-rrp12 and GAL::HA-pno1 cells

(A), and from GAL::HA-rrp12, GAL::rio2 and ltv1D cells (B).

Cells were grown at 30uC (except those corresponding to the lanes

marked with an asterisk in B) in galactose-containing media or

shifted to glucose-containing media for the indicated times. The

samples marked with an asterisk (lanes 10 and 11 in B) were

prepared from cultures grown at 25uC, the temperature at which

the defects of the LTV1 deletion are most patent. The specific

region of the 35S pre-rRNA recognized by each Northern blot

probe is indicated on the right.

(TIF)

Figure S5 Interaction of the 59-A0 fragment and Rrp12 in wild

type cells. Northern blot analysis showing copurification (second to

bottom panels on the right) of the indicated pre-rRNA species and

the 59-A0 fragment with the indicated GFP-tagged proteins in

normal cells. As control, a parallel Northern blot analysis was

performed on total RNAs prepared from the same total cell lysate

samples used for the GFP-Trap protein purifications (second to

bottom panels on the left). Western blot experiments were
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performed to analyze the amounts of the GFP-tagged proteins

present in the total cell lysates (top panel on the left) and in the

purifications (top panel on the right). The strains used in this

experiment were W303 (control), JDY851 (nop7-GFP) and

YPM7-R (GAL::HA-rrp12 containing a pRS416-GFP-rrp12

plasmid). These strains were maintained continuously in glucose-

containing media.

(TIF)

Table S1 Yeast strains used in this study.

(PDF)

Table S2 Plasmids used in this study.

(PDF)

Table S3 Probes used in northern blot analysis.

(PDF)
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