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ABSTRACT This study investigated the effects of
pterostilbene (PT) supplementation on growth perfor-
mance, hepatic injury, and antioxidant variables in a
broiler chickenmodel with diquat (DQ)-induced oxidative
stress. There were 192 one-day-old male Ross 308 broiler
chicks randomly allocated to one of two treatment groups:
1) broilers fed a basal diet and 2) broilers fed a diet sup-
plemented with 400 mg/kg PT. At 20 D of age, half of the
broilers in each group were intraperitoneally injected with
DQ (20 mg per kg BW), whereas the other half were
injected with an equivalent amount of sterile saline.
Diquat induced a rapid loss of BW (P, 0.001) 24 h post-
injection, but dietary PT supplementation improved the
BW change of broilers (P 5 0.014). Compared with un-
challenged controls, the livers of DQ-treated broilers were
in severe cellular damage and oxidative stress, with the
presence of higher plasma transaminase activities
(P , 0.05), a greater number of apoptotic hepatocytes
(P , 0.001), and an increased malondialdehyde content
(P5 0.007). Pterostilbene supplementation prevented the
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increases in plasma aspartate aminotransferase activity
(P 5 0.001), the percentage of hepatocyte apoptosis
(P , 0.001), and the hepatic malondialdehyde accumu-
lation (P 5 0.011) of the DQ-treated broilers. Regarding
the hepatic antioxidant function, PT significantly
increased total antioxidant capacity (P 5 0.007), super-
oxide dismutase activity (P5 0.016), reduced glutathione
content (P5 0.011), and the ratio of reduced glutathione
to oxidized glutathione (P 5 0.003), whereas it reduced
the concentration of oxidized glutathione (P 5 0.017).
Pterostilbene also boosted the expression levels of nuclear
factor erythroid 2–related factor 2 (P 5 0.010), heme
oxygenase 1 (P 5 0.037), superoxide dismutase 1
(P 5 0.014), and the glutamate–cysteine ligase catalytic
subunit (P 5 0.001), irrespective of DQ challenge. In
addition, PT alleviated DQ-induced adenosine triphos-
phate depletion (P5 0.010). In conclusion, PT attenuates
DQ-induced hepatic injury and oxidative stress of broilers
presumably by restoring hepatic antioxidant function.
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INTRODUCTION

Intensive modern farming significantly boosts live-
stock productivity and economic benefit; however, it
also increases animals’ risk of exposure to oxidative
stress (Miller et al., 1993; Franki�c et al., 2009). Factors
including nutritional, physiological/pathological, and
environmental causes can induce oxidative stress,
which represents an imbalance between the generation
of reactive oxygen species (ROS) and the scavenging
capacity of antioxidants, leading to DNA damage,
lipid peroxidation, and degradation of cellular proteins
(Jones, 2006). The liver is the primary site of biosyn-
thesis, metabolism, clearance, and host defense, and as
such, it is extremely vulnerable to damage by ROS
(Sanchez-Valle et al., 2012). Moreover, the disturbance
of hepatic function has been implicated as a conjoint
pathological mechanism underlying several diseases.
This contributes to high morbidity and mortality on
poultry farms (Avanzo et al., 2001; Lin et al., 2004;
Salami et al., 2015). Therefore, it is imperative to
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establish appropriate nutrition strategies to reduce the
risk of oxidative damage and liver disorders in broilers.
Pterostilbene (PT) is a naturally occurring antioxidant

found primarily in blueberries and Pterocarpus marsu-
pium heartwood. It has recently gained attention for its
health benefits in acute and chronic diseases associated
with oxidative stress (Acharya and Ghaskadbi, 2013;
McFadden, 2013; Cheng et al., 2016; Liu et al., 2017).
As a dimethyl ether analog of resveratrol, PT has
comparable or even stronger antioxidant and anti-
inflammatory properties than its parent compound
(Choo et al., 2014). Importantly, PTdisplays longer elim-
ination half-life, slower clearance, and higher bioavail-
ability in vivo owing to the presence of 2 methoxy
groups that cause it to exhibit increased lipophilicity
and oral absorption (Athar et al., 2007; Perecko et al.,
2010; Yeo et al., 2013). In this context, PT is
increasingly recognized as a key player in the recovery
of hepatic injury (Lee et al., 2013; El-Sayed et al.,
2015), and it may constitute an attractive candidate to
attenuate oxidative stress in poultry production. To the
best of our knowledge, the application of PT in the diets
of broilers has not been reported to date. Therefore, the
present study investigated the effects of diets
supplemented with PT on the growth performance and
hepatic antioxidant function of broiler chicks under
conditions of oxidative stress.
Table 1. Composition and calculated nutrient levels of the basal
diet (g/kg, as fed basis unless otherwise stated).

Items Content

Ingredients
Maize 576.10
Soybean meal 310.00
Maize gluten meal 32.90
Soybean oil 31.10
Limestone 12.00
Dicalcium phosphate 20.00
L-Lysine (78%) 3.40
DL-Methionine (98%) 1.50
Sodium chloride 3.00
Premix1 10.00

Calculated nutrient levels2

Metabolizable energy (MJ/kg) 12.56
Crude protein 210.98
Calcium 9.97
Available phosphorus 4.57
Lysine 11.98
Methionine 4.97
Methionine 1 cystine 8.49

1Premix provided per kilogram of diet: vitamin A (transretinyl acetate),
10,000 IU; vitamin D3 (cholecalciferol), 3,000 IU; vitamin E (all-rac-a-
tocopherol), 30 IU; menadione, 1.3 mg; thiamin, 2.2 mg; riboflavin, 8 mg;
nicotinamide, 40 mg; choline chloride, 600 mg; calcium pantothenate,
10 mg; pyridoxine$HCl, 4 mg; biotin, 0.04 mg; folic acid, 1 mg; vitamin B12
(cobalamin), 0.013 mg; Fe (from ferrous sulfate), 80 mg; Cu (from copper
sulfate), 8.0 mg; Mn (from manganese sulfate), 110 mg; Zn (from zinc
oxide), 60 mg; I (from calcium iodate), 1.1 mg; Se (from sodium selenite),
0.3 mg.

2All nutrient contents, except metabolizable energy, were analyzed
values.
MATERIALS AND METHODS

Experimental Design, Diets, and
Management

The protocols used in the animal experiments were
approved by the Institutional Animal Care and Use
Committee of Nanjing Agricultural University. To eval-
uate the hepatoprotective and antioxidant roles of PT in
broiler chickens, an established model of oxidative
stress–associated liver injury caused by diquat (DQ)
was used in this study. Diquat is widely used as a potent
chemical agent to induce oxidative stress, primarily tar-
geting the liver (Burk et al., 1995; Osbum et al., 2006). In
the metabolic process within the hepatocytes, a small
amount of DQ can trigger an oxidation/reduction
cycle that receives electrons from reduced form of
nicotinamide adenine dinucleotide phosphate, forms a
kind of highly unstable free radicals, and donates
electrons to molecular oxygen, eventually resulting in
the overproduction of superoxide anions (Fu et al.,
1999). Substantial studies have successfully established
animal models of oxidative stress with DQ, such as in
piglets, chicken embryos, and rodents (Bauman et al.,
1991; Awad et al., 1994; Gallagher et al., 1995; Rogers
et al., 2006; Yuan et al., 2017; Zhou et al., 2017; Wang
et al., 2018; Li et al., 2019). We used 192 one-day-old
male Ross 308 broiler chicks and randomly divided
them into 4 groups, which were designed as a 2 ! 2
factorial arrangement that included a diet factor (fed
either a basal diet (CON) or a diet supplemented with
400 mg PT [No. 537-42-8; BOC Sciences, Shirley, NY]
per kg of diet from 1 to 21 D of age) and a stress factor
(injected with either DQ [No. 45422; Sigma-Aldrich, St
Louis, MO] solution [1.0 mg/mL; dissolved in 0.86% ster-
ile saline]) at a dose of 20 mg per kg of BW or an equiv-
alent amount of sterile saline at 20 D of age. Each of
these groups contained 6 replicates (one replicate per
cage) with 8 birds per replicate. The doses of PT and
DQ were determined in accordance with the findings of
independent prestudies by our colleagues (unpublished).
Similarly, the added levels of resveratrol, the parent
compound of PT, were varied from 400 to 1,000 mg/kg
in the diets of broilers for the prevention and/or treat-
ment of heat stress (Zhang et al., 2017a), transport stress
(Zhang et al., 2017b), and acute liver injury caused by
aflatoxin B1 (Sridhar et al., 2015). All the birds were
kept in three-level wired battery cages placed in a
room environmentally maintained between 32�C to
34�C. When the chicks were at the age of 1 to 7 D, the
temperature of the room was gradually reduced to
26�C at the rate of 3�C to 4�C per week and kept con-
stant thereafter. Light was manipulated to create a light
cycle at a rate of 23 h light and 1 h darkness during the
entire study period. Feed and fresh water were available
ad libitum for 3 wk. Formulated as per the National
Research Council (1994) parameters, the basal diet
met the nutritional requirements of the birds. Table 1
shows the diet’s composition and nutrient levels. When
the chicks were 20 and 21 D of age, BW and feed intake
were recorded, respectively, on a cage basis. This was
carried out to calculate ADG, ADFI, and feed conver-
sion ratio (FCR) before DQ challenge (from 1–20 D of
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age) and to record the change in BW after DQ challenge
(from 20–21 D of age).

Sample Collection

Six chickens from each treatment group (one bird
from each cage) were randomly selected for sampling
at 24 h after injection, for DQ could then lead to hepatic
oxidative stress based on the findings reported by other
researchers (Bauman et al., 1991; Gallagher et al., 1995).
Heparinized blood samples were taken from the wing
vein and centrifuged at 4,000 ! g for 15 min at 4�C to
produce plasma samples, which were stored at 280�C
until analysis. After euthanasia via cervical dislocation,
the birds were decapitated, immediately eviscerated,
and the liver extracted. Liver samples from the left
lobe were taken and fixed in 4% paraformaldehyde for
histological observation. The remainder of the liver
was snap-frozen in liquid nitrogen and stored at 280�C
for further analysis.

Determination of Plasma Aminotransferase
Activities

Standard spectrophotometric procedures using com-
mercial kits (Nanjing Jiancheng Institute of Bioengi-
neering, Nanjing, Jiangsu, China) were used to
determine the activities of alanine aminotransferase
(ALT; No. C009-2-1) and aspartate aminotransferase
(AST; No. C010-2-1) in the plasma of broilers.

Hepatic Apoptotic Analysis

Samples from the left lobe of the liver were obtained,
fixed in 4% paraformaldehyde, and embedded in paraffin
blocks. The samples were divided into 5-mm sections for
subsequent apoptotic analysis, which was carried out
with one-step terminal deoxynucleotidyl transferase–
mediated dUTP nick-end labeling (TUNEL; No. A113-
03; Vazyme Biotech Co., Ltd., Nanjing, Jiangsu, China)
staining. Tissue sections were permeabilized with
20 mg/mL proteinase K at room temperature for
20 min. After washing with phosphate buffer solution
twice, the TUNELmixed reagents were added to the sec-
tions and incubated in dark conditions at 37�C for
60 min. We used 40-6-diamidino-2-phenylindole (DAPI;
No. E607303; Beyotime Institute of Biotechnology,
Haimen, Jiangsu, China) to label the nuclei. The
TUNEL-positive cells were visualized using a fluorescent
microscope (Nikon Eclipse C1; Nikon, Tokyo, Japan)
and were defined by a red color with the DAPI label.

Analysis of Hepatic Antioxidant Capacity

Reduced glutathione (GSH; No. GSH-2-W) and
oxidized glutathione (GSSG; No. GSSG-2-W) contents
in the liver of broilers were examined using commercial
assay kits (Suzhou Comin Biotechnology Co., Ltd.,
Suzhou, Jiangsu, China). The liver tissue homogenate
(20% weight/volume) was mixed with 5%
metaphosphoric acid and then centrifuged at 8,000 ! g
at 4�C for 10 min. The supernatants were used for GSH
and GSSG analysis. The concentration of GSH was spec-
trophotometrically measured at 412 nm by the 5,50-
dithio-bis-(2-nitrobenzoic acid) (DTNB) method
(Tietze, 1969). For GSSG, the thiol-masking agent 2-
vinylpyridine was added to the supernatant to remove
GSH. Then, the action of glutathione reductase in the
presence of NADPH reduced GSSG to GSH, which was
quantified with DTNB at 412 nm. We found the color
changeduring the reaction and the reaction rate tobepro-
portional to the concentrations of GSH and GSSG. The
concentrations of total glutathione (T-GSH) equal the
concentrations of GSH plus twice concentrations
of GSSG.
Colorimetric kits for total antioxidant capacity

(T-AOC; No. A015-1-2), superoxide dismutase (SOD;
No. A001-1-2), and glutathione peroxidase (GSH-Px;
No. A005-1-2) activities, along with malondialdehyde
(MDA; No. A003-1-2) concentration, were purchased
from Nanjing Jiancheng Institute of Bioengineering
(Nanjing, Jiangsu, China). Using the method of Benzie
and Strain (1996), we determined the activity of T-
AOC at 520 nm. The amount of T-AOC that elevated
the absorbance by 0.01 per minute was considered as
one unit. A xanthine and xanthine oxidase procedure
was used to measure SOD activity at 550 nm (Sun
et al., 1988). The amount of enzyme that caused 50% in-
hibition of nitrite production was considered as one unit
of SOD. The reaction of GSH with DTNB indicated
GSH-Px activity. We also monitored the change of
absorbance at 412 nm using a spectrophotometer
(Hafeman et al., 1974). The amount of enzyme required
to deplete 1 mmol of GSH per minute was considered one
unit of GSH-Px activity. The concentration of MDA in
the liver homogenate was assayed by thiobarbituric
acid chromometry (Placer et al., 1966).
Measurement of Hepatic Adenosine
Triphosphate Content

The level of adenosine triphosphate (ATP) in the liver
of broilers was measured with an ATP content assay kit
(No. A095-1-1; Nanjing Jiancheng Institute of Bioengi-
neering). The liver samples were cut into pieces, crushed,
and mixed with boiling double-distilled water to a final
concentration of 10% (weight/volume). The liver
homogenate was further boiled for 10 min and then
centrifuged at 3,000 ! g for 15 min. After that, the con-
centration of ATP in the supernatant was assayed by a
spectrophotometric method based on the colorimetric re-
action with phosphomolybdic acid and expressed as
mmol/g wet weight.
Total RNA Isolation and Gene Expression
Analysis

Extraction of total RNA and its reverse transcription
were performed as per our previous reports (Zhang et al.,
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2017c). Retrieving the snap-frozen liver samples, we iso-
lated its total RNA using TRIzol Reagent (No. 9109;
TaKaRa Biotechnology, Dalian, Liaoning, China), per
the manufacturer’s manual. Extracted RNA was dis-
solved in 50 mL ultrapure water. We used a NanoDrop
ND-1000UV spectrophotometer (NanoDrop Technolo-
gies, Wilmington, DE) to measure the purity and con-
centration of total RNA at 260 and 280 nm.
Electrophoresis on a 1.5% agarose gel stained Ultra
GelRed (No. GR501-01; Vazyme Biotech Co., Ltd.)
was used to verify the RNA integrity. Then, we reverse
transcribed 1 mg of total RNA into complementary
DNA using the PrimeScript RT Reagent Kit (No.
RR036 A; TaKaRa Biotechnology). Real-time polymer-
ase chain reaction (PCR) was performed using a Quant-
Studio 5 Real-time PCR System (Applied Biosystems,
Life Technologies, Foster City, CA) using the
ChamQTM SYBR qPCR Master Mix Kit (No. Q311-
02; Vazyme Biotech Co., Ltd.), as per the manufac-
turer’s guidelines. The PCR process involved a prerun
at 95�C for 30 s, 40 cycles of denaturation at 95�C for
5 s, and a 60�C annealing step for 30 s. For the melting
curve conditions, we conducted 1 cycle of denaturation
at 95�C for 10 s and then increased the temperature
from 65 to 95�C with a change rate at 0.5 C/s.
Supplemental Table 1 presents details of the primer se-
quences for the target and reference genes nuclear factor
erythroid 2–related factor 2 (NRF2), heme oxygenase 1
(HO1), NAD(P)H quinone dehydrogenase 1 (NQO1),
superoxide dismutase 1 (SOD1), superoxide dismutase
2 (SOD2), glutathione S-transferase alpha 2 (GSTA2),
glutathione S-transferase alpha 3 (GSTA3), glutamate-
cysteine ligase catalytic subunit (GCLC), glutamate-
cysteine ligase modifier subunit (GCLM), sirtuin 1
(SIRT1), peroxisome proliferators-activated receptor
gamma coactivator 1 alpha (PGC1a), nuclear respira-
tory factor 1 (NRF1), transcription factor A, mitochon-
drial (TFAM), B cell lymphoma/leukemia 2 (BCL2),
caspase 3 (CASP3), glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH), and beta actin (ACTB) used in
this study. Relative expression levels of the target genes
were normalized to the reference gene and then calcu-
lated in accordance with the 22DDCt method (Livak
and Schmittgen, 2001).
Table 2. Effect of dietary pterostilbene supplementation on the
growth performance of broilers from 1 to 20 D of age.

Items1 CON PT SEM P-value

ADG (g/day) 32.23 32.68 0.45 0.629
ADFI (g/day) 44.79 43.63 0.49 0.249
FCR2 (g:g) 1.39 1.34 0.02 0.071

1Mean values with pooled SEMs, n 5 12.
2Feed conversion ratio was calculated by dividing the average daily feed

intake by its average daily gain.
Abbreviations: CON, broilers received a basal diet; PT, broilers received

a pterostilbene-supplemented diet; FCR, feed conversion ratio.
Statistical Analysis

Before DQ challenge, the Student t test of SPSS sta-
tistical software (version 22.0 for Windows, SPSS Inc.,
Chicago, IL) was used to determine whether dietary
PT supplementation had significant effects on the
ADG, ADFI, and FCR of broilers from 1 to 20 D of
age. After DQ challenge, the significance and interac-
tion of the main effects (stress and diet) were measured
by two-way analysis of variance (ANOVA) via the gen-
eral linear model procedure of SPSS statistical software.
A P-value less than 0.05 was considered as statistically
significant. After the one-way ANOVA test, Tukey’s
multiple comparison test was used to differentiate
significantly different treatments based on the
interaction of the main effects (P , 0.05). Data are pre-
sented as mean values with pooled SEMs.
RESULTS

Growth Performance

No difference was observed in the ADG, ADFI, or
FCR between the CON and PT groups before DQ injec-
tion (Table 2). During the period of DQ challenge, the
fold change in BW (P , 0.001) of DQ-treated broilers
was dramatically lower than that of the saline-treated
controls (Figure 1). In contrast, PT improved the BW
change (P 5 0.014) of broilers during 0 to 24 h after
the challenge.
Relative Liver Weight and Plasma
Transaminase Activities

Diquat challenge induced an increase in the relative
weight of the liver (P 5 0.001), corresponding to higher
activities of ALT (P 5 0.012) and AST (P 5 0.019) in
the plasma (Table 3). Conversely, broilers that
consumed a PT-supplemented diet showed a significant
decrease in the activity of plasma AST (P 5 0.006),
compared with those fed with a basal diet. In addition,
the PT diet alleviated the increased plasma AST activity
(P 5 0.001) in the DQ-challenged broilers compared
with the unchallenged controls.
Hepatic Apoptotic Levels

Compared with the untreated controls, the broilers’
exposure to DQ showed a sharp rise in the percentage
of hepatocyte apoptosis (P , 0.001; Figures 2A and
2B). Diquat challenge significantly decreased the
mRNA abundance of BCL2 (P 5 0.022; Figure 2C)
but increased the mRNA abundance of CASP3
(P 5 0.005; Figure 2C). However, PT supplementation
exerted an opposite effect on the hepatic apoptotic per-
centage (P , 0.001), whereas it effectively attenuated
the DQ-induced higher apoptotic index in the liver of
broilers (P , 0.001). In addition, the BCL2 expression
was up-regulated by PT treatment (P 5 0.028).



Figure 1. Effect of dietary pterostilbene supplementation on the BW
change of the sterile saline- and diquat-treated broilers from 20 to 21 D of
age. BW change induced by diquat or sterile saline injection was calcu-
lated by dividing the final BW by its initial BW. Values are means with
their SEs represented by vertical bars (n 5 6). Abbreviations: CON,
broilers received a basal diet from 1 to 21 D of age; DQ, broilers were
injected with diquat solution at 20 D of age; PT, broilers received a pter-
ostilbene-supplemented diet from 1 to 21 D of age; SS, birds were
injected with sterile saline at 20 D of age.

CHEN ET AL.3162
Hepatic Antioxidant Capacity

Administration of DQ dramatically increased the ac-
tivities of SOD (P 5 0.006) and GSH-Px (P , 0.001)
and the content of MDA (P 5 0.007), whereas it
decreased T-GSH (P5 0.004) and GSH (P5 0.002) con-
centrations as well as the ratio of GSH to GSSG
(P 5 0.010) in the liver (Table 4). The T-AOC
(P 5 0.007) and SOD (P 5 0.016) activities; T-GSH
(P 5 0.037) and GSH (P 5 0.011) contents; and
GSH:GSSG ratio (P5 0.003) were all robustly improved
because of supplementation with PT. Moreover, feeding
a PT-supplemented diet to broilers obviously decreased
the concentrations of GSSG (P 5 0.017) and MDA
(P 5 0.012) in the liver compared with those fed with
a basal diet.
Table 3. Effect of dietary pterostilbene supplementation on relative
broilers challenged with diquat.

Items1
SS DQ

CON PT CON PT

Relative liver weight2 (g/100 g BW) 2.53 2.55 2.89 2.69
ALT (U/L) 8.33 9.48 12.98 10.12
AST (U/L) 32.15b 33.97b 48.48a 30.84b

a,bMeans within a row with different superscripts are different at P , 0.05
1Mean values with pooled SEMs, n 5 6.
2Relative liver weight was calculated as follows: (liver weight/final BW) !
Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotran

were injected with diquat solution at 20 D of age; PT, birds received a pterostil
sterile saline at 20 D of age; S ! D, the interaction of stress and diet effects.
Table 5 summarized the expression levels of genes
involved in antioxidant defense. Compared with the un-
challenged broilers, DQ significantly lowered the mRNA
abundance of hepatic SOD1 (P 5 0.021). In contrast,
PT supplementation up-regulated the expression levels
of NRF2 (P 5 0.010), HO1 (P 5 0.037), SOD1
(P 5 0.014), GSTA2 (P 5 0.018), and GCLC
(P 5 0.001). Neither DQ treatment nor PT supplemen-
tation affected the mRNA levels of NQO1, SOD2,
GSTA3, and GCLM (P . 0.05).
Hepatic ATP Content and Mitochondrial
Function–Related Gene Expression

The content of ATP (P 5 0.021) was significantly
decreased in the liver of DQ-treated broilers compared
with untreated broilers (Figure 3). Consumption of the
PT-supplemented diet abolished the decrease in hepatic
ATP concentration in the DQ-treated broilers
(P 5 0.010). In addition, the transcriptional activities
of SIRT1 (P 5 0.001), PGC1a (P 5 0.001), and NRF1
(P5 0.016) were dramatically decreased after DQ injec-
tion (Figure 4). Conversely, the PT-fed broilers dis-
played significant increases in the mRNA expression of
hepatic SIRT1 (P 5 0.004) and TFAM (P 5 0.044)
when compared with those fed with a basal diet.
DISCUSSION

The multiple benefits of PT for the prevention and
treatment of oxidative stress have recently drawn
increased attention owing to its specific biological prop-
erties (Zhang et al., 2013; Sireesh et al., 2017; Yang et al.,
2017; Yu et al., 2018); however, past studies have mainly
focused on in vitro experiments at the cellular level. This
study presents evidence that in vivo PT
supplementation mitigates the hepatic injury and
oxidative stress of broiler chicks caused by DQ
challenge. Specifically, PT preserves redox balance,
attenuates ATP depletion, and mitigates liver injury.
These interrelated effects may cooperate to minimize
the BW loss of broilers during DQ challenge.
The liver is very vulnerable to different kinds of stress

including oxidative stress (Sanchez-Valle et al., 2012).
Many risk factors, including toxins, environmental
liver weight and plasma transaminase activities of 21-day-old

SEM

Stress effect Diet effect P-value

SS DQ CON PT Stress Diet S ! D

0.04 2.54 2.79 2.71 2.62 0.001 0.218 0.117
0.57 8.90 11.55 10.65 9.80 0.012 0.386 0.050
1.91 33.06 39.66 40.32 32.40 0.019 0.006 0.001

.

100.
sferase; CON, birds received a basal diet from 1 to 21 D of age; DQ, birds
bene-supplemented diet from 1 to 21 D of age; SS, birds were injected with



Figure 2. Effect of dietary pterostilbene supplementation on hepatic apoptotic status of 21-day-old broilers challenged with diquat. (A) Represen-
tative micrographs of TUNEL staining carried out on paraformaldehyde-fixed sections from the liver samples (400!magnification). (B) The percent-
age of hepatocyte apoptosis. (C) Real-time polymerase chain reaction analysis of hepatic mRNA expression of BCL2 and CASP3. Values are means
with their SEs represented by vertical bars (n 5 6). a-cMean values within a row with unlike letters were significantly different (P , 0.05) among
groups. Abbreviations: BCL2, B cell lymphoma/leukemia 2; CASP3, caspase 3; CON, broilers received a basal diet from 1 to 21 D of age; DQ, broilers
were injected with diquat solution at 20 D of age; PT, broilers received a pterostilbene-supplemented diet from 1 to 21 D of age; SS, birds were injected
with sterile saline at 20 D of age; TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling.

Table 4. Effect of dietary pterostilbene supplementation on hepatic antioxidant ability and lipid peroxidation of 21-day-old broilers
challenged with diquat.

Items1
SS DQ

SEM

Stress effect Diet effect P-value

CON PT CON PT SS DQ CON PT Stress Diet S ! D

T-AOC (U/mg protein) 1.75a,b 1.83a 1.40b 1.92a 0.06 1.79 1.66 1.57 1.88 0.213 0.007 0.041
SOD (U/mg protein) 188.95 203.52 206.21 222.52 3.70 196.24 214.36 197.58 213.02 0.006 0.016 0.884
GSH-Px (U/mg protein) 19.14 21.13 24.71 23.18 0.60 20.14 23.95 21.93 22.16 ,0.001 0.800 0.063
T-GSH (nmol/100 mg wet weight) 129.29 138.74 91.73 120.93 5.45 134.01 106.33 110.51 129.83 0.004 0.037 0.266
GSH (nmol/100 mg wet weight) 116.72 128.85 75.15 109.91 5.72 122.78 92.53 95.93 119.38 0.002 0.011 0.194
GSSG (nmol/100 mg wet weight) 6.29 4.94 8.29 5.51 0.45 5.61 6.90 7.29 5.23 0.121 0.017 0.374
GSH:GSSG (nmol:nmol) 19.11 27.94 10.53 20.79 1.83 23.53 15.66 14.82 24.37 0.010 0.003 0.800
MDA (nmol/mg protein) 0.74b 0.75b 1.39a 0.77b 0.08 0.75 1.08 1.07 0.76 0.007 0.012 0.011

a,bMeans within a row with different superscripts are different at P , 0.05.
1Mean values with pooled SEMs, n 5 6.
Abbreviations: CON, birds received a basal diet from 1 to 21 D of age; DQ, birds were injected with diquat solution at 20 D of age; PT, birds received a

pterostilbene-supplemented diet from 1 to 21 D of age; SS, birds were injected with sterile saline at 20 D of age; S ! D, the interaction of stress and diet
effects; GSH, reduced glutathione; GSH-Px, glutathione peroxidase; GSH:GSSG, the ratio of reduced glutathione to oxidized glutathione; GSSG, oxidized
glutathione; MDA, malondialdehyde; SOD, superoxide dismutase; T-AOC, total antioxidant capacity; T-GSH, total glutathione.
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Table 5.Effect of dietary pterostilbene supplementation on the expression levels of hepatic antioxidant
gene of 21-day-old broilers challenged with diquat.

Items1,2
SS DQ

SEM

Stress effect Diet effect P-value

CON PT CON PT SS DQ CON PT Stress Diet S ! D

NRF2 1.00 1.78 1.51 2.10 0.14 1.39 1.81 1.26 1.94 0.100 0.010 0.707
HO1 1.00 1.23 0.60 1.24 0.11 1.11 0.92 0.80 1.24 0.338 0.037 0.294
NQO1 1.00 1.19 0.89 1.20 0.07 1.10 1.04 0.94 1.19 0.679 0.071 0.658
SOD1 1.00 1.16 0.51 1.02 0.08 1.08 0.77 0.76 1.09 0.021 0.014 0.177
SOD2 1.00 1.05 0.81 0.98 0.08 1.03 0.90 0.91 1.02 0.423 0.499 0.729
GSTA2 1.00 1.44 0.85 1.63 0.13 1.22 1.24 0.92 1.54 0.934 0.018 0.482
GSTA3 1.00 1.24 1.06 1.48 0.12 1.12 1.27 1.03 1.36 0.557 0.206 0.709
GCLC 1.00 2.00 0.74 1.92 0.18 1.50 1.33 0.87 1.96 0.566 0.001 0.765
GCLM 1.00 1.61 1.60 1.39 0.14 1.30 1.49 1.30 1.50 0.495 0.467 0.156

1Mean values with pooled SEMs, n 5 6.
2Expressed in arbitrary units. The expression of each target gene for the CON-SS group was assigned a value of

1 and normalized against beta actin.
Abbreviations: CON, birds received a basal diet from 1 to 21 D of age; DQ, birds were injected with diquat

solution at 20 D of age; PT, birds received a pterostilbene-supplemented diet from 1 to 21 D of age; SS, birds were
injectedwith sterile saline at 20D of age; S!D, the interaction of stress and diet effects; GCLC, glutamate–cysteine
ligase catalytic subunit; GCLM, glutamate–cysteine ligase modifier subunit; GSTA2, glutathione S-transferase
alpha 2; GSTA3, glutathione S-transferase alpha 3; HO1, heme oxygenase 1; NQO1, NAD(P)H quinone dehy-
drogenase 1; NRF2, nuclear factor, erythroid 2-related factor 2; SOD1, superoxide dismutase 1; SOD2, superoxide
dismutase 2.
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pollutants, and pathogenic bacteria, can disturb hepatic
redox homeostasis and elicit oxidative stress–mediated
damage, which in turn results in severe liver injury (Li
et al., 2015). Once hepatic antioxidant responses are un-
able to cope with these challenges, the homeostatic sys-
tems gradually deteriorate and lead to a decline in
disease resistance (Avanzo et al., 2001; Lin et al., 2004;
Salami et al., 2015). The DQ-induced oxidative stress
model is well known to explore the pathogenesis of liver
injury and to evaluate novel hepatoprotective agents
Figure 3. Effect of dietary pterostilbene supplementation on hepatic
ATP content of 21-day-old broilers challenged with diquat. Values are
means with their SEs represented by vertical bars (n 5 6). a,bMean
values within a row with unlike letters were significantly different
(P, 0.05) among groups. Abbreviations: ATP, adenosine triphosphate;
CON, broilers received a basal diet from 1 to 21 D of age; DQ, broilers
were injected with diquat solution at 20 D of age; PT, broilers received
a pterostilbene-supplemented diet from 1 to 21 D of age; SS, birds
were injected with sterile saline at 20 D of age.
(Burk et al., 1995; Osbum et al., 2006). Therefore, we
selected DQ for this study to induce hepatic tissue
damage and oxidative stress and to examine the
hepatoprotective roles of PT.
In this investigation, the DQ-challenged broilers

exhibited a higher percentage of hepatocyte apoptosis
and increased AST and ALT plasma values. Increases
in plasma aminotransferases, which are recognized as
the most sensitive indicators of hepatic damage, can
reflect the extent of pathological severity of liver injury
(Ikeda et al., 1992). Treatment with PT efficaciously
counteracted the DQ-induced increase in plasma AST
activity to near control value. The number of apoptotic
hepatocytes and the expression level of antiapoptotic
gene BCL2 also confirmed PT as a protectant. In accord
with the present findings, other groups have demon-
strated that PT could antagonize the deleterious effects
of several hepatotoxicants, such as dimethylnitrosamine
(Lee et al., 2013) and acetaminophen (El-Sayed et al.,
2015).
Cellular damage caused by aberrant ROS accumula-

tion is considered a major mediator associated with a
multitude of pathological disorders. Diquat can convert
molecular oxygen into superoxide anion radicals, lead-
ing to lipid peroxidation of membranes, DNA damage,
and subsequent liver injury (Yuan et al. 2007). Expo-
sure to DQ notably enhanced lipid peroxidation in the
liver of DQ-injected broilers. This was due to the over-
production of ROS, with an increase in the concentra-
tion of MDA, an end product of peroxidation of
polyunsaturated fatty acids, and related esters (Jain,
1984). Similar studies on rodents and pigs have also
observed increased MDA levels in the plasma, liver,
muscle, and intestines after DQ injection (Wang
et al., 2013; Yin et al., 2015).
To counteract oxidative stress, cells are equipped with

numerous antioxidant defenses, such as the GSH redox
cycle and a series of enzymatic systems. Cells can be
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Figure 4. Effect of dietary pterostilbene supplementation on the expression levels of hepatic genes related to mitochondrial function of 21-day-old
broilers challenged with diquat. Values are means with their SEs represented by vertical bars (n 5 6). Abbreviations: CON, broilers received a basal
diet from 1 to 21 D of age; DQ, broilers were injected with diquat solution at 20 D of age; NRF1, nuclear respiratory factor 1; PGC1a, peroxisome
proliferators-activated receptor gamma coactivator 1 alpha; PT, broilers received a pterostilbene-supplemented diet from 1 to 21 D of age; SIRT1,
sirtuin 1; SS, birds were injected with sterile saline at 20 D of age; TFAM, transcription factor A, mitochondrial.
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protected from oxidative damage with SOD, which con-
verts superoxide anion to hydrogen peroxide. Then, the
hydrogen peroxide is removed by GSH-Px or catalase. In
the current work, the activities of SOD and GSH-Px
were increased significantly in the liver of broilers after
DQ challenge, but these increases seem to be inadequate
to inhibit the accumulation of lipid peroxidation. GSH
depletion may also constitute a key factor contributing
to lipid peroxidation, as a decreased GSH content was
observed in the liver of DQ-treated broilers. As a pre-
dominant endogenous antioxidant, GSH is necessary
for ROS detoxification, removal of hydrogen and lipid
peroxides, and repair of oxidatively damaged proteins.
In addition, in this study, a significantly down-
regulated mRNA abundance of SOD1 was observed in
the liver of the DQ-treated broilers, indicating that the
defective transcription of SOD gene may precede the
decrease of its activity, possibly because cellular
signaling pathways involving the antioxidant defense
system are extremely sensitive to exogenous stimulus.
Similarly, Gallagher et al. (1995) have shown that a
40% decline in the mRNA expression of SOD1 was
observed in the liver of rats after 24 h after DQ injection.
Such a defect in redox signals would eventually result in
an extensive collapse in antioxidant enzymatic systems.
In a study by Wang et al. (2013), the activities of SOD
and GSH-Px were all significantly reduced in the
plasma, muscle, and liver of weanling piglets at 14 D af-
ter DQ exposure. Thus, if the oxidative stress cannot be
controlled promptly, a vicious cycle could emerge among
antioxidant enzyme inactivation, GSH depletion, and
excessive lipid peroxidation.
The present data revealed that supplementation with

PT could improve the activity of SOD in the liver of DQ-
treated broilers and provide a potential explanation for
the improvement in hepatic lipid peroxidation.
Pterostilbene has been found to possess beneficial effects
in attenuating liver injury presumably by accessing the
antioxidant defense system. Nuclear factor erythroid
2–related factor 2 is a master regulator of the antioxi-
dant response and represents the underlying mechanism
that provides a pivotal defense against DQ toxicity.
Ramkumar et al. (2013) have found that PT is a poten-
tial activator of NRF2 through a reporter protein
complementation imaging assay. Experiments per-
formed by Wang et al. (2010a,b) also showed that
blueberry as a source of PT could stimulate the levels
of transcriptional expression of NRF2, NQO1, and
HO1 and confers protection to acute hepatic injury in
rats. Our findings are in accord with these observations
and suggest that PT administration protects against
DQ-induced liver injury by up-regulating the mRNA
levels of NRF2 and its downstream HO1, SOD1,
GSTA2, and GCLC.

Another possible mechanism by which PT could bene-
ficially influence hepatic redox status may be involved in
its role in preserving GSH pool. This is based on the find-
ings of increases in T-GSH and GSH contents and
GSH:GSSG ratio and a decrease in GSSG concentration.
Pterostilbene can function directly as a free radical scav-
enger to inhibit the accumulation of endogenous super-
oxide, hydroxyl, and hydrogen peroxide (Acharya and
Ghaskadbi, 2013). As a result, it prevents the formation
of GSSG and maintains GSH in a reduced state. As
mentioned earlier, PT mediates an up-regulation of the
hepatic GCLC expression, which uses the catalytic ac-
tivity of glutamate cysteine ligase and exploits the
rate-limiting and regulatory enzyme in GSH synthesis
(Jay and Dickinson, 2003). This observation may partly
explain the capacity of PT to enhance the synthesis of T-
GSH and to replenish GSH supplies after DQ-induced
depletion.
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In addition to its role in redox status, PT also affects
the hepatic energy supply of the DQ-treated broilers.
Substantial evidence points to detrimental effects of
oxidative stress on energy generation systems (Brookes
et al., 2004; Jaeschke et al., 2012). Mitochondria are
not only the primary source of ROS generation but
also the major targets for free radical attack. Severe
damage to the bioenergetic machinery would suppress
the production of ATP and trigger mitochondrial-
dependent apoptosis (Brookes et al., 2004). The data
presented herein substantiate this view and further
reveal that the oxidative stress caused by DQ challenge
leads to a sharp decline in the expression of genes related
to mitochondrial function, including SIRT1, PGC1a,
and NRF1. Under physiological circumstances, SIRT1
directly interacts with PGC1a and deacetylates
PGC1a. They lie upstream from NRF1 and TFAM
and cooperate to regulate metabolic homeostasis, mito-
chondrial biogenesis, and energy supply (Rodgers
et al., 2005; Lagouge et al., 2006). The underexpression
of SIRT1, PGC1a, and NRF1 observed in the DQ-
treated broilers may be involved in the ATP depletion
and the increase in hepatocyte apoptosis. However, sup-
plementation with PT before and during DQ treatment
prevented hepatic ATP loss in broilers, corresponding to
the increased expression of SIRT1 and TFAM. Available
literature indicates that PT is a potent activator of
SIRT1 and an efficient protector against mitochondrial
dysfunction (Cheng et al., 2016; Guo et al., 2016).
Thus, these results, together with improvements in
hepatic structure and antioxidant function, constitute
plausible mechanisms of PT action to prevent the BW
loss of the DQ-challenged broilers.

In conclusion, the present study provides direct proof
of the protective potential of PT against the hepatic
damage and oxidative stress of broilers exposure to
DQ. Moreover, the study demonstrates that dietary sup-
plementation of PT may help to improve the growth of
broiler chicks experiencing oxidative stress.
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