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Myasthenia gravis (MG) is a rare, treatable antibody-mediated disease which is
characterized by muscle weakness. The pathogenic antibodies are most frequently
directed at the acetylcholine receptors (AChRs) at the skeletal muscle endplate. An
ophthalmoplegic subphenotype of MG (OP-MG), which is characterized by treatment
resistant weakness of the extraocular muscles (EOMs), occurs in a proportion of
myasthenics with juvenile symptom onset and African genetic ancestry. Since the
pathogenetic mechanism(s) underlying OP-MG is unknown, the aim of this study was
to use a hypothesis-generating genome-wide analysis to identify candidate OP-MG
susceptibility genes and pathways. Whole genome sequencing (WGS) was performed
on 25 AChR-antibody positive myasthenic individuals of African genetic ancestry
sampled from the phenotypic extremes: 15 with OP-MG and 10 individuals with
control MG (EOM treatment-responsive). Variants were called according to the Genome
Analysis Toolkit (GATK) best practice guidelines using the hg38 reference genome. In
addition to single variant association analysis, variants were mapped to genes (±200 kb)
using VEGAS2 to calculate gene-based test statistics and HLA allele group assignment
was inferred through “best-match” alignment of reads against the IMGT/HLA database.
While there were no single variant associations that reached genome-wide significance
in this exploratory sample, several genes with significant gene-based test statistics and
known to be expressed in skeletal muscle had biological functions which converge
on muscle atrophy signaling and myosin II function. The closely linked HLA-DPA1 and
HLA-DPB1 genes were associated with OP-MG subjects (gene-based p < 0.05) and
the frequency of a functional A > G SNP (rs9277534) in the HLA-DPB1 3′UTR, which
increases HLA-DPB1 expression, differed between the two groups (G-allele 0.30 in OP-
MG vs. 0.60 in control MG; p = 0.04). Furthermore, we show that rs9277534 is an HLA-
DBP1 expression quantitative trait locus in patient-derived myocytes (p < 1 × 10−3).
The application of a SNP to gene to pathway approach to this exploratory WGS dataset
of African myasthenic individuals, and comparing dichotomous subphenotypes, resulted
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in the identification of candidate genes and pathways that may contribute to OP-
MG susceptibility. Overall, the hypotheses generated by this work remain to be
verified by interrogating candidate gene and pathway expression in patient-derived
extraocular muscle.

Keywords: myasthenia gravis, African, whole genome sequencing, extraocular muscle, ophthalmoplegia, HLA-
DPB1, extreme phenotype, association

INTRODUCTION

Myasthenia gravis (MG) is a rare, but treatable antibody-
mediated disease which results in fatigable weakness of skeletal
muscles, including extraocular (or eye) muscles. In most
individuals this is a result of pathogenic antibodies targeting the
acetylcholine receptors (AChR) at the neuromuscular junction,
which cause activation of complement at the muscle endplate and
consequent muscle damage (Engel et al., 1977).

Though the incidence of AChR-antibody positive MG in sub-
Saharan Africa is similar to global figures (Mombaur et al.,
2015), and the response to MG therapies overall is similar among
populations (Heckmann et al., 2007), we have recognized a
subphenotype of treatment-resistant ophthalmoplegia, or OP-
MG, among a subset of MG subjects of African genetic ancestry
(Heckmann et al., 2007; Heckmann and Nel, 2017). This OP-MG
subphenotype is characterized by severe, persistent extraocular
muscle (EOM) weakness and commonly affects subjects with
juvenile onset, but otherwise characteristic AChR-antibody
positive MG (i.e., generalized muscle weakness which responds
to treatment). The pathogenesis of the OP-MG subphenotype
remains unknown though we hypothesize that individuals who
develop this subphenotype may harbor African susceptibility
variants which impact on the MG disease process in the particular
context of the EOMs.

A previous extended whole exome sequencing (WES) study of
OP-MG subjects, including untranslated region (UTR) coverage,
identified a number of putative regulatory variants (Nel et al.,
2017). However, this study suffered from several limitations
including false positive variant calls which could not be validated
by Sanger sequencing (likely PCR related) and limited coverage
of the non-coding genome (which is expected to harbor a greater
burden of variants contributing to complex disease risk). Here we
identified a number of OP-MG associated variants in the HLA
class II region though it was not possible to verify them with
Sanger sequencing due to the complexity of this region. This was
interesting because the genetic basis of MG has been investigated
for more than three decades in individuals of European genetic
ancestry and the consistent finding has been the association of
the class I and II HLA region with individuals by age at MG onset
(Nel and Heckmann, 2018).

The focus of the present study was to perform PCR-free
whole genome sequencing (WGS) in a well characterized cohort
of OP-MG and control MG individuals, all AChR antibody-
positive and differing only by the responsiveness of their EOMs
to standard therapy. Although the sample is small (n = 25), this
discovery cohort represented highly selected individuals from
the phenotypic extremes and matched for ancestry to maximize

the power to detect association signals. Single nucleotide
polymorphisms (SNPs) which were suggestive of association with
OP-MG were validated in a larger cohort and a SNP to gene to
pathway approach was used to prioritize genes based on skeletal
muscle expression patterns.

MATERIALS AND METHODS

Patient Samples
Patients with generalized myasthenia gravis (MG) of early-
onset (<25 years) and African genetic ancestry (either black
African or Cape mixed African ancestry) were recruited for WGS.
This discovery sample represented the phenotypic extremes of
treatment responsivity to myasthenic-associated EOM weakness.
The case group (n = 15) included individuals with OP-MG
as previously described (Heckmann and Nel, 2017), defined
as treatment resistant weakness of EOMs. The control group
(n = 10) included individuals with no persistent EOM weakness,
i.e., EOM weakness may have been present at disease presentation
but responded appropriately to treatment. DNA samples from
28 African ancestry MG patients (1 OP-MG and 27 control
MG) with early onset disease (<38 years) served as a validation
sample to genotype selected variants. This study was approved
by the UCT Faculty of Health Sciences Human Research Ethics
Committee (HREC 591/2014) and all subjects gave written
informed consent in accordance with the Declaration of Helsinki.
The study design is outlined in Figure 1.

DNA Extraction and Whole Genome
Sequencing
Genomic DNA was extracted from buffy coats of nucleated cells
obtained from anticoagulated whole blood using the salting out
method (Miller et al., 1988). Sequencing libraries (2× 150 bp read
length) were prepared from DNA samples using the TruSeq PCR-
free library preparation kit (Illumina). Libraries were sequenced
on Illumina HiSeq sequencing instruments (30× coverage) at the
Kinghorn Centre for Clinical Genomics (Sydney, Australia) and
the Centre for Genomic Regulation (Barcelona, Spain).

Read Alignment and Variant Calling
Paired end sequencing reads (FASTQ files) were aligned to
the hg38 reference genome (including HLA contigs) using
BWA MEM v0.7.15 (1000 Genomes Project Consortium et al.,
2012) to generate BAM files. The Genome Analysis Toolkit
best practice guidelines for germline SNPs and Indels were
followed (GATK v3.7) (Van der Auwera et al., 2013) including
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FIGURE 1 | Schematic of study design showing discovery and validation samples.

duplicate read removal and base quality score recalibration of
BAM files followed by variant calling using Haplotypecaller
(first on individual samples to generate GVCF files and then
on the entire cohort to generate a final multisample VCF
file) (Poplin et al., 2017). Variant quality score recalibration
(VQSR) was performed separately for SNPs and Indels using
a tranche sensitivity threshold of 99% to remove false positive
calls. Variants were annotated using the Ensembl variant effect
predicter (McLaren et al., 2016).

HLA Allele Determination
Reads aligning to the HLA region on chromosome 6 (33,064,568–
33,080,777) and to the HLA contigs were extracted from
the BAM files and realigned to reference sequences from
the IMGT/HLA database (v3.29.0.1, 2017). HLA allele group
assignment was inferred through “best-match” alignment of
reads against the IMGT/HLA alleles using HLA Explore
Software (Omixon).

Case Control Association Analysis
Autosomal, bi-allelic variants were extracted from the VCF
file and PLINK v1.9 (Chang et al., 2015) was used to
perform various quality control procedures prior to association
testing. Variant level filtering (excluding variants with MAF
<5%, call rate <95% and Hardy–Weinberg (HW) equilibrium
p-value < 1 × 10−6 in controls) and sample level filtering
(excluding individuals with outlying missing genotype or
heterozygosity rates) was performed according to previously
described guidelines (Anderson et al., 2010; Reed et al., 2015).

To exclude any large-scale differences in ancestry between the
OP-MG and control MG groups (which could confound the
case-control association analysis), principal component analysis
of 50 357 variants was performed after LD based SNP pruning
using PLINK v1.9 (–indep-pairwise 1000 50 0.15). The allelic
association of each marker with OP-MG was tested using Fisher’s
exact test (considering the unpruned dataset) and the genomic
inflation estimate (lambda) was calculated for the unadjusted
model based on median chisq.

Gene and Pathway Based Analyses
As a complimentary approach to single variant association
analysis, VEGAS2 was used to calculate gene (Mishra and
Macgregor, 2015) and pathway (Mishra and MacGregor, 2017)
based p-values. This software tool maps SNPs to genes based on
their genomic location. We performed two analyses in parallel:
stringent mapping (including SNPs within a gene plus any SNPs
outside of the gene with r2 > 0.8 with SNPs within the gene)
and less stringent mapping (including SNPs within a gene plus
any SNPs 200 kb upstream and downstream of the 5′UTR and
3′UTR boundaries). For each mapping approach, the p-values
from each mapping SNP are aggregated accounting for the
linkage disequilibrium (LD) between SNPs and correcting for
the gene size (number of SNPs). To compute pathway-based test
statistics, the gene-based test statistics for gene lists in curated
pathways (multiple sources including BIOCARTA, REACTOME
and KEGG databases) and custom pathways (mined from various
sources of EOM gene expression data, Supplementary Table S2)
are aggregated and corrected for pathway size bias.

Frontiers in Genetics | www.frontiersin.org 3 March 2019 | Volume 10 | Article 136

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00136 February 27, 2019 Time: 16:36 # 4

Nel et al. WGS in African MG Subphenotype

Sanger Sequence Verification of Variants
Two variants were verified by Sanger sequencing in a validation
sample of myasthenics with African genetic ancestry consisting of
1 OP-MG subject and 27 control MG subjects using the following
primers: CCAGGCTGAGAGACAAAGCAGACC forward and
CGTACTTATGTGCCACACAAGAC reverse for rs16834631
in FAM92A1 and GATGGAGCTTCCGGAAGTCTTGG
forward and CAAGGCAACTGCCTCTCTGCACC reverse for
rs7816955 in PEF1.

Cell Cultures
Dermal fibroblasts from 10 OP-MG and 5 control MG individuals
were obtained from skin punch biopsies using the explant
method. These were transduced with an RGD fiber modified
adenovirus containing a human MyoD transgene as previously
described (Nel et al., 2019). Briefly, transduced fibroblasts
were maintained in differentiation medium (DMEM + 5%
horse serum + 1% P/S) for 48 h to induce myogenic
transdifferentiation and generate myocytes. Myocytes stained
positively for sarcomeric myosin and successful myogenic
transdifferentiation was further confirmed by demonstrating
muscle-specific gene expression in myocytes (CHRNA1,MYOD1,
and MYOG). Importantly, based on muscle-specific gene
expression levels, the degree of myogenic transdifferentiation
was similar in both OP-MG and control MG myocytes. To
mimic MG-induced gene expression changes in vitro, myocytes
were stimulated with 5% homologous MG sera for 24 h
before harvesting RNA. Sera samples were sourced from AChR
antibody-positive, treatment-naive MG patients with generalized
myasthenia and severe extraocular muscle involvement.

Quantitative Polymerase Chain Reaction
(qPCR)
RNA was extracted from myocytes using the HighPure RNA
extraction kit (Roche) according to the kit protocol. RNA
concentration and purity was determined using the Nanodrop R©

ND1000 spectrophotometer [Thermo Scientific and all ratios
were within the recommended ranges (A260/280 = 1.8–2.0;
A260/230 > 1.7)]. 400 ng total RNA was reverse transcribed to
cDNA using the RT2 First Strand Kit (Qiagen) according to the
manufacturer’s specifications. Quantitative PCR was performed

on the cDNA samples using proprietary Quantitect primer assays
(Qiagen) (RPLP0, HLA-DPB1) and RT2 SYBR Green Mastermix
(Qiagen) on the 7900HT Fast Real-Time PCR System (Applied
Biosystems). RPLP0 was selected from a panel of 10 reference
genes which were screened for their expression stability in
myocytes (Nel et al., 2019). Individual data points were calculated
as 2−1Cq, where 1Cq = target gene Cq – reference gene Cq
(Schmittgen and Livak, 2008).

Data Visualization
Quantile–Quantile (Q–Q) and manhattan plots were created in
R (version 3.5.1) using the qqman package (Turner, 2018). The
heatmap of skeletal muscle tissue RNAseq expression data from
the Genotype-Tissue Expression (GTEx) project was generated
using the GTExPortal [1]. Graphs of qPCR expression data were
created using Prism 7 (version 7.0c).

Computation
Computations were performed using facilities provided by the
University of Cape Town’s ICTS High Performance Computing
team: hpc.uct.ac.za and the Bioinformatics Unit at the Centre for
Genomic Regulation (CRG), Barcelona.

RESULTS

Clinical Characteristics of Study
Participants
The clinical characteristics of the study participants are
summarized in Table 1. For the WGS discovery sample, all
subjects had early onset MG and there was no significant
difference in the age of disease onset between OP-MG and
control MG groups (14 years vs. 16 years, p = 0.450), or
the sex ratios (p = 0.13). The WGS sample comprised 11
black African ancestry individuals (44%) and 14 Cape mixed
African ancestry (M/A) individuals (56%) with similar ancestry
proportions in OP-MG and control MG groups. While the
sex and ancestry proportions were similar between the WGS
and validation samples, the age at MG onset was significantly
higher in the validation sample compared to the WGS sample
(p = 4 × 10−8). This was primarily because we tried to

TABLE 1 | Demographic characteristics of the study participants.

WGS sample P-value Validation sample P-value

Clinical OP-MG Control MG OP-MG vs. control MG 1 OP-MG + 27 control MG WGS vs. validation

characteristics (n = 15) (n = 10) (n = 28) sample

Age at disease onset yrs (IQR) 14 (11–17) 16 (15–22) 0.450 26 (22–31) 4 × 10−8

Sex

Female n (%) 9 (60) 9 (90) 0.131 23 (82) 0.404

Male n (%) 6 (40) 1 (10) 5 (18)

Ancestry

Black African n (%) 8 (53) 3 (30) 0.288 6 (21) 0.091

Cape mixed African n (%) 7 (47) 7 (70) 22 (79)

IQR, interquartile range.
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FIGURE 2 | Principal component analysis (PCA) plot. PC1, principal
component 1; PC2, principal component 2; open circles, OP-MG individuals;
closed circles, control MG individuals.

reduce confounders for the highly selected sample undergoing
WGS by matching for age which was previously identified as a
biological factor.

Description of Variants
The final VQSR filtered callset contained ∼18 million variants,
including ∼2 million (11%) novel variants, with an overall
Ti/Tv ratio of 2.12 and a heterozygous/homozygous ratio of
2.06 which is in line with previously published genome-
wide quality control metrics, particularly for African datasets

(DePristo et al., 2011; Guo et al., 2014). A high proportion
of the detected variants were singletons 29% (∼5 million).
Overall there were ∼5 million variants per genome which is
consistent with previously published data for African populations
(Auton et al., 2015).

Population Structure
An assessment of the population structure within the dataset was
investigated using principal component analysis (PCA) after LD
based SNP pruning. Combined, principal components 1 and 2
explain 26% of the total variance within the dataset; these are
visualized on the PCA plot shown in Figure 2. The samples
segregate into two clusters reflecting the black African and
Cape M/A groups. Present day South Africans include a major
ethnolinguistic group of black African South-Eastern Nguni-
language (isXhosa and isiZulu) speakers. The Cape M/A ancestry
population (predominantly Khoisan and Nguni-speaking African
ancestry as well as smaller genetic contributions from Europeans
and Southeast Asians) (De Wit et al., 2010; Quintana-Murci
et al., 2010) comprise the most prevalent sub-population in
the Western Cape region where this study was conducted.
Despite their shared African ancestry with the black African
ancestry individuals, the Cape M/A ancestry individuals form a
dispersed but distinct cluster reflecting the admixed nature of
this population which has considerable ancient African hunter-
gatherer (Khoisan) and lesser non-African genetic contributions
(Choudhury et al., 2017). Two out of the three outlier samples
in the black African ancestry cluster represent individuals from
other African countries (Zimbabwe and Burundi). Importantly,
OP-MG and control MG individuals are equally represented
in both ancestry groups which indicates that the case control
association analysis will not be confounded by differences in
population structure.

FIGURE 3 | Outline of analysis approaches applied to whole genome sequencing data. (A) Single variant association analysis. (B) Gene-based association analysis.
(C) HLA region association analysis. ∗ skeletal muscle expression data used for tissue-based prioritization since extraocular muscle data not available. Extreme
phenotype refers to individuals with either severe EOM weakness (OP-MG cases) or no EOM weakness (MG controls). WGS, whole genome sequencing. WES,
whole exome sequencing. MHC, major histocompatibility complex.
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FIGURE 4 | Quantile–quantile plot.

Analysis of WGS Data to Identify
Association Signals
Various approaches were used in parallel (outlined in Figure 3)
to identify OP-MG associated variants and genes. The results of
these analyses were interpreted in conjunction with our previous
work, involving WES of OP-MG and control MG subjects (Nel
et al., 2017), to collectively generate hypotheses regarding OP-
MG susceptibility pathways.

Single Variant Association Analysis
Following variant and sample level filtering, the frequency of
8,752,596 variants were compared between case and control
groups (i.e., OP-MG vs. control MG) using Fisher’s exact test
(Figure 3A). The black points in the quantile–quantile (Q–
Q) plot in Figure 4 show the observed p values (sorted from
largest to smallest) plotted against the expected p-values from a

theoretical χ2-distribution (Ehret, 2010). The gray straight line
in the Q–Q plot indicates the distribution of SNPs under the
null hypothesis. The black points form a straight line which is
“deflated” relative to the gray line suggesting that the analyses
were underpowered due to the small sample size in this study.
Consequently, there were no variant associations which reached
genome-wide significance (p < 5× 10−8).

The manhattan plot shows 7 variants with suggestive
association with either the OP-MG or control MG phenotype
(p < 1 × 10−5, Figure 5A) which are summarized in
Supplementary Table S1. Five out of 7 variants had a lower
frequency in OP-MG compared to control MG and all variants
are common in African populations (1000 genomes data). None
of these top associated variants had any predicted functional
consequences. While this may be true of many top GWAS hits in
studies using chip data, where the top SNPs may not themselves
be pathogenic but may “tag” other functional variants in LD, this
is an unlikely scenario in our study since we have genome-wide
variant coverage.

Therefore, in order to further prioritize variants with
sub-genome wide significance thresholds, we screened the
VEP “impact” annotations of 1,751 variants with p < 0.001
(Figure 5B). Seven variants were classified as “low impact”
(splice region, intron and synonymous variants) and two variants
were classified as “moderate impact” (missense variants) but
were predicted to be benign by various prediction tools. The
remainder of the variants were classified as “modifiers” and
included intergenic variants and variants in up- and downstream
gene regions, some of which overlapped regulatory features.

Since non-coding genetic variation was hypothesized to
contribute to OP-MG susceptibility, we applied a tissue-specific
prioritization approach to identify which modifier variants
overlapped a regulatory feature active in muscle [human skeletal
muscle myoblast and myotube (HSMM and HSMMtube) samples
from the ENCODE project and psoas muscle samples from the
Roadmap Epigenomics Project]. Muscle samples were chosen
since there is no publically available expression data for human

FIGURE 5 | Manhattan plot displaying single variant association signals (–log10 P-value) plotted against chromosomal location. (A) p < 1 × 10−5, (B) p < 1 × 10−3,
and (C), all variants.

Frontiers in Genetics | www.frontiersin.org 6 March 2019 | Volume 10 | Article 136

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00136 February 27, 2019 Time: 16:36 # 7

Nel et al. WGS in African MG Subphenotype

EOM. This analysis identified 13 variants which were more
common in OP-MG compared to control MG. Two upstream
gene variants, rs7816955 in FAM92A1 (p = 9.2 × 10−4) and
rs16834631 in PEF1 (p = 1.5 × 10−4), overlapped Ensembl
regulatory features classified as active promoters based on
epigenome activity in relevant muscle cell lines. While the
FAM92A1 variant did not overlap any Ensembl motif features,
the PEF1 variant overlapped 24 putative transcription factor
binding sites based on binding matrices, one of which was a
high information position with predicted decreased binding of
the RFX3::FIGLA transcription factor pair.

Both variants had a reported frequency≤ 0.30 among African
controls and ≤0.10 among European controls (1000 Genomes
Project) and were validated by Sanger sequencing in the WGS
sample. Their frequency was also determined in a validation
sample (n = 28) which confirmed the association of these variants
with OP-MG: PEF1 rs16834631 0.57 in OP-MG vs. 0.16 in control
MG (p = 0.001) and FAM92A1 rs7816955 0.47 in OP-MG vs. 0.18
in control MG (p = 0.021; Figure 3A).

Gene-Based Association Analysis
A single variant association testing approach, while unbiased,
is limited by stringent genome-wide significance thresholds
which are difficult to reach after correcting for multiple testing
(particularly relevant with our small sample size). Searching for
association signals in single variants assumes that all affected
individuals (i.e., OP-MG cases) have the same pathogenic
variant(s) which does not fit with our current understanding
of the genetic architecture of complex disease, which may be
attributed to the joint effect of many causal loci with small effect
sizes (Fu et al., 2013). To interrogate the collective biological
meaning of the sub-threshold single variant associations, all
variants (Figure 5C) were mapped to genes and their modest
association signals were aggregated using VEGAS2 to derive gene
based p-values (Figure 3B). A mapping threshold of 200 kb
upstream and downstream of gene boundaries was chosen since
this distance has been shown to increase the number of significant
phenotype-pathway associations, particularly for autoimmune
diseases (Brodie et al., 2016).

While no genes had significant p-values after correcting for
multiple testing of 23,361 genes, 38 genes had a p-value ≤ 0.015.
These were prioritized by determining their tissue expression
using RNAseq expression data from the Genotype-Tissue
Expression (GTEx) project (Aguet et al., 2017). Since there is
no available expression data for the specific allotype of EOM,
we prioritized genes based on their expression level in skeletal
muscle tissues. Eleven genes had a medium expression level
in skeletal muscle defined as a transcripts per million (TPM)
value of 11–1,000 (shown in blue boxes in Figure 6). The
functions of proteins encoded by genes with TPM > 20 are
summarized in Table 2.

Pathway-Based Association Analysis
The sample size was not sufficient to produce meaningful
pathway-based test statistics from the VEGAS2 pathway analysis
which interrogated both curated and custom pathways.

FIGURE 6 | Diagram showing genes with p-value < 0.015 in OP-MG vs.
control MG gene based association analysis with a heat map of their
respective transcripts per million (TPM) expression value based on skeletal
muscle tissue RNAseq expression data (Sk-M) from the Genotype-Tissue
Expression (GTEx) project.

HLA Region Associations
In our previous work we identified a unique “HLA signature”
spanning the class II region of the MHC in OP-MG subjects
(Nel et al., 2017) (Figure 3C) and the gene-based analysis in
the present study also identified association signals in this region
(HLA-DPA1 p = 0.015 and HLA-DPB1 p = 0.033). We therefore
performed HLA typing (see section “HLA Allele Determination”)
to interrogate differences in HLA-DPA1 and HLA-DPB1 allele
frequencies between OP-MG and control groups. In our sample,
HLA-DPB1 allele diversity (12 alleles plus ambiguous alleles for 6
individuals) was higher than HLA-DPA1 allele diversity (5 alleles)
which is similar to studies in European populations (Hollenbach
et al., 2012). We found differences in the frequency of 3 HLA-DP
alleles between OP-MG and control MG (Table 3). Interestingly,
for the HLA-DPB1 locus, where alleles can be divided into two
groups based on their associated HLA-DPB1 expression levels,
we found that the proportion of “low expression” and “high
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TABLE 2 | Top 7 genes (based on GTEx skeletal muscle expression data,
TPM > 20) with the muscle-specific function of their encoded proteins.

Gene Function of encoded protein in skeletal muscle

MKNK2 Increased expression in muscle atrophy1

Downstream inhibitor of IGF1/Akt/mTOR hypertrophy
signaling2

AKT1S1 Subunit of mTORC1 multi-protein complex

SH3BGR Critical for sarcomere formation in striated muscle tissues3

Higher expression in mouse EOM compared to limb
fibroblasts4

MYL12B Myosin regulatory light chain which maintains the integrity of
myosin I and II5

PPP1R12C Encodes a subunit of myosin phosphatase which
dephosphorylates myosin II6

PPP1R2 Binds to the catalytic subunit of protein phosphatase 1, a
subunit of myosin phosphatase

ZFP36L2 RNA-binding protein which is downregulated during satellite
cell activation7

1Hu et al., 2012; 2Egerman and Glass, 2014; 3Jang et al., 2015; 4Kusner et al.,
2010; 5Park et al., 2011; 6 Ito et al., 2004; 7Galloway et al., 2016.

expression” alleles differed between the OP-MG and control
MG groups (p = 0.021). The HLA-DPA1∗105:01 allele, the most
common “low expression” allele in our sample and only observed
in OP-MG individuals, appears to be common in African
populations. The expression level ofHLA-DPB1 alleles was shown
to be correlated with the genotype at rs9277534, a functional
A > G SNP located in the 3′UTR of HLA-DPB1 (Thomas et al.,
2012). The G-allele of this SNP increases HLA-DPB1 expression
levels by altering the binding affinity of various microRNAs
(Shieh et al., 2018). In keeping with the observed HLA-DPB1
frequency differences (Schöne et al., 2018), we found a higher
frequency of the rs9277534 G-allele in the control MG group.

HLA-DPB1 rs9277534 genotype-expression correlations have
been demonstrated in blood (Yamazaki et al., 2018) but there
is no data on this expression quantitative trait locus (eQTL) in
skeletal muscle tissue. We therefore analyzed HLA-DP expression
grouped by rs9277534 genotype in myocytes derived from
transdifferentiated dermal fibroblasts from OP-MG and control
MG subjects (Nel et al., 2019) and found that the G-allele
increased HLA-DPB1 expression levels (Figure 7, p < 1× 10−3).

DISCUSSION

In this study we have used various strategies to mine WGS
data in an attempt to generate hypotheses regarding the
pathogenetic basis of a subphenotype of a rare autoimmune
disease, myasthenia gravis. The subphenotype is characterized
by treatment resistance of the eye muscles, or EOMs, whereas
the non-ocular muscles respond to standard MG therapies
(Heckmann and Nel, 2017). EOM is a specific allotype of
muscle tissue because it differs from limb muscles in many
respects (Porter et al., 2001). Since only a proportion of MG
subjects develop the OP-MG subphenotype, the pool of affected
individuals available for genetic studies is small. Nonetheless,
we employed a focused strategy using extreme subphenotype
sampling of OP-MG cases vs. MG disease controls to perform
a genome wide analysis. Putative OP-MG susceptibility variants,
genes and pathways were identified following prioritization based
on known tissue-specific expression patterns in skeletal muscle
since gene expression data for EOM is not available.

We have identified three main candidate pathogenic themes
which we postulate are involved in developing OP-MG, and
preliminary functional studies show at least some support for
these hypotheses. Briefly, we summarize evidence gleaned from
other areas, using the principle of triangulation, to lend support
to the generated hypotheses.

The first two themes relate to muscle atrophy and muscle
recovery/remodeling. The EOMs may be more susceptible to
complement-mediated muscle endplate injury during MG (in
Soltys et al., 2008) due to their relatively lower expression levels of
complement regulatory proteins, particularly decay accelerating
factor (DAF) (Kaminski et al., 2004). We previously screened the
DAF gene in OP-MG subjects and found a higher frequency of
a functional DAF promoter polymorphism compared to controls
which impaired transcriptional upregulation of DAF expression
in patient-derived cell lines following a lipopolysaccharide
immune stimulus (Heckmann et al., 2010). Also, clinically and
at surgery, the EOMs in the most severe cases of OP-MG
are thin/atrophic, not fibrotic and unable to generate muscle
force (Heckmann and Nel, 2017). Although there is limited
histological data on EOMs in MG, neurogenic atrophy is a
common pathological observation in the muscle biopsies of MG
cases, (Oosterhuis and Bethlem, 1973) and likely to be the result
of “functional denervation,” or the disconnection between the

TABLE 3 | Frequency of HLA-DPA1 and HLA-DPB1 alleles and rs9277534 A > G in OP-MG and control MG subgroups and population controls.

HLA-DP alleles OP-MG freq
n = 15∗

Control MG freq
n = 10∗

p-value OP-MG
vs. control MG

African
control freq1

n = 48

Caucasian
control freq1

n = 75

p-value African
vs. Caucasian

control

HLA-DPA1∗01:03 15 (0.50) 3 (0.15) p = 0.009 30 (0.31) 115 (0.77) p < 1 × 10−7

HLA-DPA1∗02:01 3 (0.10) 9 (0.45) p = 0.007 23 (0.24) 26 (0.17) 0.242

HLA-DPB1∗105:01
(low expression2)

7 (0.39) 0 p = 0.009 25 (0.26) 2 (0.01) p < 1 × 10−7

HLA-DPB1
rs9277534 A > G
(high expression3)

9 (0.30) 12 (0.60) p = 0.04 789 (0.60) 317 (0.32) p < 1 × 10−7

1Goldfein, 2017; 2Schöne et al., 2018; 3Thomas et al., 2012. ∗For HLA-DPB1, allele assignment was ambiguous for 6 OP-MG and 3 control MG individuals and these
samples were excluded from the analysis.

Frontiers in Genetics | www.frontiersin.org 8 March 2019 | Volume 10 | Article 136

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00136 February 27, 2019 Time: 16:36 # 9

Nel et al. WGS in African MG Subphenotype

FIGURE 7 | HLA-DPB1 rs9277534 is an eQTL in myocytes. Myocytes
(derived from transdifferentiated dermal fibroblasts) from OP-MG (n = 10) and
control MG (n = 5) individuals were either left untreated or exposed to 5% MG
sera for 24 h before RNA was harvested for analysis of gene expression by
quantitative PCR. HLA-DPB1 expression levels were determined using relative
quantification (2−1Cq) where 1Cq represents HLA-DPB1 Cq – RPLP0 Cq
(reference gene). An ordinary one-way ANOVA was used to compare
genotype groups using pooled data from 2 independent experiments
(untreated myocytes and myocytes exposed to MG). Error bars show SEM.
One OP-MG sample with A/A genotype was excluded as an outlier.

nerve and muscle endplate secondary to MG-induced damage
(Nakano and Engel, 1993). With that in mind, the gene-based
analysis identified two genes (MKNK2, AKT1S1) involved in
the IGF1/AKT/mTOR pathway, which is a key pathway in
promoting muscle atrophy following denervation (Tang et al.,
2014) (Table 2). In keeping with these unbiased findings, our
previous gene expression profiling of OP-MG myocytes using a
panel of genes relevant in several MG studies found expression of
genes from this pathway (IGF1, AKT1, and AKT2) were strongly
correlated in OP-MG myocytes but not in the myocytes from
control MG cases (Nel et al., 2019). Interestingly, IGF1 is highly
expressed in EOMs where it regulates both the muscle mass and
force generation of these muscles, and its signaling is dysregulated
in paralyzed EOMs (Altick et al., 2012).

Subsequent to MG damage we would expect the EOMs to
undergo “regeneration” or remodeling due to their high numbers
of resident satellite cells (McLoon and Wirtschafter, 2003), and
this process requires the synthesis of new structural muscle
proteins. We were therefore interested to observe that 3 of the
7 genes (MYL12B, PPP1R12C, and PPP1R2) identified by the
gene-based analysis (Table 2) are involved in the stability and
regulation of myosin II which is a prominent isoform in EOMs
expressed by fast type IIA and IIB muscle fibers, respectively
(Park et al., 2011).

While unbiased, genome-wide association studies (GWAS)
typically employ very large samples, the application of this
approach to the study of susceptibility to MG, has not been very

informative in terms of identifying new disease loci. In two recent
GWAS in MG, the strongest association signals identified were
localized to the HLA region (Gregersen et al., 2012; Renton et al.,
2015), which was already identified over 3 decades ago in a small
case-control sample (Compston et al., 1980). The third theme we
identified relates to the HLA region since we found an association
signal with lower HLA-DPB1 expression in OP-MG which results
from a functional polymorphism in the 3′UTR of HLA-DPB1.
Although the HLA-DP locus is not in LD with other HLA loci,
the expression levels of HLA-DPB1 are increasingly recognized to
have clinical relevance (Fleischhauer, 2015). While the main MG
susceptibility locus lies in the class I or II region depending on the
age at symptom onset (Nel and Heckmann, 2018), HLA-DPB1
alleles may influence the phenotypic manifestations of the MG
disease process in different individuals.

We also identified association signals in PEF1 and FAM92A1
which were validated in an independent sample, although the
functional relevance of these genes in EOM is unknown. This
highlights the importance of validating the hypotheses generated
by this work in patient-derived EOM tissue, preferably from
OP-MG individuals. It is worth noting that candidate gene
associations, such as those previously identified in the regulatory
region of DAF, were not identified following the filtering criteria
used in this study. This is likely due to the sample size constraints
imposed by WGS which limits the ability to detect significant
associations for low frequency variants such as DAF -198 C > G.
This SNP had a frequency of 0.13 among the OP-MG subjects
in this study (p = 0.119) which is comparable to the statistically
significant association previously reported using a larger sample
size (0.12, p = 0.001) (Heckmann et al., 2010), albeit with an
overlap of two OP-MG samples between the two studies.

In conclusion, despite the limitations of using a small sample
to mine whole genome data to generate pathogenic hypotheses
in a structured yet unbiased approach, several lines of evidence
suggest we have achieved our aims. The next step will be to
analyze the functionality of these genes and pathways in patient-
derived extraocular muscle tissue.
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