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The genetic mating system of a sea spider with male-biased
sexual size dimorphism: evidence for paternity skew
despite random mating success
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Abstract Male-biased size dimorphism is usually expected
to evolve in taxa with intense male–male competition for
mates, and it is hence associated with high variances in
male mating success. Most species of pycnogonid sea
spiders exhibit female-biased size dimorphism, and are
notable among arthropods for having exclusive male
parental care of embryos. Relatively little, however, is
known about their natural history, breeding ecology, and
mating systems. Here we first show that Ammothella
biunguiculata, a small intertidal sea spider, exhibits male-
biased size dimorphism. Moreover, we combine genetic
parentage analysis with quantitative measures of sexual
selection to show that male body size does not appear to be
under directional selection. Simulations of random mating
revealed that mate acquisition in this species is largely
driven by chance factors, although actual paternity success
is likely non-randomly distributed. Finally, the opportunity
for sexual selection (Is), an indirect metric for the potential
strength of sexual selection, in A. biunguiculata males was
less than half of that estimated in a sea spider with female-
biased size dimorphism, suggesting the direction of size

dimorphism may not be a reliable predictor of the intensity
of sexual selection in this group. We highlight the
suitability of pycnogonids as model systems for addressing
questions relating parental investment and sexual selection,
as well as the current lack of basic information on their
natural history and breeding ecology.
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Introduction

Sex differences in body size are often a conspicuous aspect
of taxa experiencing sexual selection (Andersson 1994) and
have been shown to greatly influence (and to be influenced
by) animal mating systems (Blanckenhorn 2005; Fairbairn
et al. 2007). Male-biased size dimorphism (MSD) is
generally explained by size advantage in male–male
competition for mates, and it is often associated with highly
polygynous species that exhibit skewed male reproductive
success (Le Boeuf and Reiter 1988; Boness et al. 1993;
Andersson 1994). While this is perhaps the most well-
understood relationship between sexual size dimorphism
and mating systems, such generalizations are often restricted
to birds and mammals (Payne 1984; Andersson 1994;
Weckerly 1998; Blanckenhorn 2005); most other taxa
exhibit much greater variation in the degree and direction
of sexual size dimorphism and size-related selective
pressures (Fairbairn et al. 2007). Female-biased size
dimorphism (FSD), for example, can be explained by
fecundity selection on females (Darwin 1871; Williams
1966), sexual selection for smaller male sizes during
scramble competition for mates (Kelly et al. 2008; Moya-
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Laraño et al. 2009), or a combination of the two selective
pressures (Blanckenhorn 2005).

Other ecological or organismal factors can further
obscure the causal link between sexual size dimorphism
and mating systems. Postzygotic care of offspring, for
instance, may alter the sexually selected advantage of large
body size in males (Andersson 1994; Shuster and Wade
2003). Among harvestmen (Arachnida: Opiliones) with
paternal care, MSD is observed in species in which body
size influences the outcome of fights for high-quality
oviposition sites (Machado et al. 2004). In species in which
females prefer to mate with egg-guarding males, male body
size does not affect reproductive success, and little to no
sexual dimorphism is observed (Nazareth and Machado
2010). Male parental investment in offspring care is
sometimes large enough to offset the initially higher
maternal investment (in egg size), making the potential
reproductive rate of males to be lower than that of females
(Clutton-Brock and Vincent 1991). Such taxa exhibit sex-
role reversal (i.e., stronger sexual selection on females) and
often have female-biased size dimorphism (Oring et al.
1991; Vincent et al. 1992; Butchart 2000; Jones et al.
2001). Taxa that exhibit uniparental postzygotic care by
males hence provide unique opportunities for evaluating
proffered relationships between sexual dimorphism, sexual
selection, and mating systems.

Empirical studies of mating systems and sexual selection
in taxa with paternal care, however, have focused largely on
vertebrates, even though this behavior has evolved inde-
pendently in at least 17 invertebrate groups (Clutton-Brock
1991; reviewed in Tallamy 2001). Among arthropods, the
Class Pycnogonida (Chelicerata) is notable for exhibiting
widespread male parental care of offspring. Egg-carrying
males have been observed in nearly all of the 1,200+
species of pycnogonids, or sea spiders. Using a pair of
specialized appendages (ovigers), each male pycnogonid
collects the externally fertilized eggs into distinct clusters
and carries them until hatching (King 1973; Bain and
Govedich 2004a), which can take up to 3 months in some
species (Tomaschko et al. 1997). Sexual size dimorphism is
female biased in most pycnogonids (Hedgpeth 1941;
Arnaud and Bamber 1987; Tomaschko et al. 1997; Bain
and Govedich 2004a) and female–female competition for
mates has been documented in at least one species
(Propallene saengeri; Bain and Govedich 2004b). Despite
these attractive features, pycnogonid mating systems
remain poorly known, and patterns of mating and repro-
ductive success in natural populations have only been
investigated genetically in two other species (Barreto and
Avise 2008, 2010).

The incorporation of molecular genetic methods in field
studies has revealed numerous discrepancies between
behavioral and realized reproductive success (Birkhead

and Møller 1992; Philipp and Gross 1994; Avise et al.
2002). In pycnogonids, for example, genetic paternity
assays revealed for the first time unambiguously that
females mate with multiple males and that variation in
developmental stage among egg clusters is a poor predictor
of the number of mates a male acquired (Barreto and Avise
2008, 2010). The coupling of genetic parentage analysis
with quantitative metrics based on opportunity for selection
theory (Crow 1958; Wade 1979; Lande and Arnold 1983)
and Bateman's principles (Bateman 1948; Arnold and
Duvall 1994) have been repeatedly useful in comparisons
of mating systems that show differences due to sex ratios
(Jones et al. 2002, 2004), geography (Mobley and Jones
2009), sex roles (Jones et al. 2000), territoriality (Fincke
1988; McVey 1988), and size dimorphism (Howard 1988;
Vanpé et al. 2008). Despite criticisms (Grafen 1987; Hubbell
and Johnson 1987; Kokko et al. 1999), these measures
provide, at the very least, standardized quantifications of
mating systems for which we have no a priori knowledge of
how sexual selection occurs (Shuster and Wade 2003).

In this study, we combine DNA microsatellite markers,
morphometric measurements, and quantitative metrics of
selection to quantify the distribution of mating and
reproductive success and the degree of sexual size
dimorphism among individuals in a natural population of
Ammothella biunguiculata (Ammotheidae), a minute inter-
tidal pycnogonid for which little was known regarding the
mating system. Moreover, we test the general prediction
that males of species with MSD should experience stronger
sexual selection than those of species with female-biased
size dimorphism (Ghiselin 1974; Andersson 1994) by
comparing measures from selection theory to those of a
pycnogonid with FSD (Barreto and Avise 2008).

Materials and methods

Study species and collection of samples

Ammothella biunguiculata is a small (~1 mm body length)
pycnogonid found commonly under rocks in the intertidal
and subtidal zones of the Pacific coast of North America.
Males in this species carry eggs arranged into one to many
physically distinct, spherical egg clusters attached to the
ovigers, very similar to the arrangement found in Ammo-
thea hilgendorfi (see Fig. 1 in Barreto and Avise 2008).

We collected a total of 162 individuals from under small
rocks in Corona del Mar State Beach (33°35′ N, 117°52′ W),
California, in October and November 2008, and January and
March 2009. The adult sex ratio [Nfemales/(Nfemales + Nmales)]
did not deviate from unity during our collection period
(range, 0.40–0.47; binomial test, P > 0.31 for all months).
Of 64 males that carried egg clusters (total n =189 clusters),
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45 were brought live to the laboratory; all other individuals
collected were immediately preserved in 95% ethanol.
Clusters were separated from each other and from their
guardian males, and kept separately in 1.5-ml centrifuge
tubes containing filtered room-temperature seawater. Males
were then preserved in ethanol. Tubes were inspected every
2–3 days for newly hatched larvae. When larvae were present,
they were transferred collectively into a 2-ml tube containing
95% ethanol until genetic analysis. We continued to inspect
egg clusters until all larvae had hatched or until no further
development was noticed for at least 7 days. Prior to genetic
analysis, a random sample of the larvae stored in ethanol was
transferred to a petri dish and larvae were pipetted individu-
ally to the bottom of a PCR plate.

Genetic marker development and parentage analysis

Isolation of microsatellite markers for A. biunguiculata
followed the enrichment protocol of Hamilton et al. (1999),
with modifications (Hauswaldt and Glenn 2003), and was
described for a pycnogonid elsewhere (Barreto and Avise
2008). Genomic DNA from adults was extracted from
entire specimens, after morphometric analysis (see below),
using a standard phenol–chloroform–isoamyl protocol
(Milligan 1998). To extract DNA from individual larvae,
12 μl of lysis buffer (10 mM Tris–HCl pH 8.3, 50 mM
KCl, 0.5% Tween-20, 250 μg/ml proteinase K) were added
to each well of the PCR plates containing the samples.
Plates were then incubated at 55°C for 2.5 h, followed by
heating to 95°C for 15 min to deactivate the proteinase.
Microsatellite amplification reactions were performed as
described for another pycnogonid (Barreto and Avise 2008).

Five microsatellite loci were chosen based on their
polymorphism information, ease of scoring, and reproduc-
ibility (Table 1). We used the Markov chain method

implemented in the program GENEPOP (Raymond and
Rousset 1995) to check for deviations from Hardy–
Weinberg and linkage equilibria, and we controlled for
type-I errors from multiple testing with sequential Dunn-
Sidák's adjustments of α values (Sokal and Rohlf 1995).
For parentage assays, 15–20 larvae per cluster were
randomly selected. Maternal genotypes were deduced from
each egg cluster after subtracting the guardian male's
alleles. Deduced genotypes were then compared to each
other and to those of collected females using the Micro-
satellite Toolkit (Park 2001) in order to detect identical
multilocus genotypes.

Morphometric assessment

Prior to DNA extraction, we took digital photographs under
a dissecting microscope of the second ambulatory leg and
dorsal full-trunk view of every undamaged adult specimen,
and of the left oviger of males. Using ImageJ software
(NIH), we took the following linear measurements (to the
nearest 0.01 mm): trunk length (distance between eye
tubercle and base of abdomen), trunk width (distance
between the edges of the lateral processes on the second
trunk segment), femur length, mid-femur height, and length
of ovigers (from males only). Since there is no standardized
method for describing pycnogonid size variation, we chose
those features to encompass the different ways in which
these measurements are performed (Hedgpeth 1941;
Arnaud and Bamber 1987; Tomaschko et al. 1997). In
order to avoid including immature individuals in our
selection and dimorphism analyses, we used morphological
features assumed to be indicators of sexual maturity (Bain
and Govedich 2004a). Among males, we kept only
individuals whose ovigers exhibited the distinctly modified
terminal segments. Finally, we retained only females whose

Table 1 Features of five microsatellite loci characterized for the pycnogonid Ammothella biunguiculata

Locus Primer sequences (5′–3′) Repeat motifa No. of alleles Ho PrEb

Abi-55 F: /FAM/TCTGCAAGCTGCCTGATT (CT)23 11 0.76 0.504
R: TGGGAACAAACATAGGTGCC

Abi-67 F: /HEX/ATTGTGGACGGTCTGAAAGG (GA)28 23 0.88 0.804
R: GCACGCATTACCATCGAAAC

Abi-132 F: /NED/CTTCTTACTTCCGCCGTTGT (GA)29 25 0.93 0.809
R: TGTTGGTGTCTGGAACTGAC

Abi-160 F: GATGGTCAGTCCTCCGATACTA (CCAT)52 60 0.94 0.942
R: /FAM/CGAACAACTTCGATGCAACAAC

Abi-225 F: CCATCAATTATAGGGCTCTGGC (TGA)19 14 0.79 0.610
R: /HEX/TCGTTTGCCAACAACCT

Values in the last three columns were estimated from a sample of 143 adult and sub-adult individuals. PCR products of loci were pooled at equal
proportions and 1 μl of the mixture was used for electrophoresis on an ABI PRISM 3100 Genetic Analyzer (Applied Biosystems)
a Number and sequence of microsatellite repeat found on original clones
b Probability of genetic exclusion under the assumption that one parent was known. Combined probability is 0.9996, based on Jamieson and Taylor (1997)
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gonopores (located on the ventral side of the second coxa)
were visible. We used multivariate analysis of variance
(MANOVA) and subsequent ANOVA to assess whether
there were, respectively, overall differences and univariate
differences in morphological traits between the sexes.

Selection analyses

Components of fitness were the mating success (number of
mates) and reproductive success (number of offspring sired)
per male. The number of hatched larvae and the number of
unhatched eggs remaining on each egg cluster were counted
under a microscope and summed to obtain the number of
offspring per cluster. Values of mating and reproductive
successes were then standardized to a relative scale (with
mean of unity) by dividing the absolute values by their
respective means. We estimated the potential, or upper limit
of directional selection by calculating the opportunity for
selection (Im) and the opportunity for sexual selection (Is)
following the methods of Wade (1979) and Wade and
Arnold (1980). These are represented, respectively, by the
standardized variance in reproductive success (variance in
number of offspring divided by the squared mean number

of offspring, s2
rs=X

2
rs) and the standardized variance in mating

success s2
ms=X

2
ms

� �
. We also obtained the Bateman gradient,

or sexual selection gradient by means of a linear least-squares

regression of relative reproductive success on relative mating

success (Arnold and Duvall 1994).
Finally, we used the statistical framework of Lande and

Arnold (1983) to obtain estimates of the intensity of
directional selection on morphological characters of male A.
biunguiculata. After checking for normality (Shapiro–Wilk's
test, P>0.05), variables were standardized to a mean of zero
and standard deviation of unity. Standardized directional
selection gradients (β′) were estimated as the partial
regression coefficients from a multiple regression of each
relative fitness component (mating or reproductive success)
on the morphological traits (Lande and Arnold 1983). Mature
individuals with no detected matings (i.e., those who carried
no egg clusters) were included in the above analyses.

Test of random mating and paternity

A nonzero variance in mating success alone, even when
few or many individuals fail to mate, should not be
interpreted as unambiguous evidence of strong sexual
selection in a sex; stochastic factors can produce intrapop-
ulation variance in reproductive success (Hartley and
Shepherd 1995; Sutherland 1985; Focardi and Tinelli
1996; Friedl and Klump 2005; Brommer et al. 2007). We
therefore tested the null hypothesis that all males had an
equal probability of acquiring mates. To generate a

distribution of mating success according to this null model,
we performed a simple simulation using two parameters
observed in our sample: k, the array of males included in
the estimate of Is above and j, the total number of female
mates detected, summed across all males. In each simulated
mating bout, k was sampled j times with replacement,
keeping track of the identity of the males. The number of
times each male mated (i.e., was sampled) was then tallied,
and these values were distributed into categories of mating
success (zero mates, one mate, two mates, etc.). The
simulation was run 10,000 times, after which the categories
were summed across replicates to obtain the expected
distribution of mating success under random mating. The fit
of the observed and expected distributions was assessed by
way of a randomization test with 5,000 replicates and
following a χ2 distribution (with categories pooled so that
expected values were ≥1).

Since females varied greatly in how many eggs they laid
per mate (range 15–256), we also tested the null hypothesis
that progeny were randomly distributed among males by
performing another simulation. Instead of using the number
of progeny per male as a measure of reproductive success,
we used the number of clusters carried, since the latter was
a good predictor of the former (r2 = 0.83, N = 45, P <
0.0001) and permitted a natural “binning” of progeny. We
assigned k to be the total number of males in our sample,
and j to be the total number of clusters, summed across
males. This simulation was run as above. Both simulations
were performed in R 2.6.2 (R Development Core Team),
and standardized variances were calculated from each
(referred to as I

»
s and I

»
m).

Results

Genetic markers

The five microsatellite loci developed for A. biunguiculata
provided sufficient power for unambiguous assignment of
paternity and maternity, with a combined probability of
genetic exclusion >0.999 (Table 1). After Dunn-Sidák's
correction for multiple testing, no pair of loci showed
detectable linkage disequilibrium, and all but one locus
conformed to Hardy–Weinberg expectations. Locus Abi-
160 exhibited a significant heterozygote deficit (Fisher's
exact test, P=0.008), likely due to null alleles. Null allele
frequency was estimated to be 0.023 (Brookfield 1996).
Although null alleles, even at such low frequency, can
cause bias in paternity assignments (Dakin and Avise
2004), we readily detected the manifestation of a null allele
in one progeny array.

We also uncovered 13 parent–progeny mismatches that
were better explained as de novo mutations; each mismatch
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occurred in a different progeny array, and involved a single
allele and a single offspring from each array. These
mutations occurred at all loci analyzed (range 1–4 per
locus), and, given our sampling effort, we estimate the
mutation rate to be roughly 6.9×10−4 per gamete per locus.

Mating patterns and paternity variance

More than 76% of the 84 males collected carried between
one and nine egg clusters, with a mean (±SE) of 60.3 (2.8)
progeny per cluster. A total of 1,720 larvae, hatched from
the 137 egg clusters incubated, were successfully geno-
typed at all five loci. Based on their multilocus genotypes,
all progeny assayed were consistent with having been sired
by their respective male guardian. Subtraction of the
paternal allele from each offspring allowed us to deduce
the multilocus genotypes for every cluster's dam. Consistent
with findings on two other pycnogonids (Nakamura and
Sekiguchi 1980; Barreto and Avise 2008), progeny found
on the same egg cluster were invariably full siblings.
Multiple clusters carried by a given male, though often laid
by different females, sometimes shared the same dam. For
instance, two males in our sample each carried nine
clusters; one of them had nine mates but the other had a
total of four mates. Genetic parentage analysis is detailed in
Table S1 (electronic supplemental materials).

Our genetic investigation revealed that mated A.
biunguiculata males acquired one to nine mates
(Xms � SD ¼ 1:81 � 1:67; n ¼ 59, including unmated
males), yielding an estimated Is = 0.85. Although the one
male with nine mates observed was a highly unlikely find
(P = 0.006), the overall distribution of mating success did
not deviate significantly from random expectations (χ2 = 3.62,
P > 0.37; I

»
s ¼ 0:55; Fig. 1a). Observed distribution of

reproductive success, however, departed significantly from
randomness (χ2 = 28.57, P < 0.0001; I

»

m ¼ 0:44; Fig. 1b).
Specifically, males that received seven or more clusters were
observedmore frequently than expected by chance (P < 0.01),
and more males had zero reproductive success (i.e., carried
no eggs) than could be accounted for by random mating (P <
0.0001; Fig. 1b). Interestingly, males that had more than one
mate received significantly more eggs per female than males
with a single mate (t = 2.25, df = 43, P = 0.024; Fig. 2).
Finally, Im = 1.12, based on number of progeny sired per
male (X rs � SD ¼ 143:3 � 151:6; n ¼ 59, including
unmated males).

From the 137 clusters assayed, we reconstructed 71 dam
genotypes, 18 of which matched the genotypes of collected
females (with probability of genetic identity ranging from
10−14 to 10−8; Table S1). Our genetic analysis documented
several instances of multiple mating by females, with 34%
of deduced dam genotypes found in clusters from more
than one male. Two females, one of which was collected,

mated with as many as four different males. Given the
relatively low success in assignment of maternity, we could
not confidently estimate the distribution of mating success
of females. The highest number of eggs laid by a single
female in our sample was 396, distributed across six
clusters (female D14 in Table S1). While the number of
eggs deposited per cluster varied by an order of magnitude
(range 15–155), it did not differ significantly (t = −0.68,
df = 71, P = 0.48) between females that laid one cluster

Fig. 1 Distribution of mating success (a) and paternity success (b) of
male Ammothella biunguiculata. Observed numbers (black bars) were
compared to frequencies expected following simulations of random
mating success and random paternity success, respectively (white bars)

Fig. 2 Mean (±SE) number of eggs that males received per female
according to whether they acquired one or more mates
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X � SE ¼ 60 � 4:5
� �

and those that laid multiple clusters
(64 ± 3.6).

Sexual size dimorphism and selection gradients

Summary morphometric descriptions are found in Table 2.
The initial MANOVA indicated an overall significant
difference between the sexes (Wilk's 1 = 0.34, F4,99 =
48.3, P < 0.0001). Male A. biunguiculata had trunks that
were on average 7% longer and wider than those of
females (F1,118 = 20.1, P < 0.0001). With regard to leg
traits, the femora of females were on average 16% thicker
than those of males (F1,118 = 79, P < 0.0001), even though
no difference between the sexes was detected in femur
length (F1,118 = 2.3, P = 0.13).

The relative reproductive success of males was strongly
dependent on mate acquisition, as evidenced by the
significantly positive Bateman gradient (F1,56 = 168,
P < 0.0001; Table 3). According to standardized selection
gradients, however, there was no evidence that variation in
mating or reproductive success was based on any of the
body size traits measured (all tests: F < 0.26, P > 0.33;
Table 3). Size traits were also not different between
unmated and mated males when the latter were pooled into
one group (t statistic range −0.23–0.70, P > 0.48).

Discussion

Besides exhibiting a taxonomically widespread expression
of exclusive male parental care, pycnogonids vary greatly
in habitat preference, egg-brooding configuration and
duration, developmental time, mating behaviour, and size
dimorphism (Arnaud and Bamber 1987; Bain and Govedich
2004a), all of which are known to influence features of
mating systems (Emlen and Oring 1977; Clutton-Brock
1988; Andersson 1994; Avise et al. 2002; Shuster and Wade
2003). Several authors have hence proffered pycnogonids as

an ideal system for testing predictions from sexual selection,
mating system, and parental investment theories (Tallamy
2001; Shuster and Wade 2003; Bain and Govedich 2004a).
Nevertheless, relatively little is known about pycnogonid
natural history, and we are aware of only two other
pycnogonid species for which the natural mating system
has been investigated with genetic markers (A. hilgendorfi,
Barreto and Avise 2008; Pycnogonum stearnsi, Barreto and
Avise 2010). As in those two species, our study revealed that
both sexes in A. biunguiculata routinely mate with multiple
mates within the period of time it takes a male to brood one
cluster of eggs. Therefore, this species is polygynandrous
(sensu Andersson 1994).

Most pycnogonid species for which sexual size dimor-
phism has been documented (generally reported as body or
leg length) exhibited FSD (Hedgpeth 1941; Arnaud and
Bamber 1987; Tomaschko et al. 1997; Bain and Govedich
2004a; Barreto and Avise 2008). Among the traits mea-
sured in this study, however, femur height was the only one
that was greater in females than in males. This is not
surprising since most of a pycnogonid's reproductive
system is distributed as branches into some or all of the
ambulatory legs, and yolk deposition in ova occurs in the
female femur (King and Jarvis 1970; Arnaud and Bamber
1987). After excluding femur height from the dataset,
overall size remained significantly different between the
sexes (MANOVA, Wilk's 1 = 0.60, F3,100 = 22.2, P <
0.0001). Ammothella biunguiculata hence exhibits male-
biased sexual size dimorphism, albeit to a weak degree
(~7% difference in trunk dimensions).

Male-biased size dimorphism is thought to evolve
primarily through intense male–male competition for mates,
and it is generally predicted to be associated with highly
polygynous mating systems (Darwin 1871; Clutton-Brock
1989; Andersson 1994). For example, studies of strongly
size-dimorphic bighorn sheep and Northern elephant seals
have yielded estimates of Im ranging from 2.45 to 27.00

Table 3 Standardized linear selection gradients in field-collected
males of the pycnogonid Ammothella biunguiculata

Trait β′ ± SE (P value)

Mating success Reproductive success

Trunk length (n=50) 0.06±0.13 (0.77) 0.09±0.16 (0.61)

Femur length (n=50) 0.04±0.13 (0.87) 0.05±0.21 (0.97)

Oviger length (n=49) 0.12±0.12 (0.33) −0.27±0.64 (0.41)

No. of mates (n=59) – 0.98a±0.08 (<0.0001)

Two measures of fitness (relative mating success and reproductive
success) were regressed on phenotypic predictors using multiple
regressions
a This coefficient represents the sexual selection, or Bateman gradient
(Bateman 1948; Arnold and Duvall 1994), represented as βss

Table 2 Mean (95% confidence intervals) of trunk and femur measure-
ments for male and female Ammothella biunguiculata (Pycnogonida:
Ammotheidae) from Newport Beach, California

Mean (95% CI) in millimeters

Males (n=67) Females (n=53)

Trunk length* 1.09 (1.07–1.11) 1.02 (0.99–1.03)

Trunk width* 0.74 (0.73–0.75) 0.69 (0.68–0.70)

Femur lengtha 0.71 (0.70–0.72) 0.73 (0.71–0.75)

Femur height* 0.25 (0.24–0.26) 0.29 (0.28–0.30)

*P<0.0001, ANOVA
aNot significant, ANOVA
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(Le Boeuf and Reiter 1988; Coltman et al. 2002).
Concordantly, a positive relationship between increased
opportunity for sexual selection and the degree of MSD has
been observed, at least in ungulates (Vanpé et al. 2008).
The influence of male body size on relative reproductive
success in such highly dimorphic species generally follows
expectations (reviewed in Andersson 1994), but the
strength of this relationship in taxa with low MSD is not
as well documented. Our estimates of Im and Is are
comparable to those from other taxa with similar degrees
of sexual size dimorphism, such as the roe deer (Vanpé et
al. 2008) and the harbor seal (Coltman et al. 1998). Also, in
agreement with those studies is our finding that male body
size did not appear to explain variation in mating or
reproductive success. Some pycnogonids have been ob-
served to use ovigers in courtship (reviewed in Bain and
Govedich 2004a). In A. biunguiculata, the length of ovigers
was not a good predictor of fitness. It is likely that
behavioral or morphological traits not examined in this
study are the target of sexual selection in A. biunguiculata.
Alternatively, the influence of male body size on mating
success may vary with seasonal or geographical changes in
mate density or availability, as observed in some fishes
(Jirotkul 1999; Borg et al. 2006), spiders (Rittschof 2010),
and water striders (Fairbairn 1988). We emphasize, how-
ever, that our sample size is well below what it is generally
needed to detect even moderate levels of directional or
stabilizing selection in natural populations (Conner 2001;
Kingsolver et al. 2001; Hersch and Phillips 2004).

Males of species with MSD are ordinarily expected to be
under stronger sexual selection than those of species with
FSD (Vollrath and Parker 1992; Andersson 1994). Cases in
which genetic parentage was assessed, however, have
generated conflicting results (Schulte-Hostedde et al.
2004; Kelly et al. 2008; Rossiter et al. 2006; Burland
et al. 2001), but these comparisons encompass a wide range
of taxonomic groups. We hence compared our genetic
parentage results to those for A. hilgendorfi (Barreto and
Avise 2008), a species in the same family (Ammotheidae)
and with very similar egg-brooding arrangement and
behaviour as A. biunguiculata, but in which females are
larger than males in trunk and leg lengths (by 5% and 15%,
respectively; Barreto and Avise 2008). The standardized
Bateman gradient of male A. hilgendorfi was also signifi-
cantly positive (βss ± SE = 1.15 ± 0.14, F1,30 = 63.6, P <
0.0001, n=32), and it did not differ significantly from that
of A. biunguiculata (ANCOVA F3,86 = 1.14, P = 0.39;
Table 3). This suggests that, in both of these species,
parental care has not prevented males from pursuing
additional mates and increasing their reproductive output.
In contrast, estimated Is and Im for A. hilgendorfi (Barreto
and Avise 2008) were over twofold higher (2.02 and 3.91,
respectively; 0.85 and 1.12 in A. biunguiculata, this study).

The direction of sexual size dimorphism hence may not be
a reliable predictor of the intensity of sexual selection
among pycnogonids. Factors that can affect the causal link
between reproductive skew and sexual size dimorphism
include, for instance, the potential reproductive rate of each
sex (Clutton-Brock and Vincent 1991), the intensity of
fecundity selection on females (Darwin 1871; Williams
1966), the presence of alternative reproductive tactics
(Gross 1996; Avise et al. 2002), and sex-biased mobility
(Hakkarainen et al. 1996; Kelly et al. 2008). No such topics
have yet been addressed in pycnogonids.

Relatively few studies have tried to account for the
influence of random processes in producing observed
reproductive skews, despite strong evidence that such factors
often explain major components of variation even in highly
polygynous systems (Hartley and Shepherd 1995; Focardi
and Tinelli 1996; Friedl and Klump 2005). Our analyses
revealed that mate acquisition in male A. biunguiculata
occurred largely at random. Simulated random mating
suggests that at least 64% (by the ratio I

»
s =Is) of the variance

in mating success in our sample can be accounted for by
chance factors. Mating success did not, however, accurately
reflect the number of progeny sired, since the latter showed a
highly non-random skew. This suggests that some males
were able to acquire more eggs per mate than expected by
chance. Congruent with this prediction, we found evidence
that males who acquired two or more mates sired, on
average, 30% more progeny per mate than did males with
one mate. Together, these findings are consistent with a
scenario in which mate acquisition by males is dependent
mostly on random processes (e.g., encounter rate; Sutherland
1987), but once a male encounters a potential mate, the
number of eggs he receives depends on whether he is
already carrying previous clusters. In other words, egg-
carrying may serve as an honest signal of quality, leading
females to invest more eggs in matings with males that
already carry at least one cluster than in matings with males
carrying no eggs. This pattern of female preference for egg-
guarding males is common in several fish species (Ridley
and Rechten 1981; Marconato and Bisazza 1986; Unger and
Sargent 1988; Manica 2010), and has recently been
demonstrated in reduviid bugs (Thomas and Manica 2005;
Gilbert et al. 2010) and harvestmen (Nazareth and Machado
2010). This hypothesis warrants further investigation in
pycnogonids by use of laboratory mating experiments.
Finally, the null model we used in our simulation is likely
oversimplified (Focardi and Tinelli 1996; Brommer et al.
2007); however, a more suitable null model requires more
information about a system's breeding ecology than it is
currently known in pycnogonids.

Current estimates of the opportunity for selection in
pycnogonids (this study and Barreto and Avise 2008, 2010)
yield values comparable to those in other polygynandrous
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systems (reviewed in Clutton-Brock 1988; Schulte-Hostedde
et al. 2004; Vanpé et al. 2008). This index, however,
measures the potential for selection to occur, but it does not
reflect whether sexual selection has or will occur (Wade
1979). To demonstrate that sexual selection is indeed
occurring, the phenotypic correlates of fitness must be
identified (Lande and Arnold 1983; Downhower et al.
1987). Given the difficulty of detecting selection from field
studies (Kingsolver et al. 2001), experimental manipulations
in pycnogonids are warranted. In addition, the opportunity
for selection is often more informative when it is partitioned
among different components of the fitness continuum
(McVey 1988; Webster et al. 1995; Shuster and Wade
2003; DuVal and Kempenaers 2008). Male pycnogonids
have evolved the ability to carry large numbers of offspring,
but it is not known, for instance, whether offspring
survivorship is compromised by increased crowding. Eluci-
dating basic aspects of pycnogonid breeding ecology should
prove to be a rewarding venue for future research.
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