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ABSTRACT

Recent advances in organ-on-a-chip technology have resulted in numerous examples of microscale systems that faithfully mimic the
physiology and pathology of human organs and diseases. The next step in this field, which has already been partially demonstrated at a
proof-of-concept level, would be integration of organ modules to construct multiorgan microphysiological systems (MPSs). In particular,
there is interest in “body-on-a-chip” models, which recapitulate complex and dynamic interactions between different organs. Integration of
multiple organ modules, while faithfully reflecting human physiology in a quantitative sense, will require careful consideration of factors
such as relative organ sizes, blood flow rates, cell numbers, and ratios of cell types. The use of a mathematical modeling platform will be an
essential element in designing multiorgan MPSs and interpretation of experimental results. Also, extrapolation to in vivo will require robust
mathematical modeling techniques. So far, several scaling methods and pharmacokinetic and physiologically based pharmacokinetic models
have been applied to multiorgan MPSs, with each method being suitable to a subset of different objectives. Here, we summarize current
mathematical methodologies used for the design and interpretation of multiorgan MPSs and suggest important considerations and
approaches to allow multiorgan MPSs to recapitulate human physiology and disease progression better, as well as help in vitro to in vivo
translation of studies on response to drugs or chemicals.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5097675

I. INTRODUCTION

Microphysiological systems (MPSs), also known as organ-on-a-
chip, are engineered, microscale in vitro tissues that mimic aspects of
human physiology. The advantages of MPSs come from the fact that
they can provide a physiologically relevant tissue microenvironment,
such as blood flow, 3D tissue matrix, cell-cell interactions, and chemi-
cal gradient." It is expected that development of more physiologically
realistic in vitro platforms will help overcome some of the current
challenges that the pharmaceutical industry is facing in drug develop-
ment.” Recent advances during the last decade in developing single
microphysiological systems (MPSs) have led to interest in intercon-
necting single MPSs to realize multiorgan interactions.” ~ Although

proof-of-concept studies on a multiorgan MPS, also often termed
body-on-a-chip, have been published as early as in 2004,"7 several
challenges remain to create more advanced multiorgan MPSs that
reproduce complex human physiology involving interactions between
multiple organs.

One of the challenges researchers are facing today is that as the
number of organs in the system increases, the complexity of the sys-
tem increases dramatically. The increased complexity of the multior-
gan MPS gives rise to several issues: (1) how to determine appropriate
ratios of sizes of different organs, as well as total medium (blood)
volume, given that a “physiologically unrealistic” ratio between organs
will often distort the nature of their interactions and make it difficult
to determine appropriate flow rates between different organs, as well
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as the recirculating flow within the device and (2) how to translate the
experimental results from multiorgan MPSs to prediction of in vivo
responses in humans; for example, can we directly compare drug con-
centrations measured from a MPS with drug concentrations measured
from human plasma samples, or would we need some kind of scaling
factors to make a comparison? The first question is related to the issue
of designing multiorgan MPSs, and the second question is related to
the interpretation of MPSs. In addition, they are problems related to
each other, because how the MPS is designed will affect how to inter-
pret experimental data obtained from the system (Fig. 1).

The complexity of these problems—how to design a multiorgan
MPS, so that it correctly reproduces human physiology, and how to
interpret the MPS and translate experimental data to the in vivo case
require a robust mathematical approach. Although the concept of
MPSs is relatively new, mathematical approaches for designing and
interpreting the MPS can be adapted from mathematical techniques
that have been used in biological and pharmacological sciences, which
have been developed and validated for several decades. Here, we
review the current progress in application of mathematical techniques
to multiorgan MPSs. We will summarize how traditional mathemati-
cal models such as allometric scaling and pharmacokinetic (PK) mod-
els are adapted and applied to MPSs. Although we are only at the
beginning stage in this area, we are beginning to see more refined and
robust approaches, often accompanied by validation with experimen-
tal data. We intend this review paper to be a summary of recently
reported methodologies and evaluation of strengths and weaknesses,
as well as their perspectives on future directions.

Il. DESIGNING MPSs
A. Considerations for designing MPSs

Multiorgan MPSs aim to recapitulate the complex and dynamic
interactions among tissues and organs in the human body. In addition
to strategies for re-creating tissue-like structures and functions as in
single-organ MPSs, special design considerations are needed for multi-
organ MPSs to appropriately reflect the in vivo organ-organ relation-
ships and to reproduce physiologically relevant multiorgan interactions.

1. Common media and multiorgan interconnections

Fluidic connections among organ modules are often required to
recreate cross-organ interactions. In currently developed models,
interorgan communications are mainly achieved through a systemic
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fluid pool (common medium) that interconnects different organ mod-
ules, mimicking the circulating blood. Such a systemic fluid pool can
potentially transport nutrients, soluble ligands (growth factors, cyto-
kines, hormones, etc.), cell metabolites, pharmaceutical drugs, and cel-
lular components (exosomes, miRNA, mRNA, tumor DNA, and even
circulating cells). It constantly interacts with the local microenviron-
ment of different tissues and mediates organ crosstalk.

Developing a common medium to support the maintenance of
phenotypes and functions of all organs in the MPS is critical and not
trivial. Complementary strategies have been demonstrated and often
combined to achieve an optimal multiorgan performance. Several
multiorgan MPSs with a liver module chose liver culture media as the
common medium to ensure hepatic functions in the coculture system,
due to the liver’s high metabolic demand and its central role in drug
metabolism.” "> Some have mixed organ-specific media for all organs
in an equal ratio as the common medium to meet the needs (such as
essential growth factors) of all organ modules to a certain degree.'*"”
Growth factors with contradictory effects on different organs which
are not suitable for global administration have been supplied locally to
satisfy the special needs of specific organs."

In addition to the formulation of a common medium, the way it
interconnects different organ modules can greatly affect the effective-
ness of a common medium in supporting multiorgan functions and
mediating interorgan communications. Different fluidic interconnec-
tion platforms have been thoroughly reviewed previously,” which
mainly include (A) static microscale platforms; (B) single-pass micro-
fluidic platforms; (C) pump driven, and (D) pumpless recirculating
microfluidic platforms. Compared to static fluidic integration relying
on passive diffusion, dynamic microfluidic interconnections enable
the establishment of controllable and reliable biochemical gradients
that drive mass exchange between the systemic fluid perfusion and
local tissue microenvironments. The architecture of the interconnect-
ing fluid networks can have a large impact on organ crosstalk in multi-
organ systems. Single-pass microfluidic systems, where the common
medium is perfused through all organ modules in an open-loop,
sequential manner, are usually easy to set up, yet the interorgan com-
munications are mostly unidirectional lacking feedback loops from
downstream organs to the upstream ones. The recirculating microflui-
dic systems provide closed loop perfusion that better mimics the blood
circulation and facilitates reciprocal communications among organs.
Pumpless recirculating microfluidic platforms using reciprocating
gravity-induced flows for recirculation have demonstrated low-cost,
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hassle-free, and long-term (up to 4 weeks) maintenance of several mul-
tiorgan MPSs,"'*""® while providing similar pharmacokinetic (PK)
profiles as the pump-driven continuous unidirectional perfusion.'”
“UniChip,” a recent breakthrough in pumpless platforms, has
achieved continuous unidirectional perfusion that enables incorpora-
tion of shear stress sensitive tissues (vasculature, lungs, kidneys, etc.)
into a pumpless system.”’ The UniChip design also promises incorpo-
ration of circulating cells (circulating tumor cells, immune cells, etc.)
into recirculating MPSs, which has been challenging using pump-
driven platforms and would allow one to model live cell-mediated inter-
organ communications, such as distant cancer metastasis and immune
responses. Moreover, interconnecting organs using serial, parallel, or
combined network architecture, as well as the relative location of differ-
ent organs in the network are also important design considerations. A
single-loop, serial systemic interconnecting network has been used in a
majority of current multiorgan models due to its simplicity. While
allowing for organ crosstalk, such a fluid network has a built-in limita-
tion of applying the same flow rate for all organs. It is possible to arrange
the location of organ modules to mimic the physiological process better.
For example, a gastrointestinal (GI) tract module in close vicinity to a
liver module allows simulation of the first-pass effect in which pharma-
ceutical drugs are metabolized by the liver model immediately after GI
tract absorption before reaching the systemic circulation.

2. Physiological relevance of multiorgan interactions

While fluidic interconnections among organ models allow for
organ-organ interactions in vitro, whether those interactions represent
human responses depends not only on single-organ functions repro-
duced in vitro but also on the physiological relevance of organ-organ
relationships imbedded in the system design. It is not realistic to build
a perfect “mini human” that represents every aspect of the human
body, neither it is the goal. It is therefore critical to identify most of the
essential parameters affecting the on-chip simulation of a multiorgan
MPS based on its target applications. Most biochemical reactions and
biological responses are concentration dependent. Design parameters,
such as relative organ sizes, flow distribution among organs, and
liquid-to-cell (LoC) ratios, can significantly affect the global (systemic)
and local concentrations of key molecules and cellular components
that mediate organ crosstalk. They are thus important design consider-
ations for multiorgan MPSs.

Derivation of on-chip organ sizes from physiological values
requires proper scaling, which will be discussed in detail in Sec. 1T B.
The organ sizes of different organs in a multiorgan MPS may also
carry different weights in design for recapitulating the dynamic organ
interactions in vitro. Organ models, based on their major roles in the
organ-organ interactions, can be viewed as either “source organs” that
generate or significantly affect the bioavailability of molecules and cel-
lular components mediating the organ crosstalk, or “target organs”
that can have significant responses to these mediators, or both. The
size of a source organ (i.., the surface area of a barrier tissue or the
volume of a parenchymal tissue) can have a big impact on the extent
to which the organ model affects the composition of the systemic pool.
For example, the relative sizes of the major organs involved in
ADME—drug absorption (e.g., GI tract), distribution (e.g., adipose tis-
sues, the blood-brain barrier), metabolism (e.g,, liver), and excretion
(e.g., kidneys)—would have much greater impact on the on-chip
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pharmacokinetics than target organs (e.g., cardiac tissues for cardio-
toxicity). In particular, the liver tissue volume or hepatocyte number is
a key design consideration due to the critical role of the liver in metab-
olism. Liquid per hepatocyte is often used as a measure for the meta-
bolic burden in the system. Such practical considerations combined
with scaling rules would help create physiologically relevant organ-
organ relationships in vitro.

The flow rate and flow distribution among organs affect organ
perfusion rates and molecules’ resident time in organ models, which
could alter the kinetics of biochemical reactions. For example, the per-
fusion rate of the liver model affects not only the nutrient supply for
maintaining hepatic functions but also the first-pass metabolic rate,
and thus the bioavailability of drugs and their metabolites in the
systemic circulation. The LoC ratios in the MPS directly affect the con-
centrations of many crosstalk-mediating molecules and cellular com-
ponents. A large LoC ratio will lead to overdilution of these mediators
including drug metabolites and consequently incorrect PK data, mech-
anistically different responses, or failure to detect certain drug effects
through organ-organ interactions. Therefore, design parameters affect-
ing LoC ratios should be taken into particular consideration. By far, it
has been very challenging to establish physiologically realistic ratios of
LoC volumes at both local and systemic levels.” Strategies to lower
LoC ratios include combining 3D tissue culture and microfabrication
to lower local LoC ratios as well as minimizing dead volume in the
circuits (e.g., debubbler, interconnecting tubing, reservoirs) to decrease
LoC ratios at systemic levels.’

Additional practical factors may also affect the dynamic profiles
of key molecules and cellular components in multiorgan interactions.
Different platform materials can vary significantly in their absorption
and adsorption rates for different drugs and cell metabolites. It is
thus important to minimize or at least thoroughly characterize such
sorption for the drugs and metabolites of interest. Incorporation of
on-chip biosensors, such as microelectrodes, microcantilevers, or bio-
chemical sensors, is also likely to increase the overall fluid in the sys-
tem, and thus LoC ratios. Balancing the need for on-chip functional
analysis and that for maintaining close to physiological LoC ratios
should be factored into design considerations.

B. Scaling methods

A multiorgan MPS can be thought of as essentially a simplified
and miniaturized version of the human body. This requires a well-
thought strategy for “scaling,” specification of organ sizes, and operat-
ing conditions (flow rates in each organ modules, the total volume of
media in the system, etc.) for the MPS, to successfully reproduce essen-
tial physiological functions of interest, as well as the response to drugs.
There is still no widely accepted consensus on the optimal method of
scaling an MPS, and it is likely that the choice depends on the objective
of a study using the MPS. Several scaling methodologies have been pro-
posed, often accompanied by proof-of-concept experimental studies, to
validate the proposed scaling methods. Here, we summarize recently
reported approaches for scaling multiorgan MPSs and how different
scaling methods “perform” in terms of physiological relevance.

1. Direct scaling

The most obvious method for scaling down various organs
comprising the human body is to directly scale down each organ
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proportionally. Anatomical data for organs in the human and animals
are easily accessible.”’ To directly scale the human body to microscale
size, one can simply divide the size of each target organ by the minia-
turization factor. This method is straightforward and simple to apply.
However, directly scaling different organs with same factors is likely to
result in distortion of appropriate relationships between the organs, as
it is known that different organs scale differently, as can be seen in Fig.
2. Wagner et al. developed a two-organ MPS (liver and skin), by com-
bining microtissues and skin biopsies with the size of 1/100 000 of the
biomass of their original human organ counterparts.'' The two tissues
were maintained for 14 days while being exposed to fluid flow. The
exact dimensions of the culture compartments for the liver and
the skin were not specified in the paper, but it could be deduced from
the description in the paper that they were of sizes of several milli-
meters. The flow rate of the recirculated media was 40 ul/min with
600 1 of total media volume. This implies significantly slower recircu-
lation time compared to the blood recirculation in the human body
(15 min in the chip vs approximately 5 min in the human body, calcu-
lated by dividing the total blood volume by the cardiac output, which
are 521 and 5.61/min for a 70kg human, respectively’'). Regarding
the fluid-to-tissue ratio, which is another important scaling factor to
be considered, the authors stated that one of their design principles
was to minimize the fluid-to-tissue ratio, to prevent the dilution of sig-
naling molecules due to undesirably large volume of fluid (media).
The authors presented the evidence of crosstalk between the liver
microtissue and skin biopsy by measuring the time-dependent con-
centration of albumin. The measurement results suggested that the
albumin consumed by the skin was produced by the liver. This result
implies that a crosstalk between the liver and the skin was established
successfully, and a state similar to an equilibrium of albumin produc-
tion in the liver and consumption in the skin was established between
the two organs. However, the physiological relevance of the measured
albumin concentration, or consumption/production rates to the corre-
sponding values in the human body, was not examined.

Earlier work by the same authors describes assumptions when
they were designing the multiorgan MPS, but the focus was on
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establishing sufficient nutrients and oxygen supply to the tissue culture
compartments, rather than the kinetics of crosstalk between different
compartments.”” In a more recent paper, the authors reported a four-
organ MPS containing intestine, liver, skin, and kidney equivalents in
the chip.” The authors also mentioned in the paper that the chip was
designed such that the fluid-to-tissue ratio was low, although the exact
ratio was not specified. The tissue viability in the chip was verified by
lactate dehydrogenase (LDH) activity, and the glucose balance in the
chip was verified for 28 days. Expression of major genes for each organ
was examined for 28 days. These results successfully demonstrated
that the four tissues were viable and functional during the 28-day
culture period. However, this paper did not provide any evidence of
crosstalk between the organs, and it is difficult to judge if the design of
the chip was mimicking physiologically relevant crosstalk between the
four organs.

2. Residence-time based scaling and derivation
of parametric design criteria

Shuler et al. have published a series of pioneering papers on mul-
tiorgan MPSs aimed at reproducing the interaction between organs.”
In one of the earlier papers, the working principles for designing a
multiorgan MPS were described.” The following four constraints were
used when designing a three-chamber MPS (termed microscale cell
culture analog in the paper).

(1) The ratio of the chamber sizes and the liquid residence times in each
compartment reflects the physiological values in the human body.

(2) Each chamber should have a minimum of 104 cells.

(3) The hydrodynamic shear stress should be within physiological
values.

(4) The liquid-to-cell ratio should be close to the physiological value of
1:2.

Among the mentioned four constraints, the first and the last con-
straints are directly related to the issue of scaling. The first constraint
ensures that each organ is exposed to chemical cues for the same
amount of time that the same organ would be exposed in the human
body. The last constraint ensures that the chemical cues generated
from the cells in the MPS are not diluted to an extent where they
would not exert any observable effect.

This method, which we will term residence-time based scaling in
this paper, is simple, but captures the essence of reaction kinetics
within the organ tissues and organ compartments in a multiorgan
MPS. Theoretically, abiding by these two constraints will allow recapit-
ulation of the kinetics of reactions, that is, generation and consump-
tion of molecules, by the cells in a quantitative sense. Based on this
approach, several multiorgan MPSs have been designed and tested.
For example, drug mixtures for treating multidrug resistant (MDR)
cancers were tested in a four-organ MPS (liver, bone marrow, uterine
cancer, and MDR variant of uterine cancer).”” A physiologically based
pharmacokinetic (PBPK) simulation was used to compare the concen-
tration profiles of a drug [doxorubicin (DOX)] and its metabolite
[doxorubicinol (DOXOL)], which provide an important insight into
whether the MPS is physiologically realistic. A similar approach was
used to design a three-chamber MPS (liver, tumor, and bone marrow)
for testing the pharmacokinetics (PK) and efficacy of anticancer
drugs."” In this paper, a pharmacodynamic (PD) model was added to
a PK model to account for the cell-killing effect of an anticancer drug,
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which allowed the authors to simulate the time-dependent changes of
cell viability in response to drugs. As illustrated in these examples, the
use of PBPK modeling techniques is important in the design and inter-
pretation of multiorgan MPSs, which will be discussed in more detail
in Sec. I11.

For the residence-time based scaling approach to be successful,
each organ module should have activity or capacity comparable to that
in the human body. Taking the liver as an example, if one can presume
that the liver cells cultured within a MPS have intrinsic metabolic
activity comparable to the hepatocytes in the human liver, and the lig-
uid-to-cell ratio is sufficiently low so that it will not cause unnatural
dilution of the generated molecules, the concentration of the metabo-
lite produced by the liver cells in a MPS will be similar to that in the
human body. A potential limitation of this approach is that it does not
account for the mass transfer limitation within the tissues, which can
occur frequently in a real situation but was not considered by implic-
itly taking a well-mixed assumption for each organ.

In a recent paper, Shuler and Abaci proposed a more refined
approach based on the principles of PBPK modeling and derived para-
metric criteria for designing a multiorgan MPS.”* The authors defined
two different platforms, uOrgans-on-a-chip (uOOC) and yHuman-
on-a-chip (©HOC), which can be involved in different stages of drug
development. The uOOC is intended for early phases of drug develop-
ment as a replacement to animal models. The primary goal of ©OOC
is to estimate or validate appropriate parameters for a human PBPK
model, and accurate reproduction of human PK is not required. The
design criterion for pOOC is that the steady-state concentration values
of intrinsic metabolites, such as glucose, oxygen, and amino acids, in
each organ should mimic the corresponding values in the human
body. On the other hand, the xHOC is intended for more advanced
stages of drug development and should be able to directly mimic
human PK. The design criterion for #HOC is that the concentration
profiles of a drug in the blood and tissues should mimic those in the
human body. The main difference between ©OOC and yHOC is that
whereas ©OOC allows only the extraction of PBPK parameters, the
uHOC allows direct simulation of drug concentration profiles in the
human body. Based on the macroscopic mass balance equations
depicting these criteria and steady-state assumption, the authors were
able to derive a general parametric equation for designing a uOOC.
Due to the large number of parameters, multiple solutions will exist
for the derived equation, but a reasonable solution can be deduced
based on human body parameters and operating considerations for
the uOOC. This work provides a quantitative and practical foundation
for designing a multiorgan MPS, which can be potentially utilized in
the drug development process. As is mentioned, this design equation
can give multiple solutions, and it is probably necessary to refine the
approach further to obtain more determinate solutions, by introducing
additional constraints.

3. Allometric scaling

Allometry is a study of relationship between the body size and
various physiological parameters, and has a long history of more than
a century since the first description.” It is based on the idea that there
is a governing law that dictates various physiological parameters
depending on the size of organisms, which can be applied across spe-
cies of a wide range of sizes. Allometric scaling laws can correlate the
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mass of organisms with physiological parameters, such as the meta-
bolic rate,” the heart rate, and the blood flow rate.”” The allometric
scaling law is expressed by a power law equation with an exponent
“b.” For example, the metabolic rates in many organisms follow an
allometric scaling law with an exponent value of 3/4.

Metabolic rate = aM>/ 4 (1)

where a is a constant and M is the body mass. It has been proposed that
the metabolic rate follows the allometric scaling law because nutrients
are supplied to tissues through a fractal distribution network.”

Since a multiorgan MPS can be considered as a “miniaturized,”
or “microscale” human body, application of allometric scaling laws to
estimate the key physiological parameters of the MPS seems natural.
Ahluwalia et al. published a series of papers on utilizing allometric
scaling laws to design multiorgan MPSs of murine hepatocytes and
human umbilical vein endothelial cells (HUVEC),”® primary rat hepa-
tocytes and adipose tissues,”” adipose tissues, endothelial cells, and
hepatocytes.”” The authors concluded that to elicit meaningful
responses from a multiorgan MPS, the system requires (1) cell num-
bers and ratios, which enable appropriate physiological-like interac-
tions and (2) flow rates that do not cause shear stress-related damage
to cells and allow adequate residence times in each compartment to
enable the compartment to process metabolic signals, while permitting
an adequate oxygen supply through convection.”"*

In a more recent paper, Ahluwalia et al. proposed two different
allometric scaling laws (the cell number scaling method and the meta-
bolic and surface scaling method) and applied it to a two-organ model
of hepatic-vascular crosstalk.” In the metabolic and surface scaling
method, organs are scaled differently depending on whether their
main function is a volume-mediated process (such as metabolic con-
version by hepatocytes) or surface-mediated process (such as distribu-
tion through endothelium). In the case of the liver, which is treated as
volume-mediated, the basal metabolic rate (BMR) per cell hepatocyte
is calculated from human parameters. Assuming that the same per cell
BMR is maintained in the MPS and the fraction contribution of BMR
by the liver (which is 27% in the human body) is also the same, the
authors could calculate the total BMR of the MPS, if the number of
hepatocytes in the system is fixed. Once the total BMR of the MPS is
obtained, the authors used an allometric scaling law relating the body
mass and the total BMR to determine the “body mass” of the MPS,
which was calculated to be 1 mg. Having obtained the body mass, the
allometric approach could be used again to calculate the vascular sur-
face area. In the case of the second approach, the cell number scaling
method, the fractions of total body weight by specific organs are con-
sidered (6.28% for vascular endothelial tissues and 2.6% for hepatic tis-
sues in human), which can be used to calculate the ratio of the body’s
endothelial mass to the hepatic mass. Then, the hepatic-vascular MPS
can be designed to maintain the ratio of endothelial to hepatic mass.
Obviously, these two methods result in different MPS configurations,
that is, cell numbers and chamber sizes. In some cases, unrealistic con-
figurations may be deduced, wherein adjustment of parameters or
additional assumptions are required for practicability.

The authors compared the two scaling methods by measuring
the key markers related to carbohydrate, fat, and hepatic metabolism.
Overall, the MPS designed with the cell number-based scaling method
showed more physiologically realistic homeostasis values. It is unclear
why one scaling method performed better than the other. The cell
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number-based scaling method considers the ratio of cell number
between two organs and the metabolic and surface scaling method
considers the ratio of the metabolic rate of two organs. It seems that at
least for reproducing the homeostasis of glucose and fat metabolism,
scaling based on the ratio of cell numbers is more appropriate.
However, it should be noted that the optimal scaling method can be
different for different purposes of study. For example, if one was to
develop a multiorgan MPS for reproducing the PK of drugs, a different
conclusion could have been drawn.

Moraes et al. proposed a “metabolically supported functional
scaling” approach, which is based on the assumption that cells on the
chip can be induced to maintain in vivo cellular basal metabolic rates
by limiting the resources.’* The main principle of this approach is also
based on allometric scaling of the metabolic rate, but the authors’
approach complements the traditional allometric scaling by ensuring
that the underlying prerequisite for allometric scaling is maintained in
the MPS, that is, cells in the chip show per cell basal metabolic rates
that would be observed in vivo. This prerequisite is achieved by limiting
the nutrient supply to the cells, which causes cells in vitro to show basal
per cell metabolic rates of cells in vivo. This is a notable observation
that could complement the traditional allometric scaling approach,
since cells cultured in vitro are generally exposed to excess nutrients
and show different metabolic rates from their in vivo counterparts.”

An example of designing a two-organ MPS with adipose and vas-
cular compartments was illustrated by the authors of Ref. 34. They ran
a series of experiments using adipocytes in different configurations,
that is, in dispersed spheroids and intact spheroids, which showed
different mass transfer rates. One interesting observation made by
the authors were that the structure of the microengineered tissue on
the chip affects the scaling relationship. When the glucose uptake by
adipose tissues in two different structures (dispersed vs intact spher-
oid) was compared, dispersed cells showed significantly higher glu-
cose uptake, due to the difference in mass transport. This result
clearly shows that when scaling multiorgan MPSs, the type of micro-
tissue on the chip (for example, 2D monolayer, spheroids, cell sus-
pension, 3D constructs, etc.) is important. In an approach to scale
the two-compartment MPS, the authors first classify organs as being
functionally 3D or functionally 2D. This is a similar concept to the
one introduced by Ahluwalia, who classified the organ functions by
the parameter whether they are volume-mediated or surface-
mediated. Functionally 3D organs are scaled with their volume and
functionally 2D organs are scaled with their surface area. The authors
showed an example calculation of scaled mass and flow rate and the
proposed chamber dimensions for 2D and 3D organs.

This approach makes good sense for designing a multiorgan
MPS for studying glucose metabolism or metabolic diseases, such as
glucose metabolism by adipocytes as illustrated in the paper. But simi-
lar to the traditional allometric scaling approach, it needs to be vali-
dated whether this approach can be useful for other purposes, for
example, reproducing a PK of drugs. Also, in some cases, there can be
some obscurities in determining whether a specific organ is function-
ally 2D or 3D. For example, the liver performs a metabolic function,
which can be deemed 3D, but also performs secretory functions, which
may be deemed 2D. Another notable challenge with this approach is
that it can often result in physically impossible design dimensions, for
example, unrealistically large organ volumes or flow rates. In this case,
a further assumption or simplification may be required.

scitation.org/journal/apb

Wikswo et al. provided discussions on the pros and cons of dif-
ferent allometric scaling methods with very extensive and detailed
example calculations of each method.” The calculation of organ sizes
by direct application of the allometric scaling law showed that allome-
tric scaling down to microscale does not result in valid parameters for
a multiorgan MPS. A second approach, termed by the authors as
“interconnected histological sections” takes into account of the fact
that cells in the chip may not exhibit the same physiological functions
as in vivo, and the perfusion rate is simply determined by the number
of cells in the system. As noted by the authors, this approach is likely
to be valid only for recapitulating a subset of an organ’s functions.
Another approach proposed by the authors, termed “functional
scaling,” first defines the major function of each organ. For example,
heart: volume pumping; lungs: gas exchange; liver: metabolism; kid-
neys: molecular filtering and transport; and brain: blood-brain barrier
function and synapse formation. After specifying the functional
parameter for each organ, the multiorgan MPS can be scaled (itera-
tively), so that each organ meet the specific functional parameters,
while keeping the constraints imposed by other factors, such as physi-
cal architecture of the device, materials, and available cells. The
authors illustrate the example of functional scaling of individual
organs, with extensive calculation examples and references, by defining
about 250 anatomical and functional parameters.

This approach is more refined than the traditional allometric
scaling method and mathematically more robust. However, similar to
the case of metabolically supported functional scaling by Moraes et al.,
there are some obscurities related to how to define the major function
of an organ with more than one function. This can make it difficult to
create an organ with more than one function. Along the same lines, an
MPS designed for studying metabolic diseases may not work as an
MPS for studying the PK of drugs. In some cases, it may be difficult to
quantitatively define the functional parameters, as some of organ’s
physiological functions can only be defined qualitatively, rather than
quantitatively. For example, it is difficult to define the neuronal activity
in the brain or response of immune systems with a simple numerical
parameter. In such cases, reduction of organ functions may be inevita-
ble. In the example calculation illustrated by the authors, they limit the
complex functions of the brain to the neurovascular unit (NVU) and
the blood-brain-barrier (BBB), focusing more on the ADME studies.
This approach can be justified by limiting the purpose of the MPS to a
specific purpose only, rather than treating it as fully functional organs.
In addition, the limited current knowledge about the physiology of
organs often makes it difficult to define parameters.

4. Multifunctional scaling

One of the important limitations of the allometric scaling method
is that organs often possess multiple functions. In addition, there can
be cases where realization of one organ function collides with the reali-
zation of different organ functions. For example, making the oxygen
transfer in the lung compartment realistic might prevent recapitulating
the hepatic conversion in the liver compartment. Another limitation is
that often the parameters derived from the scaling method result in
physically impossible configuration, as seen in previous examples. The
facts that organs often carry out multiple functions and scaling need to
be done for multiple organs implies that scaling a multiorgan MPS
requires a systemic approach, or multivariate optimization.”’
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A mechanistic understanding of the processes that drugs go
through inside a multiorgan MPS can help with the design of the sys-
tem. Lee et al. reported a two-organ MPS (gut-liver) for reproducing
the first-pass metabolism of orally administered drugs. Using paraceta-
mol as a model drug, the authors compared the measured drug con-
centration profiles with the PK profile of the drug in humans from
literature.”® Measured PK profiles in the MPS showed considerably
slower clearance compared to the known PK in humans. A PK model
of the two-organ MPS was constructed first with the original design
parameters. Then, the design parameters were scaled based on the
organ size (liver) and the absorptive surface area (gut), and the modi-
fied design parameters were tested by simulation of a PK model. The
authors were able to conclude that a larger absorptive surface area and
a higher hepatic conversion rate were necessary to achieve a more real-
istic PK profiles, and derive optimized the design parameters for the
MPS.

In a recent paper, Maass et al. illustrated the use of an optimiza-
tion approach, using a mechanistic model and by specifying multiple
objective parameters.”” Two multiorgan MPSs were tested, gut-liver
and gut-liver-kidney MPSs, for studying the PK of drugs after oral
administration. First, the multifunctional scaling algorithm defines the
objective function as a weighted squared difference between a model
outcome and the corresponding measurements

rediction — observation >
Objective function = min <p ) . @

prediction

In the example in the paper, the objective function would use the
measured concentration profiles of drugs in the plasma (observation)
and model the calculated drug concentration profiles in the mixing
chamber in the MPS (prediction). Eight drugs were selected as a train-
ing set. The authors also took additional steps for normalizing the
in vivo and in vitro concentration profiles to account for differences in
the dose and bioavailability. The normalized concentration is a dimen-
sionless number, taking into account the drug bioavailability, volume

TABLE I. Summary of different scaling methods.
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of distribution, and drug dose. The authors explain that this normali-
zation method allows direct comparison between the in vivo and
in vitro concentration profiles, since they represent drug concentra-
tions observed for a unit concentration in a unit distribution volume.

Using this algorithm, fitted design parameters were medium vol-
umes for each compartment and the mixing chamber, and the luminal
flow rate to the kidneys (in the case of the second MPS). It should be
noted that the mixing chamber volume was fixed in the case of the sec-
ond MPS, due to the practical reason of reducing the number of fitted
parameters. Also, limits on the range of design parameters were
imposed prior to the parameter fitting, to eliminate the possibility of
physically impossible design parameters. The performance of the pro-
posed scaling approach was quantitatively evaluated by comparing the
simulated values of area under the normalized concentration curve
(termed by the authors as AUNC) with those simulated from two
other scaling methods, direct scaling and allometric scaling methods.
While the direct and allometric scaling methods predicted AUNC val-
ues that are orders of magnitude lower than the in vivo AUNC, multi-
functional scaling methods yielded AUNC values more comparable to
in vivo values. A notable achievement of this paper is that after obtain-
ing the design parameters with a training set of eight drugs, the accu-
racy of the MPS was evaluated with a test set of five drugs, and the
authors were able to verify that the model prediction showed a reason-
able agreement with known PK of the five drugs. This result shows
that this multifunctional approach is valid at least for designing a mul-
tiorgan MPS for predicting the PK of drugs, although whether it is
valid for designing MPSs for different purposes remains to be exam-
ined. We have summarized the main principles and pros and cons of
different scaling methods in Table L.

lll. INTERPRETATION OF MPSs

Interpretation of experimental data obtained from multiorgan
MPSs and translation of the data to in vivo requires appropriate math-
ematical modeling platforms. There are a number of existing modeling

Residence time-based

Methods Direct scaling scaling Allometric scaling Functional scaling Multifunctional scaling
Main Multiplication of Match the fluid (blood)  Physiological parame- Define major func- Specify multiple objec-
principles organ sizes by a residence time for each  ters should follow allo- tional parameter for tive parameters and
scaling factor organ metric power laws at each organ numerically derive
microscale design parameters
Pros e Very simple o Ensures physiologi- o Plenty of literature e Mathematically o Works well for a spe-
cally realistic dynamics ~ sources for allometric robust and easy to cific purpose (for
between organs relationship for various apply once data is example, PK study)
parameters provided
Cons o Likely to cause e Each organ module e Allometric scaling o Issues with organs e Can be mathemati-

imbalance between  should have physiolog- law may not hold at with multiple cally complex when
organ functions at ical level of intrinsic microscale functions the system becomes
microscale activity larger

o Ignores flow rates ~  Mass transfer within o Often requires fur- o Difficult to define
or circulation time the tissue needs to be ther refinement by quantitative parame-

considered considering cell num- ters for some organ

ber, flow rates, etc. functions
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platforms used in pharmacology and in the pharmaceutical industry
that could be adapted for this purpose. In particular, PBPK (physiolog-
ically based pharmacokinetic)-PD (pharmacodynamic) modeling
technique has been successfully applied to analyze and predict the
behavior of MPSs.'”** More recently, use of the systems pharmacology
approach for in vitro in vivo (IVIV) translation has been proposed.””
Here, we summarize recent examples of using mathematical modeling
platforms together with the experimental approach using MPSs, with
an emphasis on the technical aspects of the modeling methods.

A. Empirical PK modeling

Pharmacokinetics (PK) is a study of time-dependent drug con-
centration in the body after exposure, and PK modeling is frequently
used during the drug development process for dose adjustment, opti-
mization of drug formulation, and prediction of toxicity and efficacy.
Different types of PK models exist, with varying degrees of complexity.
One of the simplest forms of a PK model is one- or two-compartment
models, which assume the body as a single compartment or two inter-
connected compartments. Solving mass balance equations on the com-
partment model yields determinate solutions with exponential terms,
which describe the time-dependent concentration profiles of a drug.
Since a multiorgan MPS is basically a collection of multiple chambers
(compartments) with interconnected flow, this simple compartment
model can be directly applicable to the analysis of a multiorgan MPS.

Ouattara et al. demonstrated using compartment models how to
analyze the PK data on benzo[a]pyrene obtained from a static well-
plate system and a dynamic perfusion system, both containing Caco-2
and HepG2 cells to mimic absorption in the small intestine and
hepatic metabolism, respectively.”” Mass balance equations describing
the two systems were set up and solved, and the model fits for the two
systems were compared with experimental data. Although the perfu-
sion system used in this study is in a relatively simple and primitive
form (perfusion was introduced to the conventional transwell culture
platform), it is a clear example of how a simple compartment PK
model can be combined with an experimental approach using a multi-
organ MPS.

Prot et al. demonstrated a more advanced form of using com-
partment PK models with a multiorgan MPS to study the PK of para-
cetamol.”’ A microfluidic MPS with Caco-2 (intestine), HepG2, and
primary hepatocytes (hepatic metabolism) was used to study the
first-pass metabolism of paracetamol, which was coupled with a math-
ematical model to estimate the intrinsic clearance parameters of the
intestine and the liver. The mathematical model used in this study
consisted of seven compartments (accounting for four medium reser-
voirs, hepatic, intestine compartments, and tubing between the com-
partments). Another notable distinction in this study is that an
additional mathematical model was used for extrapolation of the
in vitro hepatic intrinsic clearance rate to in vivo clearance parameters.
Two different models (well-stirred and parallel tube models) were
compared, along with using a scaling factor based on hepatocellularity
per unit mass of liver and body mass for conversion from in vitro to
in vivo. The hepatic clearance and availability parameters that were
predicted from the experimental data coupled with mathematical
models showed reasonable agreement with the corresponding in vivo
values from literature.

This study by Prot et al. shows that coupling of a multiorgan
MPS with traditional compartmental PK modeling technique may be
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useful for predicting in vivo PK parameters, but further validation with
a set of different drugs (preferably drugs with different physical/chemi-
cal and PK characteristics) is necessary. In fact, employing a similar
approach with different drugs, omeprazole and phenacetin, resulted in
less satisfactory agreement with known in vivo PK parameters.”
Investigation into the possibility of using more mechanistic models to
better account for the PK of different drugs in the MPS may contribute
to improving the accuracy of the prediction by this approach. In addi-
tion, expansion of this approach to account for the action of drugs,
that is, pharmacodynamics (PD) of drugs, will yield a more robust and
useful MPS-modeling platform, as illustrated in Sec. I11 B.

The effect of hepatic metabolism on the cardiotoxicity of drugs
was investigated using a multiorgan MPS."” In this study, computa-
tional fluid dynamics simulation was used to predict the shear stresses
and mixing profiles in each organ chamber. Conversion of a parent
drug to a metabolite was modeled using a two-tier process, incorporat-
ing the uptake of a drug by hepatocytes, and conversion of a parent
drug to a metabolite inside hepatocytes. The transport of a drug into
the cells and the conversion process were modeled using the
Michaelis-Menten kinetics model with constants being estimated
from experiment. This two-tier model is more detailed than previ-
ously described PK models, since it simultaneously accounts for the
transport and chemical conversion. The transport of a drug and its
metabolite from the liver to other organs, such as the heart, was not
explicitly modeled, which can be explained by the assumption that
the system is not limited by the flow between different organs.
Electrical and mechanical functions of cardiac tissues were examined
under the influence of a drug and its metabolite. This study demon-
strates that the pharmacological effect of a drug and its metabolite
can be observed and analyzed by a combined experimental and
mathematical modeling approach.

B. Mechanistic PBPK-PD modeling (systems
pharmacology approach)

Compartment PK models, although relatively simple, provide
useful platforms for analyzing multiorgan MPSs and extracting key
PK parameters from experimental data. However, as the multiorgan
MPS becomes more advanced, including more organs and more com-
plex action of drugs in the system, more mechanistic mathematical
models are needed. Physiologically based pharmacokinetic (PBPK)
models can provide a mechanistic basis, since they are based on the
actual physiology and anatomy of the human body, and hence can bet-
ter represent the mechanism of action the drugs elicit in the MPS.

Shuler et al. has published several papers examining the possibil-
ity of coupling PBPK models with multiorgan MPSs."* In a paper pub-
lished in 2008, Tatosian and Shuler compared the PK profiles of an
anticancer drug doxorubicin (DOX) and its metabolite, doxorubicinol
(DOXOL), predicted in the MPS with that predicted in the human
body, by building a PBPK model for both MPSs and humans.”
Distribution profiles of DOX and DOXOL in different tissues resulting
from 1M DOX in the MPS and 100 g/m* of DOX in human were
compared, showing that the area under the curve (AUC) prediction is
of the same order of magnitude. It is not certain whether the dose of
1 1M in the MPS was comparable to the dose of 100 g/m> in human,
so a direct comparison of concentration profiles might not be possible.
However, this study demonstrated a primitive form of coupling a
PBPK model with a multiorgan MPS. Also, the MPS was scaled and
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designed on similar principles introduced in earlier paper,” and it is
possible that the hepatic conversion in the liver chamber was not real-
istic since a cell line was used in this study.

Pharmacokinetics (PK) is the study of concentration of drugs
after administration and pharmacodynamics (PD) is the study of the
effect of drugs. PK or PBPK models are based on the mass balance of
drugs and their metabolites in each organ (or compartment), and PD
models are based on empirical or mechanistic models describing the
action of drugs at the target site. Coupling of PK and PD models has
been frequently attempted, as it can be used to predict the pharmaco-
logical effect of a drug based on the administered dosage."* Since it is
possible to construct a PBPK model of a multiorgan MPS, it should be
possible to couple this model with a PD model that describes the phar-
macological effect of a drug in the MPS. In a paper published in 2010,
Sung et al. developed a three-organ MPS (liver, tumor, and marrow)
for testing the efficacy and toxicity of an anticancer drug, 5-
fluorouracil (5-FU), and the corresponding PBPK-PD model of the
MPS. In this study, the PD model describes the response of tumor cells
to 5-FU, by assuming a number of different states (leading to complete
cell death), where the transition from one state to the next state was
defined by numerically fitted parameters. This early, proof-of-concept
study showed that a coupled PBPK-PD can be used as a mathematical
modeling platform for analyzing the action of drugs in a multiorgan
MPS, as well as for gaining some insight into the action of drugs by
extracting numerical parameters.

A similar approach was taken in a more recent study, where a
two-organ MPS (liver-tumor) was coupled with a PK-PD model
describing the anticancer effect of a flavonoid, luteolin.”” A notable
conclusion from this study was that the PK-PD model of the MPS
helped the authors to provide an explanation for discrepancies
between the efficacy of the drug predicted from a conventional multi-
well platform experiment and the actual efficacy observed in the MPS.
The observed efficacy was considerably lower in MPSs than what was
anticipated from the multiwell experiment, and by looking into the
concentration profiles of luteolin and its metabolites, the authors were
able to conclude that the hepatic conversion and tumor cell-killing
action were occurring simultaneously, which caused the actual
“working concentration” of the active drug to be lower than expected.
Again, this study is a simple but important demonstration of how PK-
PD models can provide a detailed account of what is happening inside
the MPS, once we have a relatively mechanistic model of the system.

A systems pharmacology approach to MPS development and uti-
lization was recently reported,”” which is conceptually similar to the
PK-PD modeling approach mentioned above,'” but showed a techni-
cally more advanced approach. A single liver/immune MPS, contain-
ing human hepatocytes and Kupffer cells, was used to study the PK of
hydrocortisone (HC) and the inflammatory response to lipopolysac-
charides (LPS). A mechanistic model describing the PK of HC and the
inflammatory reaction by LPS was constructed based on a single MPS,
which was then expanded to the theoretical study of a four-organ MPS
(liver, kidneys, gut and a hypothetical target PD organ). The authors
verified that the mechanistic PK model for HC which includes the
mechanism of HC binding to human serum albumin (HSA) was able
to predict the PK of HC in both cases of low and high concentrations
of HSA. Similarly, a semimechanistic model of inflammatory response
to LPS, including the binding of LPS to Toll-like receptor 4 (TLR-4),
LPS-TLR-4 complex internalization, TLR4 recycling, and TNF-o and
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IL-6 production by Kupffer cells, was able to predict the liver inflam-
matory response to LPS, as well as desensitization by subsequent
doses. Such findings in this study demonstrate that having a detailed,
mechanistic model of the MPS system based on the knowledge of bio-
logical mechanisms could improve the accuracy and utilization of the
MPS. Furthermore, the authors combined the mechanistic liver/
immune model with three more organs (gut, kidneys, and a target PD
organ) and performed a sensitivity analysis on various design and
operation parameters, from which they were able to draw some impor-
tant insights about what kinds of parameters had strong effects on
pharmacological outcomes. For example, the time required for the
concentration of a chemical entity in the target PD organ to reach 80%
of that in the mixing chamber (tyixingso) Was strongly dependent on
the mixing chamber outlet flow and the target PD organ volume.
These examples of combining PK-PD models (or systems pharmacol-
ogy models) demonstrate the usefulness of such approaches, even at
semimechanistic levels. A more detailed knowledge of the biological
mechanisms in study will help researchers construct a more mechanis-
tic model, which will then help improve the MPS.

IV. FUTURE DIRECTIONS AND CONSIDERATIONS FOR
MPS DESIGN AND INTERPRETATION

Proof-of-concept studies for integrating multiple organs into a
single device emerged in the 2000s. Earlier devices were based on
rough calculations of chamber volumes and cell numbers, rather than
accurate scaling of different organ sizes and flow rates between them.
During the last five years, more rigorous approaches for designing a
multiorgan MPS have been introduced. Some of them are extended
from traditional allometric scaling laws across different organisms,””*®
some are based on chemical engineering principles and focus on mass
balances and reaction kinetics,””** and more recently, multivariate
optimization of parameters have been proposed.” These studies prove
that it is possible to design a multiorgan MPS for at least partially
reproducing human physiology for a specific study. Interpretation of
experimental data from a multiorgan MPS and extrapolation of the
results to humans have been attempted with some success.
Mathematical techniques that have been used in pharmacology or
biology have been adapted successfully, but more extensive valida-
tion studies are needed to prove the usefulness of multiorgan MPSs
in the drug development process. As can be seen in the literature
described in this paper, coupling of in vitro MPSs with in vivo human
can be beneficial on both ends, with the help of various available
mathematical modeling tools. Figure 3 shows various kinds of math-
ematical modeling platforms that are widely used in the pharmaceu-
tical science field, such as pharmacokinetic (PK) and biological
network modeling."”

To realize multiorgan MPSs for more comprehensive studies, it is
necessary to simultaneously mimic the diverse aspects of human
physiology, which depends on overcoming the remaining challenges
(Fig. 4). As explained in Sec. IT A, there are several aspects of the
in vivo microenvironment that have not been realized. (1) The trans-
port phenomena in MPSs are generally neglected or simplified. For
example, cells in an MPS may be exposed to too low or too high con-
centrations of oxygen, when compared to the in vivo situation.
Commercially available simulation software for fluid dynamics or
mass transport can be helpful by providing detailed mathematical
models of MPSs. (2) The issue of cell-to-liquid ratio has been brought
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up by several researchers,” but realization of an MPS that faithfully
meets this criterion has not been developed. This is particularly diffi-
cult, since the correct distribution of cells and liquids also needs to be
considered, not only the overall ratio. More refined design of MPSs,
often with the aid of mathematical modeling tools, to achieve a physio-
logically realistic ratio and the distribution of cells and liquids through-
out the system, is needed. (3) The presence of an extracellular matrix
(ECM) is an essential element in almost every organ and tissue, and
different tissues have different requirements for the surrounding
ECM. For example, the physiochemical properties of the ECM of the
skin and the brain can be different. (4) A significant portion of a drug
in the plasma binds to nonspecific proteins, which affect the PK and
PD of the drug. It is possible that the binding kinetics of the medium
in an MPS are different from that in the human blood plasma and
need to be quantified. It is possible to build a PK model that accounts
for the drug binding kinetics. When combined with experimental
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data, it should be possible to quantify the binding kinetics in the MPS,
which can be accounted for when extrapolating to human data. (5)
Some tissues are exposed to a variety of mechanical cues, such as flu-
idic shear, peristaltic motion, and contractile forces, or a combination
of them. Each tissue needs to be exposed to appropriate amount and
combination of such stimuli. Many of these stimuli are quantifiable
and can be experimentally measured, which can be compared with
predictions by mathematical models. (6) A widely known challenge is
the issue of formulating the common medium, or artificial blood, that
supports both the growth and the differentiation of not only one cell,
but all cells from different types of tissues. We have seen some success
in supporting two to four cell types in a system,“” but it becomes more
challenging as the number of cell types in a system grows. The devel-
opment of a chemically defined, serum-free common medium is a
plausible solution, but it needs to be tested for a larger number of cell
types."® (7) Another complication is potential adsorption of medium

Transport of
soluble
factors

Mechanical
forces

Cell-liquid
ratio

Scaling sizes

Cell-cell and
cell-matrix
interaction

Fluid
dynamics

FIG. 4. Considerations for building physio-
logically realistic multiorgan microphysio-
logical systems.

Drug binding

and
adsorption

Universal
media

APL Bioeng. 3, 021501 (2019); doi: 10.1063/1.5097675
© Author(s) 2019

3,021501-10


https://scitation.org/journal/apb

APL Bioengineering

REVIEW scitation.org/journal/apb

TABLE II. Comparison of in vivo (human or animals), in silico (mathematical models), and in vitro (MPS) platforms. Different models can be used together for same applications,

and data from different models can complement each other.

In vivo (human or animals)

In silico (mathematical models)

In vitro (MPS)

e Personalized medicine

e Diagnosis and detection

e Preventive medicine
Available data e Biomarkers (blood, urine, and
tissue samples)

e Tissue and organ functional

Applications

drugs

markers soluble factors

e Imaging data (X-rays, CT, e Transport phenomena
MRI)

oPK parameters o Fluid dynamics

eTime-dependent data

e Drug dosing and scheduling

e Designing MPS

e Hypothesis testing

e Concentrations of metabolites and

o (Local) concentrations of cytokines/

o Hypothesis testing

o Drug screening (toxicity and efficacy)

o Study mechanism

o Concentrations of metabolites and drugs

o (Local) concentrations of cytokines/soluble
factors

e Transcriptome and proteome

eMechanical functions (e.g., muscle
contraction)

o Electrical functions (e.g., neuron activity)
e Barrier functions (e.g., gut, kidneys, BBB)

components on the device, particularly devices made of PDMS (poly-
dimethylsiloxane). This problem can be partially reduced by minimiz-
ing the exposure to inner surfaces and devising pumpless systems to
remove tubing from the system,” modifying the surface with less
adsorptive properties,”” or substituting biocompatible thermoplastics
for other materials such as PDMS.” This adsorption phenomena can
be incorporated into a mathematical model of MPS, similar to the pro-
tein binding process, to get a better view of the processes in an MPS.
Several commercial modeling software are available. The fluid dynam-
ics and transport phenomena within the MPS can be studied with
modeling tools such as COMSOL Multiphysics® software (Burlington,
MA, USA). There are also several commercial PK-PD modeling tools,
which can be easily adapted to MPSs, such as PK-Sim (Bayer,
Leverkusen, Germany), Simcyp (Certara, Princeton, NJ, USA), and
MATLAB/SimBiology (Mathworks, Natick, MA, USA). (8) Finally,
mathematical modeling platforms for multiorgan MPSs need further
improvement and validation, as the systems become more complicated.
State-of-the-art technologies in information technology, such as artifi-
cial intelligence and machine learning techniques, may be combined
with MPS technology in future, as it has already been demonstrated in
the case of using deep learning for automated analysis of vasculariza-
tion images,” or using Bayesian algorithms for parameter estimation.”

The recent progress in the development of single organ MPSs
and multiorgan MPSs seems promising, in particular, with active
movement toward commercialization in collaboration with the phar-
maceutical industry.” A combination of in vivo, in silico, and in vitro
model platforms will enable wider applications for each model, and
data obtained from both in vitro MPS platforms and in vivo platforms
(human or animals) can be complementary to each other, and can
also be used as input for in silico, mathematical model platforms
(Table 1I). Development of hardware for MPSs should be accompa-
nied by the corresponding development of mathematical modeling
techniques for designing and interpreting the systems. Adoption of
existing techniques or principles to MPSs is desirable and practical,"**®
while improvements to MPSs with specific purposes are still needed to
achieve a wider acceptance and for application in the pharmaceutical
industry.
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