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Human-computer interfaces (HCI) allow people to control electronic devices, such as computers, mouses, wheelchairs, and
keyboards, by bypassing the biochannel without using motor nervous system signals. )ese signals permit communication between
people and electronic-controllable devices. )is communication is due to HCI, which facilitates lives of paralyzed patients who do
not have any problems with their cognitive functioning.)emajor plan of this study is to test out the feasibility of nine states of HCI
by using modern techniques to overcome the problem faced by the paralyzed. Analog Digital Instrument T26 with a five-electrode
system was used in this method. Voluntarily twenty subjects participated in this study. )e extracted signals were preprocessed by
applying notch filter with a range of 50Hz to remove the external interferences; the features were extracted by applying convolution
theorem. Afterwards, extracted features were classified using Elman and distributed time delay neural network. Average classification
accuracy with 90.82% and 90.56% was achieved using two network models.)e accuracy of the classifier was analyzed by single-trial
analysis and performances of the classifier were observed using bit transfer rate (BTR) for twenty subjects to check the feasibility of
designing the HCI. )e achieved results showed that the ERNN model has a greater potential to classify, identify, and recognize the
EOG signal compared with distributed time delay network for most of the subjects. )e control signal generated by classifiers was
applied as control signals to navigate the assistive devices such as mouse, keyboard, and wheelchair activities for disabled people.

1. Introduction

Healthy human beings use their muscles to move, drive
vehicles, and move objects. )e muscles receive commands
from the brain. Certain neuromuscular disorders impair the
communication between the brain and the muscles, causing
partial or total paralysis depending on the severity of dis-
orders. In most cases, eye muscle functions are not initially
affected. )ese disorders do not impair cognitive abilities,

and such individuals are aware of their environment, cre-
ating a locked-in state. Medical research helps such indi-
viduals live longer, and hence rehabilitation becomes
essential to improve their lifestyle and reduce the burden on
their caregivers. )e human-computer interface provides a
digital communication channel for paralyzed people by
assisting human cognitive or motor neuron function
through bypassing the biological channel communication.
Some of the prominent interfaces developed for impaired
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persons include smartphones, keyboards, game controllers,
sleep monitoring systems, and drowsiness detection systems
[1–12].

Electrooculography (EOG) principle was used widely
and successfully to detect eye movements to control the
human-computer interface because of its noninvasive,
portable, and inexpensive activities and because it can be
used in almost all environments [13]. In recent years, much
research relating to electrooculography supported interface
for HCI has been matured to overcome the problem that
occurred due to the locked-in state and motor neuron
disease. In most of the previous studies, eye blink was de-
fined as an election command for completing the tasks, but
sometimes the subject or person was unable to control the
eye blinks because blinks would occur unwillingly. To avoid
this condition, this paper establishes a new protocol for
acquiring signals for both events and nonevents to ensure
the possibilities of nine states of HCI by using different
eleven eye movements. From these eleven different eye
movements, eight were considered as events and three were
nonevents. Eye blinks, open, and stare were considered the
nonevents during this study.)is researchmainly focuses on
checking the possibilities of design and developing nine
states of HCI using classification techniques and recognition
rate of HCI with the help of single-trial analysis and accuracy
by using bit transfer rate.

Section 2 provides the background details. Section 3
explains protocol, preprocessing techniques. Section 4 de-
tails the feature extraction, Section 5 deals with classification
techniques used in this investigation. Outcome analysis is
presented in Section 6, and the conclusion and future study
are discussed in Sections 7 and 8.

2. Background Study

Nowadays, electrooculography-based human-computer in-
teraction is used by paralyzed people who have neurode-
generative problems. It acts as a good communication device
for conveying their thoughts with others by using the
technology. )e following are some of the most prominent
publications that are useful to people with disabilities: a
study by Saravanakumar et al. developed EOG based key-
board system in synchronousmode and asynchronous mode
using peak amplitude features and obtained the accuracy of
94.2% and 98.79% [14]. In one of the earliest studies, Barea
et al. implemented a wheelchair guidance system, which uses
four-state systems to guide a wheelchair to move forward,
backward, right, and left. )e result obtained in this study
shows that weakened individuals frequently involve about
10–15min to be trained to use this arrangement [15].
)ilagaraj et al. devised the assistive device for ALS and
semiparalyzed persons using spectral density features with a
dynamic network model from twenty individuals and ob-
tained the accuracy of 91.95% and 90.28 [16]. Another study
by Tsai et al. concentrated on an eye writing system using
EOG signals of eye movements corresponding to pattern
recognition of ten Arabic numerals and four mathematical
operators and attained 95% accuracy compared to other
writing systems [17]. He and Li modeled the audio speller for

LIS person through EOG signals using waveform detection
algorithm and SVM algorithm and obtained an accuracy of
94.40% [18].

Jayaprbhu et al. developed aided assistive intelligence
system for ALS persons using RMS features trained with PNN
architecture models from 15 subjects and obtained an ac-
curacy of 94.00% for young aged subjects, 93.27% for old aged
subjects, and 90.37% for ALS-affected individuals [19].
Supratak et al. created a sleep detection system for drivers
using time-invariant features with the CNN network model
and obtained the accuracy of 86.20% and 73.70% for two
different datasets [20]. Obeidat et al. developed a wheelchair
for a paralyzed person using Bayesian Linear Discriminant
Analysis and obtained an accuracy of 95% from fourteen
subjects [21]. Jayaprbhu et al. developed EEG-based BCI for
ALS-affected persons using the convolution neural network
and cross power spectral density for four subjects from fifteen
subjects and obtained the accuracy of 91.18% and 86.88% [22].
Xiao et al. modeled four-state EEG-based BCI for SCI-affected
individuals using CWTfeatured with a hybrid neural network
and obtained an accuracy of 93.86% [23]. Kai et al. designed
the rehabilitative device for LIS patients using local binary
patterns features with Grey Wolf optimization algorithm and
obtained 98.33% to 88.33% for the subject’s age group be-
tween 20 and 60 from nine subjects [24].

Dev et al. designed a wheelchair controller for quadri-
plegic patients using PSD features and a fuzzy classifier and
obtained good accuracy using one electrode system from
NeuroSky Headset [25]. Lokman et al. created BCI to control
the finger movement from thirteen subjects using genetic
algorithm features with MLP and SVM classifiers and ob-
tained the accuracy of 97.34% and 97.46% [26]. Turnip et al.
modeled wheelchairs for SCI-affected individuals for four
tasks and obtained 90% accuracy using ANFIS classifiers
from four subjects belonging to the age group between 25
and 26 [27]. Ilyas et al. developed BCI to determine the
patterns using several classifiers and obtained the maximum
accuracy of 73.03% for logistic regression and 68.97% for
SVM classifiers [28]. A background study on EOG classi-
fication exposed that very limited work has been presented
on identifying the EOG signals using Elman and Distributed
time delay neural network, and much research focuses on
conventional movements only. )rough this research, we
consider the possibility of recognizing eight-task (events)
and three-task (nonevents) movements using feedback
networks. )e achievement of the feature extraction ap-
proach was compared using a feedback network to confirm
the outcomes.

3. Experimental Protocol

We started our study with a preliminary study with two
subjects, a male and a female, to determine the signals
patterns. For each individual subject, the pattern generation
was different, and also we identified that all the different
tasks produced different patterns. )erefore, we concluded
that classifying all the tasks was possible during the study.

ADT26 bioamplifier was used to gather EOG signals for
20 normal persons. Signals gathered from the participants
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were sampled at 100 HZ and each band was split with 2HZ
from 0.1 to 16Hz. )e methodology of the study imple-
mented in this research was described by the same author in
his prior study [29, 30].

4. Feature Extraction

A feature extraction algorithm using convolution theorem
was used to extract the prominent features from the band-
pass filtered EOG signals for all eleven tasks. )e theorem
described that a mathematical operation on two-channel
signals Xb

j and Rb
j in time domain equals pointwise

multiplication in the frequency domain of the original
signals converted. Finally, the convoluted signals F1 and R1
are written as F1 ∗R1 , so that convolution operator was
indicated by using ∗ symbolized:

X
j

b � x
j

bi􏽮 􏽯
i�1,2,...100, b�1,2,...,8,

R
j

b � x
j

bi􏽮 􏽯
i�100,99,...1, b�1,2,...,8,

F1 � F X
j

b􏽮 􏽯,

R1 � F R
j

b􏽮 􏽯.

(1)

Let F represent the Fourier transform, so that F(X
j

b) is a
Fourier signal and F(R

j

b) is a reverse and shifted Fourier
signal of the Fourier transform of F1 and R1 correspondingly.
)en,

F F1 ∗R1􏼈 􏼉 � F F1􏼈 􏼉 · F R1􏼈 􏼉, (2)

where the dot indicates the pointwise multiplication. )us,
equation (2) can also be written as

F F1 · R1􏼈 􏼉 � F F1􏼈 􏼉∗F R1􏼈 􏼉. (3)

By implementing the convolution equation, we can write
down

F1 ∗R1 � 􏽘
N−1

n�0
F F1{ }.F R1{ }{ }. (4)

From this feature extraction technique, 16 features were
taken out for individual trial. )e features were extracted for
10 such trials for each task. A neural network classifier was
implemented to train and test 110 data samples for one
subject. )e feature sets obtained from the single trial for
each task are demonstrated in Figure 1.

5. Classification Techniques

To categorize the signal obtained from the eye movements
for 20 subjects, two neural network models were planned to
recognize the eleven different tasks. Two classical networks,
particularly the ERNN and DTDNN, were applied in this
study. )e convolution features were given as input to the
following networks. Outcomes of two network models were
related to validating the possibility of designing multistates
HCI.

5.1. Elman Recurrent Neural Network (ERNN). ERNN has
feedback connections that affix the capability to study the
physical aspects of the data. )e network architecture
consists of a context layer, which was equal to the hidden
layer in an ordinary network model to make a copy. )e
main aspects of this layer maintain the previous state of the
hidden layer at the previous pattern arrangement. Due to
this reason, the training time testing time and classification
rate of the network model were higher than those of FFNN
[31–34].

5.2. Distributed TimeDelayNeuralNetwork. A DTDNN was
one of the most powerful dynamic network models, and its
performance was high compared to other static network
models because it has a capacity to learn time varying and
also the sequential patterns due to its memory storage. )e
layers involved in this architecture have biases, so each layer
has added the weight from the earlier layers, and the last
layer was completed with output layers. It assigns the tapped
delay lines throughout the network. )e only difference
between the DTDNN and the TDNN is that the second input
argument is a cell array that contains the tapped delay to be
used in each layer. It was similar to FFNN, except that each
input and layer weight have a tap delay line associated with it
[35–38].

During the parameters settings, we fixed the neural
network classifier in the below-mentioned condition. )e
two network models were trained using backpropagation
(Gradient Descent) for the ERNN model and Levenberg
backpropagation training algorithm for the DTDNN model
with eight hidden neurons, sixteen input neurons, and four
output neurons. )e two network models were trained with
100% data samples and trained with 75% for each individual
subject, and also, we fixed testing error tolerance of 0.1
during the testing with a .001 learning rate of the network
model experimentally. During the classification, we nor-
malized the samples between zero and one using the nor-
malization procedure. )e maximum iteration of the
network was fixed and limited to 1000, and network error
falls below 0.001 to determine the network performance
[34, 39, 40]. Figures 2 and 3 present the construction of the
ERNN and DTDNN models used in this experiment.

6. Outcome Analysis

Tables 1 and 2 showed the average accuracy of the network
models implemented in the study. )e results showed that
the ERNN model has the highest overall classification
accuracy of 90.82%, whereas the DTDNN model has the
highest overall classification accuracy of 90.56%. )e
maximum classification accuracy of 91.91% and 91.76%
was observed for subject 12. )e average maximum
classification accuracy of 93.97% and 3.87% was observed.
)e average minimum classification accuracy of 86.10%
and 86.06% was observed. Average testing and training
times for twenty subjects were 5.35 and 0.9205 seconds
and 3.64 and 0.6545 for the convolution features using
ERNN and DTDNN, respectively. From the study, we
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observed that the ERNN model performed better than the
DTDNN model throughout the investigation, which is
depicted in Figure 4. From the outcomes obtained in
recognizing the eleven eye movements, it was seen that the
performance of ERNN models using convolution features
was high compared to the DTDNN architecture used in
this study.

6.1. Single-Trial Analysis (STR) Using ERNN and DTDNN
with Convolution Features. From the STR, it was concluded
that S1 achieved 80% accuracy for rapidmovement and open
and 70% accuracy for left, up right, down right, up left, down

left, close, and stare. S2 achieved 80% accuracy for up right,
up left, and close and 70% accuracy for right, left, down
right, down left, and stare. S3 achieved 80% accuracy for left,
down right, and stare and 70% accuracy for up right, down
left, and open. S4 achieved only 80% accuracy for down
right, down left, open, and stare and 70% accuracy for right,
up right, up left, and close. S5 achieved only 80% accuracy
for down right and 70% accuracy for left, up right, up left,
open, and stare. S6 achieved only 80% accuracy for left and
down right and 70% accuracy for up right, up left, and down
left. S7 achieved only 80% accuracy for left, down right, and
up left and 70% accuracy for right, up right, and stare. S8
achieved 100% accuracy for close; 90% accuracy for left; 80%
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Figure 1: Signals extracted by implementing the feature extraction technique for (a) right, (b) left, (c) up right, (d) down right, (e) up left,
(f ) down left, (g) rapid movement, (h) lateral movement, (i) open, (j) close, and (k) stare tasks for Subject 2 using convolution theorem.
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accuracy for up right, up left, and down left; and 70% ac-
curacy for right, down right, open, and stare. S9 achieved
80% accuracy for down right and 70% accuracy for left, up
left, and open. S10 achieved 100% accuracy for left and 80%
accuracy for up right and stare. S11 achieved 80% accuracy
for lateral movement and close and 70% accuracy for up
right, open, and stare. S12 achieved 80% accuracy for open
and stare and 70% accuracy for left, up right, down right, up
left, and down left. S13 achieved 80% accuracy for down
right and 70% accuracy for down left and stare. S14 achieved

80% accuracy for up right and 70% accuracy for left, up left,
and stare. S15 achieved only 80% accuracy for up left and
70% accuracy for up right, down right, and down left. S16
achieved 80% accuracy for down left and open and 70%
accuracy for left, up right, and stare. S17 achieved 80%
accuracy for up right and down left and 70% accuracy for
open and stare. S18 achieved 90% accuracy for open, 80%
accuracy for left up right and stare, and 70% accuracy for up
left. S19 achieved 80% accuracy for down right and 70%
accuracy for left, up right, open, and stare. S20 achieved 80%
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accuracy for up right and stare and 70% accuracy for left and
open using the ERNN model.

From the STR, it was concluded that S1 achieved 80%
accuracy for rapid movement and open and 70% accuracy
for left, up right, down right, up left, down left, close, and
stare. S2 achieved 80% accuracy for up right, up left, and
close and 70% accuracy for right, left, down right, down left,
and stare. S3 achieved 80% accuracy for left, down right, and
stare and 70% accuracy for up right, down left, and open. S4
achieved only 80% accuracy for down right, down left, open,
and stare and 70% accuracy for right, up right, up left, and

close. S5 achieved only 70% accuracy for left, up right, up
left, open, and stare. S6 achieved only 80% accuracy for left
and down right and 70% accuracy for up right, up left, and
down left. S7 achieved only 80% accuracy for left, down
right, and up left and 70% accuracy for right, up right, and
stare. S8 achieved 100% accuracy for close; 90% accuracy for
left; 80% accuracy for up right, up left, and down left; and
70% accuracy for right, down right, open, and stare. S9
achieved 80% accuracy for down right and 70% accuracy for
left, up left, open, and stare. S10 achieved 100% accuracy for
left; 80% accuracy for up right and stare; and 70% accuracy

Table 1: Performance accuracy of convolution features using ERNN.

S. no. Sub. Hidden neuron Training time (sec) Testing time (sec)
Recognizing accuracy

Max Min Mean Std.
1 S1 8 5.31 0.92 93.64 83.64 90.73 2.60
2 S2 8 5.12 0.94 93.64 87.27 90.86 2.03
3 S3 8 5.38 0.91 94.55 85.45 90.94 2.46
4 S4 8 5.43 0.88 93.64 86.36 90.90 2.13
5 S5 8 5.42 0.93 93.78 85.45 90.58 2.32
6 S6 8 5.45 0.84 93.64 86.36 90.59 2.23
7 S7 8 5.43 0.94 93.64 85.56 90.77 2.48
8 S8 8 5.32 0.92 93.64 86.36 90.90 2.22
9 S9 8 5.34 0.86 94.55 85.45 90.91 2.15
10 S10 8 5.30 0.89 93.64 84.55 90.31 2.41
11 S11 8 5.32 0.96 93.64 86.36 90.58 2.17
12 S12 8 5.41 0.93 95.55 88.18 91.91 2.04
13 S13 8 5.39 0.95 93.64 86.36 90.90 1.93
14 S14 8 5.34 0.92 93.64 86.36 91.12 2.12
15 S15 8 5.34 0.95 94.55 87.09 90.71 1.92
16 S16 8 5.43 0.89 94.55 85.56 90.77 2.20
17 S17 8 5.52 0.90 93.64 86.36 90.68 2.00
18 S18 8 5.42 0.92 93.64 85.56 90.77 2.22
19 S19 8 5.42 0.97 93.64 87.27 90.82 2.09
20 S20 8 5.40 0.99 94.55 86.36 90.64 1.94

Table 2: Performance accuracy of convolution features using DTDNN.

S. no. Sub. Hidden neuron Mean training time (sec) Mean testing time (sec)
Recognizing accuracy

Max Min Mean Std.
1 S1 8 3.51 0.67 93.64 86.36 90.41 2.14
2 S2 8 3.56 0.61 93.72 85.56 90.49 1.88
3 S3 8 3.57 0.63 93.74 86.36 90.40 2.25
4 S4 8 3.70 0.65 92.74 86.36 90.58 1.79
5 S5 8 3.48 0.62 93.64 85.45 90.32 2.83
6 S6 8 3.59 0.76 93.64 85.56 90.13 1.99
7 S7 8 3.62 0.62 93.64 85.45 90.59 2.63
8 S8 8 3.62 0.62 93.64 86.36 90.49 1.64
9 S9 8 3.72 0.65 93.64 85.45 90.34 2.00
10 S10 8 3.59 0.63 93.64 86.36 90.23 2.31
11 S11 8 3.44 0.61 94.55 85.56 90.47 2.23
12 S12 8 3.55 0.63 94.55 88.18 91.76 1.79
13 S13 8 3.71 0.63 94.55 86.36 90.63 2.13
14 S14 8 3.92 0.61 94.55 85.45 90.86 2.26
15 S15 8 3.68 0.63 93.64 86.36 90.50 1.97
16 S16 8 3.60 0.63 94.55 85.55 90.59 2.08
17 S17 8 3.82 0.73 93.64 86.36 90.54 1.87
18 S18 8 3.65 0.70 93.64 86.36 90.59 2.17
19 S19 8 3.67 0.73 93.64 85.45 90.58 1.79
20 S20 8 3.84 0.73 94.55 86.36 90.73 2.50
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for up left, open, and stare. S11 achieved 80% accuracy for
lateral movement and close and 70% accuracy for up right,
open, and stare. S12 achieved 80% accuracy for open and
close and 70% accuracy for left, up right, down right, up left,
and down left. S13 achieved 80% accuracy for down right
and 70% accuracy down left and stare. S14 achieved 80%
accuracy for up right and 70% accuracy for left, up left, and
stare. S15 achieved only 80% accuracy for up left and 70%
accuracy for up right, down right, and down left. S16
achieved 80% accuracy for down left and open and 70%
accuracy for left, up right, and stare. S17 achieved 80%
accuracy for up right and down left and 70% accuracy for
open and stare. S18 achieved 90% accuracy for open, 80%
accuracy for left up right and stare, and 70% accuracy for up
left. S19 achieved 80% accuracy for down right and 70%
accuracy for left, up right, open, and stare. S20 achieved 80%
accuracy for up right and stare and 70% accuracy for left and
open using the DTDNN model.

)e result of the nine-state HCI system designed for each
subject was explored through a single-trial analysis using
ERNN andDTDNN for convolution features. From the STR,
it was observed that, for subjects 7 and 8, the accuracy rate
was high at a mean of 90% for events and 85% for nonevents
using convolution features, and for subject 13, the accep-
tance rate was low at a mean of 70% for events and 75% for
nonevents using convolution features with ERNN and
DTDNN network model used in this investigation. From the
single-trial analysis, it was evident that eighty percentages of
the signals have a recognition rate of eight and above for
some subjects such as S1, S2, S3, S4, S5, S13, S19, and S20
where the recognition rates were not appreciable. From the
analysis, we concluded that more training was required to
improve the recognition accuracy of the events as well as
nonevents. From the result, it was identified that practica-
bility of developing a nine-state HCI is possible for some
subjects participating in this experiment using convolution
features for DTDNN, while for some of the subjects such as
S1, S2, S3, S4, S5, S13, S19, and S20, the mean recognition
accuracy of nine-state HCI was around 80% only, so the
subjects involved in the study were not able to perform some
of the trials correctly and feel that the task was hard to

perform continuously. )ey were also unable to switch over
from one task to another immediately.

Sensitivity and specificity were the mathematical eval-
uation of the classification test, where sensitivity calculates
the events that were correctly identified. )e sensitivity,
specificity, and accuracy of the individual subject were
calculated from equations (5), (6), and (7):

True positive (TP)� correctly classified trials
False positive (FP) � incorrectly classified trials
True negative (TN)� correctly classified nonevent trials
False negative (FN)� incorrectly classified nonevents
trials

Sensitivity �
TP

(TP + FN)
. (5)

Specificity calculates the events that were identified as
wrongly classified:

Specificity �
TN

(TN + FP)
. (6)

6.2. Accuracy. )e accuracy of the subject was measured by
differentiating events and nonevents cases correctly. To
calculate the accuracy test, estimate the proportion of TP
and TN in all appraised cases proposed by [41, 42]. )e
mathematical formula to calculate the accuracy is stated as

Accuracy �
(TP + TN)

(TP + TN + FP + FN)
. (7)

From the investigational result, it was analyzed that the
convolution features using ERNN outperform the DTDNN
model for some subjects. At the same time, the DTDNN
model gave better accuracy for some subjects during this
study. )is confirms that EOG signals were subject variants.
After comparison, it was analyzed that ERNN with con-
volution features was analyzed to be the best classifier model
among the other network model designed for eleven tasks.
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Figure 4: Average classification accuracy of the convolution features using ERNN and DTDNN.
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)e individual recognizing accuracy of subjects was deter-
mined using the GUI designed using MATLAB demon-
strated in Figure 5.

6.3. Evaluation of Bit Transfer Rate (BTR). )e HCI per-
formance can also be evaluated using the BTR. BTR states
the number of bits transmitting per unit of time. )is cri-
terion includes accuracy and speed in a single value. )e
BTR for the eleven tasks using convolution features for
ERNN and DTDNN are shown in Tables 3 and 4. )e bit
transfer rates have been determined from the following:

Bit transfer rate �
60

Tact
log2 n + palog2pa + 1 − pa( 􏼁log2

1 − pa

n − 1
􏼔 􏼕.

(8)

n indicates the number of eye movements, Tact repre-
sents action period, pa specifies the mean accuracy, and 1 −

pa shows mean recognition error [42, 43].

6.3.1. Bit Transfer Rate for Convolution Features Using
ERNN. )e results of the BTR for an individual subject are
shown in Table 3 for ERNN using convolution features.
Single-trial analysis results of the classifier show that the
ERNN has a maximum accuracy for subject 7 and minimum
accuracy for subject 13 using single-trial EOG classification
for convolution features. )e maximum bit rate for the
ERNN using convolution features of 83.55% was obtained
for S12 and the minimum bit rate for the ERNN using
convolution features of 80.34% with samples from ten trials
which is shown in Figure 6.

6.3.2. Bit Transfer Rate for Convolution Features Using
DTDNN. )e results of the BTR for an individual subject
are shown in Table 4 for DTDNN using convolution fea-
tures. Single-trial analysis results of the classifier show that
the DTDNN has a maximum accuracy for subject 8 and
minimum accuracy for subject 13 using single-trial EOG

Figure 5: Recognizing accuracy evaluation using GUI.

Table 3: Bit transfer rate of ERNN using convolution features.

S. no. Sub.
Bit transfer rate

Maximum accuracy Minimum accuracy Mean accuracy BTR accuracy
1 S1 93.64 83.64 90.73 81.17
2 S2 93.64 87.27 90.86 81.43
3 S3 94.55 85.45 90.94 81.59
4 S4 93.64 86.36 90.90 81.51
5 S5 93.78 85.45 90.58 80.87
6 S6 93.64 86.36 90.59 80.89
7 S7 93.64 85.56 90.77 81.25
8 S8 93.64 86.36 90.90 81.51
9 S9 94.55 85.45 90.91 81.53
10 S10 93.64 84.55 90.31 80.34
11 S11 93.64 86.36 90.58 80.87
12 S12 95.55 88.18 91.91 83.55
13 S13 93.64 86.36 90.90 81.51
14 S14 93.64 86.36 91.12 81.95
15 S15 94.55 87.09 90.71 81.13
16 S16 94.55 85.56 90.77 81.25
17 S17 93.64 86.36 90.68 81.07
18 S18 93.64 85.56 90.77 81.25
19 S19 93.64 87.27 90.82 81.35
20 S20 94.55 86.36 90.64 80.99
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Table 4: Bit transfer rate of DTDNN using convolution features.

S. no. Sub.
Bit transfer rate

Maximum accuracy Minimum accuracy Mean accuracy BTR accuracy
1 S1 93.64 86.36 90.41 80.53
2 S2 93.72 85.56 90.49 80.69
3 S3 93.74 86.36 90.40 80.51
4 S4 92.74 86.36 90.58 80.87
5 S5 93.64 85.45 90.32 80.36
6 S6 93.64 85.56 90.13 79.98
7 S7 93.64 85.45 90.59 80.89
8 S8 93.64 86.36 90.49 80.69
9 S9 93.64 85.45 90.34 80.39
10 S10 93.64 86.36 90.23 80.18
11 S11 94.55 85.56 90.47 80.65
12 S12 94.55 88.18 91.76 83.24
13 S13 94.55 86.36 90.63 80.97
14 S14 94.55 85.45 90.86 81.42
15 S15 93.64 86.36 90.50 80.71
16 S16 94.55 85.55 90.59 80.89
17 S17 93.64 86.36 90.54 80.79
18 S18 93.64 86.36 90.59 80.89
19 S19 93.64 85.45 90.58 80.87
20 S20 94.55 86.36 90.73 81.16
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classification for convolution features. )e maximum bit
rate for the DTDNN using convolution features of 83.24%
was obtained for S12 and the minimum bit rate for the
DTDNN using convolution features of 79.98% with samples
from ten trials which is shown in Figure 7.

)e accuracy of both network models was correlated
based on their accuracy and performance. From the analysis,
the ERNN model was significantly higher when related to
that of the DTDNN model. From the results, we finally
concluded that designing nine-state HCI is possible by using
ERNN model with convolution features.

6.3.3. Limitation of the Study. )e system was especially
designed for patients with eye movement’s activities. )e
patients without eye movement activities were unable to use
this system.

7. Conclusion

Eleven tasks were requested to be executed by each individual
subject using the ADI T26 Bioamplifier. Two newmovements
were projected in this research. A new feature extraction
algorithm using the convolution theorem has been imple-
mented for extracting features. From the results, it was fi-
nalized that the network model using the Elman Recurrent
Network model with convolution features was more appro-
priate for recognizing all the eleven eye movements with the
recognizing performance of 90.82%. Single-trial analysis was
conducted for an individual subject to analyze the perfor-
mance of individual subjects. )e results show that eye
movement classification was subject-oriented. From the bit
transfer rate, it was analyzed that the classification perfor-
mance of convolution features using ERNN was better
compared to the DTDNN network model. )e experimental
analysis proved that the ERNNmodels weremore appropriate
for categorizing the collected signals for eleven tasks (both
events and nonevents) using convolution features.

8. Future Study

Our future extension of this study is to realize online hu-
man-machine interaction for nine-state HCI to recognize
the high-level human activity in a more efficient way for
severely paralyzed persons to fully fill their needs without
others’ help.
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