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Objective: Dilated cardiomyopathy (DCM) is a heart disease with high mortality

characterized by progressive cardiac dilation and myocardial contractility reduction. The

molecular signature of dilated cardiomyopathy remains to be defined. Hence, seeking

potential biomarkers and therapeutic of DCM is urgent and necessary.

Methods: In this study, we utilized the Robust Rank Aggregation (RRA) method to

integrate four eligible DCM microarray datasets from the GEO and identified a set of

significant differentially expressed genes (DEGs) between dilated cardiomyopathy and

non-heart failure. Moreover, LASSO analysis was carried out to clarify the diagnostic

and DCM clinical features of these genes and identify dilated cardiomyopathy derived

diagnostic signatures (DCMDDS).

Results: A total of 117 DEGs were identified across the four microarrays. Furthermore,

GO analysis demonstrated that these DEGs were mainly enriched in the regulation of

inflammatory response, the humoral immune response, the regulation of blood pressure

and collagen–containing extracellular matrix. In addition, KEGG analysis revealed that

DEGs were mainly enriched in diverse infected signaling pathways. Moreover, Gene

set enrichment analysis revealed that immune and inflammatory biological processes

such as adaptive immune response, cellular response to interferon and cardiac muscle

contraction, dilated cardiomyopathy are significantly enriched in DCM. Moreover, Least

absolute shrinkage and selection operator (LASSO) analyses of the 18 DCM-related

genes developed a 7-gene signature predictive of DCM. This signature included

ANKRD1, COL1A1, MYH6, PERELP, PRKACA, CDKN1A, and OMD. Interestingly, five

of these seven genes have a correlation with left ventricular ejection fraction (LVEF) in

DCM patients.

Conclusion: Our present study demonstrated that the signatures could be robust tools

for predicting DCM in clinical practice. And may also be potential treatment targets for

clinical implication in the future.

Keywords: dilated cardiomyopathy, Robust Rank Aggregation, novel gene signatures, Least absolute shrinkage

and selection operator analysis, PERELP
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INTRODUCTION

Dilated cardiomyopathy (DCM), characterized by left
ventricular or bicentricular enlargement and myocardial
systolic dysfunction, is the main cause of systolic heart failure
and heart transplantation in about 40 million people worldwide
(1, 2). The etiology of dilated cardiomyopathy is still not
clear, and it is generally believed that people with genetic
background of dilated cardiomyopathy are usually infected
with Coxsackie virus, adenovirus and influenza virus, and
then resulting cardiac inflammation and immune damage
jointly lead to the occurrence and development of dilated
cardiomyopathy (3, 4). In recent decades, many strategies
including early diagnosis, more accurate typing, evidence-
based treatment, rigorous follow-up, and the use of advanced
anti-heart failure drugs, have improved the quality of life and
long-term survival of patients with dilated cardiomyopathy
(5, 6). However, patients with dilated cardiomyopathy presenting

FIGURE 1 | The workflow of the study. DCM, dilated cardiomyopathy; RRA, Robust Rank Aggregation; LASSO, Least absolute shrinkage and selection operator;

DEGs, differentially expressed genes; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein-protein interaction; Con, control normal cardiac tissues; ROC,

receiver operating characteristic; FRGs, ferroptosis-related genes; PRGs, pyroptosis-related genes.

with symptoms of heart failure have a poor clinical prognosis,
with a 5-year mortality rate of ∼20% in these patients (7, 8).
At present, the pathogenesis of dilated cardiomyopathy is still
poorly understood.

Advances in gene chips and high-throughput sequencing
help to identify the key role of potential core genes and small
molecule in the biological process of a variety of diseases (9,
10). Many studies have used microarray chip technology to
measure the gene and non-coding RNA expression profile of
dilated cardiomyopathy, providing the gene expression pattern
of the myocardial tissue of dilated cardiomyopathy. For example,
Zhang et al. used bioinformatics method to reanalyze gene
expression profile and potential functional network in cardiac
tissue of patients with dilated cardiomyopathy (11). Tao et al. also
reported four hub lncRNAs in the DCM-related module, which
helped to enhance the understanding of DCMpathophysiological
process and reveal its potential treatment targets (12). However,
most of the gene signatures were analyzed from a single data set,
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and a limited number of patients have been included in most
previous studies, whichmay compromise the prediction power or
reliability. In-depth exploration of the public datasets can reveal
disease related genes and develop a efficient risk gene signature in
combination with clinicopathological characteristics (13), which
can help to form a promising tool for predicting status of DCM
and individualized therapy.

To explore potential pathogenesis and therapeutic targets
of DCM, a series of analysis based on microarray chip data
were performed. we developed a 7-gene DCM derived
diagnosis signature (DCMDDS) distinguished DCM from
NC with high specificity and sensitivity in both the training
and validation cohorts. Besides, we performed gene-clinical
feature correlation analysis on the 7-gene DCMDS, and
predicted potential therapeutic targets via the DGIdb
database. The present study provided new diagnostic
markers and potential gene-based targeted treatment drug
for DCM.

METHODS

Data Download
The workflow of the present study was shown in Figure 1. Four
gene expression profiles of DCM, including GSE3585, GSE9800,
GSE21610, and GSE42955, were downloaded from the Gene
Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo
accessed on 17 June 2021) and used to identify DEGs between
DCM and normal cardiac (NC) tissue samples (Table 1). The
criteria for selecting these datasets included: (1) Gene expression
data must be available for both DCM and NCT samples, (2) at
least 5,000 genes must be included when the microarray platform
is used for expression profiling. In general, DCM is defined by
patients with clinical features of a left ventricular end-diastolic
diameter over than 56 mm and a left ventricular ejection fraction
(LVEF) <50% (14). Exclusion criteria were genetic DCM or any
cardiovascular, life-limiting systemic condition or an infectious
or tumoral condition that may influence the definition of DCM.
Of the five datasets (including the GSE17800 dataset below) with
DCM, only four provided DCM definition (GSE3585 GSE17800,
GSE21610 and GSE42955), and both datasets used the above
criteria. In the GSE9800, a patient’s DCM status was provided

without specifying how it was defined. GEO belongs to public
databases. The patients involved in the database have obtained
ethical approval. Users can download these relevant data for free
for research and publish relevant articles. A majority of data are
based on open source data, so there are no ethical issues and other
conflicts of interest.

Data Preprocessing and Identification of
Robust Differentially Expressed Genes
(DEGs)
R software (version 3.6.1) was performed to process and
statistically analyze the expression files. We downloaded the
series matrix files of datasets from GEO. The R package “limma”
(15) was utilized to normalize the data and find DEGs, and a
volcano map of DEGs was drawn using the “ggplot2” package
(16) to show the DEGs.We then used RRA to integrate the results
of those 4 datasets to find the most significant DEGs (17). The P
value of each gene indicated its ranking in the final gene list, and
genes with adjusted P < 0.05 and log2|FC| > 0.5 were considered
as significant DEGs in the RRA analysis.

Enrichment Analyses of GO and KEGG
Pathway
Gene Ontology (GO) analysis and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis of DEGs were calculated
using clusterProfiler package. clusterProfiler was a package
of R software that was designed to compare and visualize
functional profiles among gene clusters (18). A P value < 0.05
was considered to be significant, and the identified significant
analyses were sorted by gene counts. Subsequently, the R package
“RCircos” (version 1.2.1) (19) was used to visualize the expression
patterns of different microarrays and chromosomal locations for
the top 40 DEGs sorted by their P value.

Gene Set Enrichment Analysis
We performed gene set enrichment analysis (GSEA) using the
gene expression matrix through the “clusterProfiler” package.
“c2.cp.kegg.v7.0.symbols.gmt” was selected as the reference gene
set (20). A false discovery rate (FDR) < 0.25 and P < 0.05 were
considered significant enrichment.

TABLE 1 | The characteristic baseline of microarray.

Series

accession

Normal(n) DCM(n) Samples Platform Author ref Application

GSE3585 5 7 left ventricular tissue samples GPL96 Affymetrix Human Genome U133A Array Barth AS et al. Integrated Analysis

GSE42955 5 12 left ventricle tissue samples GPL6244 Affymetrix Human Gene 1.0 ST Array Molina-Navarro MM

et al.

Integrated Analysis

GSE9800 2 12 Left ventricular tissue samples GPL887 Agilent-012097 Human 1A Microarray

G4110B

Ohtsuki M et al. Integrated Analysis

GSE21610 8 22 Left ventricular tissue samples GPL570 [HG-U133_Plus_2] Affymetrix Human

Genome U133 Plus 2.0 Array

Patrick Schwientek.

et al.

Integrated Analysis

GSE17800 8 40 Myocardial biopsies tissue

samples

GPL570 [HG-U133_Plus_2] Affymetrix Human

Genome U133 Plus 2.0 Array

Sabine Ameling et al. Validation and

clinical relevance

analysis
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FIGURE 2 | Identification of differentially expressed genes (DEGs) between dilated cardiomyopathy cardiac and normal cardiac tissues samples from four unrelated

cohorts. (A) Volcano plots of datasets GSE3585 and GSE9800 (upper panel), and GSE21610 and GSE42955 (lower panel) from the GEO database. DEGs with

(Continued)
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FIGURE 2 | |log2 (Fold change)| > 0.5 would be listed, additionally. (B) Heatmap of the top 15 downregulated and the top 15 upregulated genes from Robust Rank

Aggregation analysis of four datasets. Each column represents a dataset and each row a gene. The number in each rectangle represents the value of log2 (fold

change). The gradual color ranging from blue to red represents the changing process from down- to up-regulation (DCM vs. Control). (C) Circular visualization of

expression patterns and chromosomal positions of the top 40 DEGs. The outer circle represents chromosomes, and lines coming from each gene point to their

specific chromosomal locations. (D) GO enrichment analyses of differentially expressed genes (DEGs) between localized DCM and normal cardiac samples. (E) KEGG

pathway analyses of differentially expressed genes (DEGs) between localized DCM and normal cardiac samples. DCM, dilated cardiomyopathy; GO, Gene Ontology;

KEGG, Kyoto Encyclopedia of Genes and Genomes. The size of each dot represents the count of genes, and the color represents the p-value.

Protein-Protein Interaction (PPI) Network
The PPI network was constructed with a threshold of medium
confidence ≥0.4 through the Search Tool for the Retrieval of
Interacting Genes (STRING) database (21). Cytoscape software
(v3.6.1; http://www.cytoscape.org/) was used to visualize the
network. Then, the top 25 genes with highest connectivity in the
network were identified by DEGREE in cytoHubba (22).

The Identification and Validation of Hub
Genes
The mRNA levels of high connectivity genes were verified in
datasets GSE17800 and Student’s t test was used to compare
the expression levels of DCM and control groups. A list of
259 ferroptosis-related genes (FRGs) was identified through the
ferroptosis database (FerrDb; http://www.zhounan.org/ferrdb)
(23), a publicly available database of ferroptosis regulators,
markers, and disease associations. A list of 34 pyroptosis-related
genes (PRGs) from prior reviews and studies were also extracted
(24, 25). The DEGs of GSE17800 was performed by limma
package. And then, the DEGs in GSE17800 were intersected with
FRGs/PRGs to obtain potential hub genes related to ferroptosis
or pyroptosis. The high connectivity genes after validation and
hub FRGs/PRGs were imported into the NCBI website for
evaluating the expression abundance in normal human cardiac
via high-throughput sequencing. Then, the gene expression with
a threshold of RPKM in cardiac tissue ≥5 in NCBI Gene
expression column was regarded as hub gene. To evaluate the
identified ability of hub genes in DCM, ROC curve analysis were
conducted in the GSE17800 data set through pROC package (26).

Construction of a Diagnostic Model and
Correlation Analysis for DCM
To investigate whether the hub genes could be applied for
predicting DCM occurrence, five datasets from the GEO
database, GSE3585, GSE42955, GSE9800, GSE21610 and
GSE17800, were pooled together, and the combined dataset was
then adjusted for batch effect through the “ComBat” function
of sva (version 3.34.0) R package (27) and assigned as the
training set. The transcriptional profile of GSE17800 which
included 40 DCM and 8 no-heart failure (NHF) samples, was
used for the validation of the model. The predictability of the
model was then evaluated by area under the curve (AUC) of
ROC. The “ggstatsplot” package (https://indrajeetpatil.github.io/
ggstatsplot/) was used to perform Spearman correlation analysis
on diagnostic markers and the “ggplot2” package was used to
visualize the results. A two-sided p < 0.05 was considered to be
statistically significant.

RESULTS

Integrated Screening for Robust
DCM-Associated Genes
Four GEO datasets were used for the identification of robust
DCM-associated genes (Table 1). Using the “limma” R package,
we normalized expression data from datasets GSE3585, GSE9800,
GSE21610, and GSE42955, and identified 253, 60, 2078, and 370
DEGs between DCM and normal cardiac tissues respectively,
with a cut-off of p < 0.05 and log2|FC| > 0.5 (Figure 2A).
Integration of all genes by the RRAmethod resulted in 117 DEGs
(|log2FC|≥0.5, p < 0.05), 100 of which were upregulated and 17
downregulated in DCM.

The top 15 upregulated and the top 15 downregulated genes
in CRPC are shown as hierarchical cluster heatmaps (Figure 2B).
For the top 40 DEGs between DCM and normal cardiac tissues,
their expression patterns across the four datasets used for
analysis, along with their chromosomal locations are shown in
a circos plot (Figure 2C). The location of these 40 DEGs involves
almost all chromosomes except for the 12, 15, 16, 18, 20, 21, 22
chromosome. The top three upregulated genes included NPPB,
NPPA, and EIF1AY, and they are located on chromosomes 2, 6,
1, 17, and 2, respectively. The top three downregulated genes
(CCL2, SERPINA3,RARRES1) are located on chromosomes 17,
14,and 3, respectively.

GO enrichment and KEGG pathway analyses were performed
to further elucidate the potential biological function and the
promising signaling pathways involving the entire 117 DEGs.
With GO function analysis, we discovered that the DEGs
are mostly enriched in biological process (BP), including the
regulation of inflammatory response, the humoral immune
response, the regulation of blood pressure, keratan sulfate
metabolic process, and the striated muscle cell development.
With regard to CC, the DEGs are enriched in the collagen–
containing extracellular matrix, vacuolar lumen, blood
microparticle, lysosomal lumen. As for molecular function,
extracellular matrix structural constituent, signaling receptor
activator activity, collagen binding and RAGE receptor binding
(Figure 2D). In the KEGG pathway analysis, the DEGs
participated in diverse infected signaling pathways, including
Malaria, African trypanosomiasis, and Viral protein interaction
with cytokine and cytokine receptor, Chagas disease and
Legionellosis, and some immune-associated pathways such as
the IL-17 signaling pathway (Figure 2E).

Gene Set Enrichment Analysis
Gene set enrichment analysis was also used to revealed the
potential molecular mechanisms of DCM based on all gene
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FIGURE 3 | Results of Gene Set Enrichment Analysis (GSEA) plots showing the most enriched gene sets of all detected genes in the DCM cardiac tissues and normal

cardiac tissues in an integrated analysis of four datasets. (A) The top three most significant up-regulated enriched gene sets in the biological processes: protein

folding, humoral immune response, regulation of inflammatory response. (B) The top three most significant up-regulated enriched gene sets in the Kyoto Encyclopedia

of Genes and Genomes analysis: Herpes simplex virus 1 infection, Neuroactive ligand–receptor interaction, IL−17 signaling pathway. (C) PPI network of differentially

expressed genes (DEGs). (D) Hub gene of differentially expressed genes.

information in the gene expression matrix. The enrichment
analysis of gene sets revealed that compared to control
samples, immune and inflammatory biological processes
such as adaptive immune response, cellular response to
interferon–gamma, neutrophil activation, protein folding,
regulation of inflammatory response are significantly enriched
in DCM (Figure 3A). The enriched KEGG pathways of
GSEA showed that cardiac muscle contraction, dilated
cardiomyopathy, hepatitis C, herpes simplex virus 1 infection

and TNF signaling pathway are significantly enriched in
DCM (Figure 3B).

PPI Network Analysis and Screening the
Top 25 Genes With Highest Connectivity
STRING is an online tool for investigating and integrating
interaction between proteins (21). PPI network of these genes was
obtained after imputing the DEGs into the online tool STRING
(Figures 3C, 4A). In order to identify the top highest connectivity
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FIGURE 4 | Protein-protein interaction (PPI) network. (A) PPI network of 117 differentially expressed genes (DEGs). (B) subnetwork of top 25 genes with the highest

degree of connectivity from the PPI network. Node color reflects the degree of connectivity (Red color represents a higher expression, and blue color represents a

lower expression).
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TABLE 2 | The clinical characteristics of GSE17800 in dilated cardiomyopathy.

Parameter DCM group

(N = 40)

Control group

(N = 8)

p value

Age, years 50.21 ± 9.35 43.13 ± 14.76 0.084

Gender (Male/Female) 28/12 6/2 0.887

BMI, kg/m2 27.88 ± 4.57 26.33 ± 5.26 0.303

LVEF, % 33.3 ± 6.4 59.8 ± 8.0 <0.001

LVIDD, mm 69.8 ± 8.0 51.4 ± 3.1 <0.001

Virus(Positive/Negative) 22/18 0/8 0.000

Inflammation 22 ± 23 or

18(12–22)

10 ± 3 or

10(8–13)

<0.001

BMI, bodymass index; LVEF, left ventricular ejection fraction; LVIDD, left ventricular internal

diameter at end-diastole.

25 genes in the network, the PPI network was imported into
Cytoscape. And then, the top 25 genes with the highest degree of
connectivity were calculated and extracted. Subsequently, the top
25 genes with the highest degree of connectivity were inputted
into STRING to detect the interaction between proteins encoded
by these genes (Figures 3D, 4B).

Validation of the Expression of the Top 25
Genes With Highest Connectivity in
Independent Patient Cohorts
There are 48 cardiac tissue samples including 40 DCM tissues
and eight control tissues in GSE17800 dataset. This microarray
also reported the information of patient’s clinical features
(Table 2). Independent patient cohorts fron GSE17800 dataset
was used to verify the top 25 genes mRNA levels in DCM,
which indicated that expression of ANKRD1, ASPN, CTGF, DPT,
FMOD,MFAP4, OMD, JAK2, NPPA, NPPB and IGFBP3 was also
significantly up-regulated and MYH6 was significantly down-
regulated in DCM cardiac tissues as compared to normal cardiac
tissues (Figure 5).

The Identification of Hub Genes and
Functional Annotation Analysis
GSE17800 was also processed as previous. DEGs between
DCM and normal cardiac tissues in GSE17800 were 1410.
To explore potential ferroptosis or pyroptosis related genes
in dilated cardiomyopathy, we intersected FRGs and PRGs
with GSE17800’s DEGS, and obtained 6 ferroptosis related
differential genes including YY1AP1, CDKN1A, SRC, SESN2,
CBS, and HSPB1 and 2 pyroptosis related differential genes
including PRKACA and COL1A1 (Figure 6A). Next, the 13 high
connectivity genes after validation and 8 FRGs/PRGs above were
further import into NCBI respectively to test their expressive
abundance in normal cardiac tissues. These genes with over than
5 mean RPKM were regarded as the hub genes (Figure 6B).
To reveal potential biological process of these hub genes, GO
and KEGG analyses were conducted. The most significant GO
terms for biological process, keratan sulfate catabolic process, and
keratan sulfate biosynthetic process, as well as KEGG pathways,
were shown in Figures 6C–G. These analysis showed that these

hub genes were mainly involved in keratan sulfate process, heart
process and cGMP metabolic process. The PPI network of the
18 hub genes was also performed, which showed an interaction
among them (except for YY1AP1) (Figure 6H).

Several Hub Genes Play a Diagnostic Role
in DCM
A ROC curve analysis was performed to evaluated the diagnostic
value of these hub genes in DCM. The results indicated that
many genes, including ASPN (AUC = 0.841, P < 0.0001),
COL1A2 (AUC = 0.809, P < 0.0001), DPT (AUC = 0.844, P
< 0.0001), MYH6 (AUC = 0.894, P < 0.0001),NPPA (AUC =

0.863, P < 0.0001), NPPB (AUC = 0.903, P < 0.0001), PRELP
(AUC = 0.816, P < 0.0001), PRKACA (AUC = 0.822, P <

0.0001) and YY1AP1 (AUC = 0.891, P < 0.0001), can efficiently
distinguish DCM cardiac tissues from normal cardiac tissues
(Figures 7A–I).

LAASO Model for Predicting DCM and
Correlation of Clinicopathological Features
and Model Genes
We extracted the expression profile of 18 hub genes from the
merged datasets to construct LASSO model (Figures 8A,B).
Through the LASSO, 7 genes were identified with non-
zero regression coefficients, and the value of lambda.min =

0.03037093. ROC curve analysis indicated that the AUC of the
7-gene-based model was 0.938 in the merged gene set, which
suggesting LASSO model may be used as a biomarker of DCM
(Figure 8C). This model was further validated in a validation set
(GSE17800) with AUC= 1 (Figure 8D).

Correlation heatmap of the 7 model genes and clinical
factors revealed that LVEF had a significant positive correlation
with MYH6 and had a significant negative correlation with
LVIDD, ANKRD1, PRELP, COL1A1, CDKN1A. LVIDD had a
significant negative correlation with MYH6 and had a significant
positive correlation with inflammation, ANKRD1. Age and
MYH6 had a significant negative correlation. The expression
of MYH6 mRNA levels is associated with virus infection
(Figures 8E–J).

Identification of the Potential Drugs
DGIdb was applied to determine the potential therapy drug that
could reverse the expression of model gene in DCM. As shown
in the drug–gene interaction network (Figures 9A–D), 18 drugs
or molecular compounds included deoxycytidine, irinotecan
hydrochloride, and cyclosporine, which differentially regulated
the expression of ferroptosis-related gene CDKN1A. In addition,
OMECAMTIV MECARBIL (INN), a cardiac specific myosin
activator, was found to interact with MYH6. Further, collagenase
clostridium histolyticum and antiplasmin regulated COL1A1 and
10 drugs or molecular compounds that included fasudil, SB-
220025, SB-202190 and AST-487 regulated pyroptosis related
gene PRKACA.
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FIGURE 5 | Validation of top 25 genes with the highest degree of connectivity in GSE17800. The expression of genes (A) ANKRD1, (B) ASPN, (C) CTGF, (D) DPT,

(E) FMOD1, (F) MFAP4, (H) OMD, (I) IGFBP3, (J) NPPA, (K) NPPB, (L) PRELP significantly upregulated, and (G) MYH6 significantly down regulated in the DCM in

comparison to control group. DCM, dilated cardiomyopathy; Con, control group.

DISCUSSION

The pathogenesis of DCM, a complex and heterogeneous
disease, remains unclear (28). Although many investigators have
used microarray and RNA-seq to detect novel biomarkers and
therapeutic targets for DCM, inconsistencies were seen between
the DEGs found in different studies. To our knowledge, our
work is the first to use RRA combined with LASSO regression
model to explore novel hub genes associated with DCM. Previous
studies compared gene expression profiles between DCM and
non-heart failure samples for the dataset to explore hub gene and
pathogenesis in DCM. However, these studies did not conduct
link between gene expression and DCM clinical characteristics.
This study integrated 4 qualified DCM datasets from GEO
into the RRA method to identify DCM-associated genes and

develop expression-based molecular signatures to predict DCM,
some of which, such as NPPB (29) and ASPN (30), have
been reported to be biomarkers of DCM or play an important
role in its pathogenesis. In addition, associations of developed
signatures with the clinicopathological characteristics of DCM
were also evaluated.

Different from previous studies, GO analysis of differential
genes in this study mainly involves the regulation of
inflammatory response, immune response, keratinin sulfate
processing and muscle cell contraction. And KEGG pathway
analysis is mainly involved diverse infected signaling pathways,
including Malaria, African trypanosomiasis, and Viral protein
interaction with cytokine and cytokine receptor, Chagas disease
and Legionellosis, and some immune-associated pathways such
as the IL-17 signaling pathway. In addition, GSEA clarified a

Frontiers in Cardiovascular Medicine | www.frontiersin.org 9 December 2021 | Volume 8 | Article 747803

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Ma et al. Bioinformatics Analysis of Dilated Cardiomyopathy

FIGURE 6 | The identification of DCM related genes and their functional analysis. (A) Venn diagram of ferroptosis-related genes, pyroptosis-related genes and DEGs

in GSE17800. (B) The expression of potential biomarker genes including top 25 genes validated in GSE17800 and overlapping DEGs of ferroptosis-related genes,

pyroptosis-related genes based on NCBI. (C) Chord plot shows the distribution of core genes in different GO-enriched functions. Symbols of core genes are

presented on the left side of the graph with their fold change values mapped by color scale. (D) The top three significantly enriched Gene Ontology terms associated

with potential biomarker genes. Gene involvement in the GO terms was determined by colored connecting lines. (E) Cluego network diagram shows the relationship

between the potential biomarker genes and GO terms. (F) The bubble chart showed the KEGG pathway analyses of potential biomarker genes in DCM. (G) Cluego

network diagram shows the relationship between the potential biomarker genes and KEGG terms. (H) PPI network of 18 potential biomarker genes.

new perspective for this study. It demonstrated that immune
responses, such as adaptive immune response, cellular response
to interferon–gamma, type I interferon signaling pathway, and
inflammation responses including leukocyte cell-cell adhesion,

neutrophil activation, neutrophil degranulation are involved in
the pathophysiological process of dilated cardiomyopathy. Also,
DCM process, some kinds of infections and two immune-related
disease pathways that include IL-17 signaling pathway and TNF
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FIGURE 7 | ROC curve analysis in GSE17800 demonstrated that (A) ASPN, (B) COL1A2, (C) DPT, (D) MYH6, (E) NPPA, (F) NPPB, (G) PRELP, (H) PRKACA and

(I) YY1AP1 may be diagnostic biomarkers in patients with DCM. AUC: area under the curve.

signaling pathway were involved. These confirmed that infection,
inflammation and immune responses play important role in the
development DCM.

Ferroptosis is reliant on a large number of cellular
iron, interfering with the homeostasis of redox reactions,

and eventually promoting cell death (31). Literature has
indicated that iron-dependent ferroptosis is implicated in
many cardiomyopathies (32). However, no studies have shown
that ferroptosis is involved in the development of dilated
cardiomyopathy; Moreover, pyroptosis is also another form

Frontiers in Cardiovascular Medicine | www.frontiersin.org 11 December 2021 | Volume 8 | Article 747803

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Ma et al. Bioinformatics Analysis of Dilated Cardiomyopathy

FIGURE 8 | A model for predicting DCM and correlation of clinicopathological features and model genes. (A) Least absolute shrinkage and selection operator

(LASSO) logistic regression algorithm to screen diagnostic markers and risks genes in merged data matrix of five datasets. (B) Parameters of Lasso path and

(Continued)
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FIGURE 8 | corresponding selected features of each fold. (C) ROC curve analysis of the 7-gene-based model in merged data matrix of five datasets (training set).

(D) ROC curve analysis of the 7-gene-based model in GSE17800(validation set). (E) Correlation heat map of risks genes and clinicopathological features in datasets

GSE17800. The depth of the color represents the strength of the correlation; red represents a positive correlation, blue represents a negative correlation. The “x”

means irrelevance. Correlation analysis of left ventricular ejection fraction (LVEF) and (F) MYH6, (G) ANKRD1, (H) PRELP, (I) CDKN1A and (J) COL1A1.

FIGURE 9 | The drug-gene interaction network. The dark red circle nodes in the center are the genes, and pale red nodes around are the drugs. (A) The interaction

network of CDKN1A and its targeted compounds and drugs. (B) The interaction network of PRKACA and its targeted compounds and drugs. (C) The interaction

network of COL1A1 and its targeted compounds and drugs. (D) The interaction network of MYH6 and its targeted compounds and drugs.

of cell death, which has only been shown in one study that
NLRP3 inflammasome-mediated pyroptosis contributes to the
pathogenesis of non-ischemic dilated cardiomyopathy (33).
Therefore, the present study also for the first time reported
ferroptosis related gene CDKN1A and pyroptosis related gene
PRKACA may be involved in the development and progression
of dilated cardiomyopathy.

We preliminarily obtained the possible core genes through
protein interaction network and iron death or cell apoptosis
related differential gene screening, and then carried out
independent data set verification and expression abundance
verification, and finally obtained the included 18 core genes.
The 18 genes included up-regulated genes CDKN1A, COL1A1,
ANKRD1, PRELP, OMD, NPPB, NPPA, ASPN, MFAP4, CTGF,
DPT, FMOD, IGFBP3, JAK2, PRKACA and COL1A2, as well as
down-regulated genes MYH6 and YY1AP1, which were mainly
enriched in keratan sulfate process and cGMP–PKG signaling
pathway through GO and KEGG analyses. some of them were
demonstrated to exert essential roles in the pathogenesis of

DCM (34–37). Among these hub genes, we further explore
their diagnostic value in DCM, and found that nine genes
have certain diagnostic value for dilated cardiomyopathy (AUC
> 80%). Among them, NPPA (natriuretic peptide A) and
NPPB (natriuretic peptide B) belong to the natriuretic peptide
family, which encoded atrial natriuretic peptide (ANP) and
brain natriuretic peptide (BNP) respectively (36). The natriuretic
peptide family is a general name of a group of peptides secreted
mainly by the cardiovascular system to regulate hydroelectrolyte
balance, reduce cardiac afterload, and dilate blood vessels
through natriuretic diuresis (38). In heart failure, NPPB is
expressed at a high level in DCM, and patients with higher BNP
level have a worse cardiac function (39, 40).

Combined LASSO and the forward stepwise selection analyses
of the 18 genes resulted in the most robust model with the
fewest genes capable of predicting DCM, a panel of seven
genes including ANKRD1, PRELP, PRKACA, COL1A1, OMD,
MYH6 and CDKN1A significantly correlates with DCM. This
seven-gene panel was named DCM derived diagnostic signature
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(DCMDDS), and the DCMDDS score is based on the seven
genes’ expression levels and regression coefficients. The model
was validated in 5 patient cohorts, comprising more than 120
patients. Interestingly, five of the seven DCMDDS genes were
associated with left ventricular ejection fraction based on their
expression levels and correlation coefficients, as demonstrated
by the Spearman correlation analysis. Among DCMDDS genes,
MYH6, ANKRD1 and COL1A1 have been showed to participated
in the development of DCM, while PRELP, PRKACA, CDKN1A
and OMD seldomly reported.

PERELP, proline and arginine rich end leucine rich repeat
protein, is a member of the leucine-rich repeat (LRR) family
of extracellular matrix proteins in connective tissue (41). It
is unclear whether PERELP plays a role in DCM and other
cardiomyopathy. Data from the Human Protein Atlas (HPA)
revealed that PRELP is secreted to the extracellular matrix and
may anchor basement membranes to the underlying connective
tissue (42), suggesting its potential function in maintaining
normal cellular structure. Besides, previous studies have
suggested that PERELP has prognostic value in hepatocellular
carcinoma and regulates the extracellular matrix and collagen
mineralization in the bone system (43, 44).

PRKACA is a gene encoding the cAMP-dependent protein
kinase A (PKA) catalytic subunits alpha. PKA can directly
phosphorylate the cytoplasmic receptor NLRP3 and attenuate its
ATPase function, which showed a relationship to pyroptosis (45).
Therefore, PRKACA was regarded as a pyroptosis-related gene
(24). Prolonged and elevated cyclic adenylyl monophosphate
(cAMP) levels have been observed in both heart failure and
several cardiomyopathy, while PKA is promptly activated by
increasing intracellular concentrations of cAMP synthesized by
adenylyl Cyclases (46, 47). These revealed that regulating PKA
phosphorylation may be a therapeutic strategy for certain stages
of progressive and congestive heart failure (48). However, its role
in DCM still not be reported.

CDKN1A (cyclin-dependent kinase inhibitor 1A) encodes
p21, plays an important role in the pathological process of
P53-mediated ferroptosis (49). CDKN1A is a potent cell cycle
inhibitor that mediates post-natal cardiomyocyte cell cycle arrest.
Although no reported in DCM, CDKN1A is implicated in
LMNA-mediated cellular stress responses, and the mutation of
LMNA is one of the important mechanisms DCM (50, 51).
Moreover, Shah et al. also found the mutations in the CDKN1A
gene in the blood of patients with heart failure (52).

OMD (Osteomodulin) is a leucine- and aspartic acid-rich
keratan sulfate proteoglycan, which belongs to the small leucine-
rich proteoglycan family (SLRP) family (53). A recent study
shown that OMD could directly bind to Type I collagen,
further regulating the diameter and shape of collagen fbrils
(54). Interestingly, the results of the present study also
suggest a positive correlation between OMD and COL1A1,
and its functional analysis mainly involved in extracellular
matrix processes. Extracellular matrix fibrosis is regarded as an
important process in the development of DCM (55). Therefore,
targeted OMD gene therapy may be a potential therapeutic
strategy for dilated cardiomyopathy. Guo et al. also found that
Osteomodulin is a potential genetic target for hypertrophic
cardiomyopathy (56).

To found the potential effective therapy for DCM, DGIdb
database was used to exam therapeutic agents that might reverse
the abnormally expression of DCMDDS genes. OMECAMTIV
MECARBIL (INN), previously codenamed CK-1827452, is a
cardiac specific myosin activator. It is clinically tested for
its role in the treatment of left ventricular systolic heart
failure (57). In the present study, MYH6 was down-regulated
in DCM, while OMECAMTIV MECARBIL can target and
activate it. This means that MYH6 may be one of the
important targeted gene of OMECAMTIV MECARBIL in the
treatment of heart failure. COL1A1, one of the component
collagen type I, is the main component of extracellular matrix.
Elevated expression levels of COL1A1 will lead to fibrosis
of extracellular matrix of cardiac muscle (58). Collagenase
clostridium histolyticum and antiplasmin might be a effective
anti-fibrosis therapy approach in DCM via targeting COL1A1.
The roles of the drugs or molecular compounds above
in DCM still need to be further explored as potential
therapeutic targets.

There were several limitations in our study. First, due to
limited conditions, myocardial biopsy tissue specimens were
not obtained to carry out basic experiments for verification.
Nevertheless, we used a multi-chip combined analysis method
and validated in external DCM samples to ensure the accuracy
of the bioinformatics analysis in the study. In addition, in
our analysis results, NPPA, NPPB, COL1A2, ASPN, ANKRD1
and CTGF were all confirmed to be closely related to heart
failure in dilated cardiomyopathy in various studies. Second, the
sample size of our multi-chip combined analysis was significantly
expanded. However, due to the difficulty and high risk of
myocardial tissue biopsy, the sample size of the data set in
our study was still relatively small. Third, although we explored
the relationship between genes and clinical factors, we failed to
obtain prognostic information from datasets, and we could not
further explore the relationship between DCMDDS genes and
patient outcomes.

In summary, by combining RRA, LASSO, and other
bioinformatics tools, this study identified 117 robust DEGs
between DCM and NFH samples, many of which were not
reported in previous studies. A 7-gene panel derived from the
117 DCM-associated genes comprised of a diagnostic model
predictive of DCM. Five of the seven genes were closely related to
left ventricular ejection fraction. Therefore, these gene signatures
may help develop DCM biomarkers via large-scale randomized
clinical trials.
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