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TG-interacting factor 1 (TGIF1) exerts inhibitory effects on transforming growth factor-beta (TGF-b) sig-
naling by suppressing Smad signaling pathway at multiple levels. TGIF1 activity is important for normal
embryogenesis and organogenesis, yet its dysregulation can culminate in tumorigenesis. For instance,
increased expression of TGIF1 correlates with poor prognosis in triple-negative breast cancer patients,
and enforced expression of TGIF1 facilitates Wnt-driven mammary tumorigenesis, suggesting that
TGIF1 might function as an oncoprotein. Quite surprisingly, TGIF1 has recently been shown to function
as a tumor suppressor in pancreatic ductal adenocarcinoma (PDAC), possibly owing to its ability to antag-
onize the pro-malignant transcription factor Twist1. In this article, we will briefly elaborate on the bio-
logical and clinical significance of the unique tumor-suppressive function of TGIF1 and its functional
interaction with Twist1 in the context of PDAC pathogenesis and progression.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is an extremely
aggressive tumor and a leading cause of cancer-associated related
death [1]. More than 85% of pancreatic cancers are PDAC, and less
than 7% of patients with PDAC have a 5-years survival rate [2].
PDAC arise from pancreatic acinar cells or their common progeni-
tor [3]. Early stages of pancreatic tumors are usually symptom-
free, and the tumor becomes clinically apparent once cells have
invaded the adjacent tissues or metastasize to distant organs.
Therefore, most of the patients who present with pancreatic cancer
symptoms frequently present advanced stages of the disease. The
liver, peritoneum, lungs, and bones are the most common sites
for pancreatic tumor metastasis [4]. To make the situation worse
for the patients, PDAC does not respond well to conventional
chemotherapy and radiotherapy [5]. A two-fold increase in the
number of PDAC cases and subsequent death is predicted in the
USA and worldwide in the next ten years [6,7]. In addition, both
obesity and type 2 diabetes are predisposing factors for PDAC
[8,9], highlighting the fact that other major life-threatening condi-
tions could contribute to the rising prevalence of PDAC.

The pancreatic intraepithelial neoplasia (PanIN), with activating
mutations in the KRAS proto-oncogene, usually leads to the forma-
tion of more than 90% of PDACs [3,10]. The KRAS activating muta-
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tions are key early genetic markers of the genesis of PDAC, while
the subsequent accumulation of inactivating mutations in several
tumor suppressor genes (e.g., p16INK4A, TP53, and SMAD4) are
related to tumor progression and late-stage metastasis [3,11].
Genetically, inducing the expression of the most prevalent onco-
genic mutation in Kras (KrasG12D) in mouse pancreas leads to the
formation of PanINs that occasionally progress to an invasive PDAC
phenotype with a very prolonged latency period, suggesting a key
role of KRAS in the initiation of human PDAC [12,13]. Interestingly,
combining KrasG12D expression with genetic inactivation of the
tumor suppressor Smad4, which encodes for an essential compo-
nent of the canonical transforming growth factor-beta (TGF-b) sig-
naling pathway, led to a dramatic acceleration of PDAC,
highlighting the importance of this pathway in restricting PDAC
progression [11].
2. Dichotomous roles of TGF-b signaling in cancer

Canonical TGF-b signaling is initiated by the interaction of the
ligand with two transmembrane receptors called type I (TbRI)
and type II (TbRII) [14,15]. The TbRII is constitutively active while
the TbRI is inactive in the absence of ligand, [16]. TGF-b binding
allows the formation of an oligomeric complex in which TbRII
phosphorylates TbRI, leading to the activation of its kinase activity.
The activated TbRI then phosphorylates Smad2 and Smad3, which
subsequently form a complex with Smad4, and the complexes
translocate into the nucleus to regulate the expression of TGF-b
genes through interacting with transcriptional cofactors or tran-
scriptional corepressors [15,17]. As for the roles of TGF-b pathways
in tumorigenesis, reduced signaling through the ‘‘loss of function”
mutations of TbRII has been detected in a significant number of
colorectal and gastric carcinomas with microsatellite instability
[18]. Impaired TGF-b signaling due to the deletion of SMAD4 is also
detected in 16–25% of colorectal cancer and up to 50% in PDAC
Fig. 1. Simplified diagram showing canonical TGF-b signaling. N

2569
[19]. Quite paradoxically, sustained activation of TGF-b can exacer-
bate tumor progression rather than exerting tumor-suppressive
effects. For instance, increased expression of TGF-b has been shown
to be associated with poor prognosis and decreased survival in col-
orectal cancer patients [20,21]. Other studies have shown that TGF-
b-mediated angiogenesis could also enhance tumor growth
[22,23]. Thus, the TGF-b pathway appears to have both anti- and
pro-tumorigenic functions [24]. In the early stage of tumorigenesis,
activation of TGF-b signaling can induce cell cycle arrest and apop-
totic cell death, while in the later stages, TGF-b activation can pro-
mote tumor progression, invasion and metastasis by facilitating
the epithelial-to-mesenchymal transition (EMT) as well as increas-
ing cancer cell motility [25,26]. These opposing functions during
the different stages of tumorigenesis are known as the ‘‘TGF-b
paradox” [27]. Recently, we have shown that sustained activation
of TGF-b signaling through the deletion of the Tgif1 gene promotes
the progression of PDAC, shedding new mechanistic insight into
how TGF-b signaling can exert its bimodal function in this aggres-
sive malignancy [28].
3. Role of TGIF1 in the progression of PDAC

TGIF1 is a suppressor of TGF-b signaling, acting primarily either
by preventing Smad2 phosphorylation [29] or by facilitating the
ubiquitin-dependent degradation of Smad2 [30] (Fig. 1). TGIF1
maintains cellular homeostasis by influencing cell differentiation
and proliferation [31,32]. Mutations in the human TGIF1 gene are
associated with holoprosencephaly, a congenital developmental
anomaly of the forebrain [33]. In direct support of the role of TGIF1
in holopresencephaly, ablating the mouse Tgif1 gene resulted in a
defective brain development phenotype with features reminiscent
of holoprosencephaly [34]. Besides its role in development, TGIF1
has been shown to play oncogenic roles in a wide variety of human
hematological and solid malignancies. For instance, in myeloge-
ote TGIF1 exerts an antagonistic effect on TGF-b signaling.
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nous leukemia, an association between TGIF1 expression and poor
patient outcomes was noted [35]. In similar lines of study, TGIF1
gene overexpression is correlated with poor survival in urinary
tract urothelial carcinoma and triple-negative breast cancer
[36,37]. Moreover, constitutive TGIF1 protein stabilization occurs
in promyelocytic leukemia initiated by the oncogenic fusion pro-
tein PML-RARa [32], providing strong indications that TGIF1 func-
tion to promote tumorigenesis. TGIF1 is deemed to contribute to
tumorigenesis through the suppression of the TGF-b cytostatic pro-
gram, which is known to orchestrate cell cycle arrest and apoptotic
cell death in many cell systems [38].

Perhaps unexpectedly, we found that genetic inactivation of
Tgif1 in mice accelerated KrasG12D-driven PDAC, suggesting that
TGIF1 might also have a dual role in tumorigenesis, as does TGF-
b signaling [39]. Mice with global Tgif1 knockout alone did not
show any major pancreatic structural or functional changes. Simi-
larly, targeted ablation of Tgif1 in pancreatic progenitor cells did
not result in any pancreatic defects. Even though targeted pancre-
atic deletion of Tgif1 caused an elevated TGF-b/Smad signaling,
none of the Tgif1KO mice developed pancreatic neoplasms in the
18-month follow up period, indicating that activation of TGF-b sig-
naling does not play a major role in pancreas biology and function
[39]. Similar results were reported by a separate group, showing no
pancreatic developmental defects or pancreatic tumor formation in
mice with targeted pancreatic deletion of Tgif1 [40]. Consistent
with the absence of no obvious histological changes between the
wild-type and mutant mice, the glucose tolerance tests were sim-
ilar, indicating that TGIF1 is dispensable for pancreas development
and physiology [40].

As discussed earlier, the expression of KrasG12D in mice leads to
the development of PanINs that eventually progress to PDAC after a
long latency period, typically within 8 to 12 months of age. Despite
having no effect on the pancreas in a wild-type background, we
found that ablating Tgif1 from these mutant mice accelerated the
onset of PDAC formation and progression, as gauged by the dra-
matic decrease in survival of mice, which rarely exceed two
months [39]. What was also interesting is the observation that
Tgif1 inactivation in KrasG12D-bearing mice also bolstered the
metastatic behaviors of PDAC, providing us with a powerful tool
to investigate mechanistic paradigms of PDAC metastasis [39],
which remain poorly understood. Again, these results were inde-
pendently validated by a separate group, which demonstrated
using similar genetic approaches, that TGIF1 deficiency in the pan-
creas is enough to accelerate PDAC in cooperation with KrasG12D

[40]. Given the sustained activation of TGF-b signaling in these
mice, it is likely that combined Kras and TGF-b activation synergis-
tically promotes pancreatic tumorigenesis with increased meta-
static potentials, therefore resulting in reduced survival. It is also
worth restating that the inactivation of TGF-b signaling through
genetic deletion of Smad4 also facilitates KrasG12D-driven PDAC,
which fits well with the dichotomous role of TGF-b signaling as
both tumor suppressor and tumor promoter, depending on the
stage of tumor progression. Given these similarities in phenotypes
following TGIF1 or Smad4 inactivation, it would be interesting to
investigate whether TGIF1 and Smad4 converge to regulate biolog-
ical processes, whether pro- or anti-tumorigenic, that are instru-
mental to PDAC progression. Regardless, the available
experimental data indicate that the underlying mechanisms of
TGIF1-mediated PDAC are partly driven by Twist1 [39].
4. Functional interaction between TGIF1 and Twist1 in PDAC

Twist1 is a pro-malignant transcription factor that plays impor-
tant role in tumor invasion and metastasis in a wide variety of
human malignancies, including PDAC [41]. Twist was first detected
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in Drosophila [42], and subsequently Twist isoforms were identi-
fied in humans and mice [43,44]. Twist1 is important for regulating
the activity of genes that are essential for embryogenesis and
organogenesis [44–46]. Mutation of the human TWIST1 gene
resulted in craniosynostosis (premature closure of the sutures
between the bones of the skull), as detected in the patients with
Saethre-Chotzen syndrome [47]. Increased expression of Twist1
has been shown to be associated with various human malignant
tumors, including PDAC [41,48]. Recently, the induction of Twist1
in muscle progenitor cells has been demonstrated to drive muscle
cachexia during the progression of PDAC [49,50]. One of the possi-
ble mechanisms of PDAC-induced muscle cachexia is through the
tumor-derived Activin A, which acts on the skeletal muscle cells
to increase the expression of Twist1, in turn inducing the expres-
sion of the muscle-specific ubiquitin ligases (MuRF1 and Atrogin1)
to drive muscle protein degradation and subsequent muscle
cachexia in PDAC [49,50]. These studies highlight that Twist1 plays
a dual role in PDAC, acting in the tumor to orchestrate invasion and
metastasis, and in muscle to orchestrate PDAC-associated muscle
cachexia.

Endogenous interaction between TGIF1 and Twist1 has been
detected in pancreatic extracts of wild-type mice, and as expected,
no such interaction was found in pancreatic extracts obtained from
Tgif1 null mice [39]. Ablating Tgif1 resulted in an increased abun-
dance of the Twist1 protein, while forced expression of TGIF1
reduced the levels of endogenous Twist1 protein and mRNA. Of
note, the TGIF1-Twist1 interaction seemed to be independent of
TGF-b signaling [39]. Interestingly, Twist1 can induce its own
expression, and such auto-transcriptional activity could be blocked
by TGIF1. Furthermore, strong binding of endogenous TGIF1 to the
Twist1 promoter has been detected both in vitro and in vivo. Based
on these and other findings, it appears likely that TGIF1 acts as a
direct transcriptional repressor for the Twist1 gene.

Earlier studies have shown that Twist1 promotes tumorigenesis
by inducing cell invasion and metastasis, possibly through creating
a microenvironment for EMT [51–54]. A molecular hallmark of
EMT is manifested by the loss of E-cadherin expression [55].
Twist1 is thought to reduce the expression of E-cadherin, which
leads to disassembly of the epithelial cell–cell interaction to help
in cell invasion and migration. Twist1-induced suppression of E-
cadherin expression could be blunted by inducing the expression
of TGIF1, and this phenomenon is associated with reduced PDAC
metastasis [39]. Collectively, these observations implicate TGIF1
as a novel tumor suppressor gene in PDAC, likely functioning
through suppression of Twist1 to restrain PDAC progression and
metastasis.

In addition to promoting tumor invasion and metastasis, Twist1
could also help in the growth of various human tumors by modu-
lating the functions of several tumor suppressors and oncogenic
signaling pathways [48,56]. For instance, Twist1 has been found
to directly suppress the expression of the tumor suppressor
p16Ink4A, thereby allowing tumor cells to escape cell senescence,
which is essential for tumorigenesis in KrasG12D mutant mice [48].
Consistent with this notion, genetically inactivating Twist1 in
KrasG12D mice completely blocked the PDAC phenotype [39].
Twist1 inactivation in KrasG12D mice with targeted pancreatic dele-
tion of Tgif1 resulted in increased expression of Cadherin-1 and
p16Ink4A, concurring with concomitantly decreased expression
of the mesenchymal marker Vimentin [39]. The underlying mech-
anism of how and why TGIF1 inactivation accelerates KrasG12D-
induced progression of PDAC appeared to be linked directly to
Twist1 hyperactivation. In the absence of TGIF1, sustained Twist1
occurs and ultimately promotes tumor growth, invasion, and
metastasis to increase the overall mortality in PDAC. In patients
with PDAC patients, a 3-fold higher level of Twist1 has been
detected in tumor tissues as compared to the healthy normal tis-
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sues [57], further supporting the oncogenic role of Twist1 in
human PDAC.

Most of the tumor cells utilize aerobic glycolysis to induce
uncontrolled proliferation and perhaps evade cell death. Unlike
normal cells, tumor cells preferentially metabolize glucose (glycol-
ysis) instead of (mitochondrial) oxidative phosphorylation to gen-
erate energy, even when oxygen is sufficiently available, a
phenomenon called aerobic glycolysis (Warburg effect) [58]. War-
burg effect can create a tumor microenvironment favorable to can-
cer cell proliferation. The Warburg effect changes reactive oxygen
species (ROS) production, and dysregulated ROS can influence cell
signaling cascade by impacting phosphatase and tensin homolog
(PTEN) and tyrosine phosphatases activities to create a mitogenic
milieu for the tumor cells [59]. Of note, Twist1 is a regulator of aer-
obic glycolysis in PDAC. Using human pancreatic cancer cell lines,
Twist1 has shown to transcriptionally regulate the expression of
key glycolytic genes, such as GLUT1, HK2, ENO1, and PKM2 to pro-
mote the Warburg effect [60]. Whether TGIF1 functions to limit
this pro-tumorigenic activity of Twist1 remains to be established.
Besides promoting Twist1 activity, inactivation of TGIF1 could cre-
ate a microenvironment for the generation of tumor-associated
macrophages (TAMs), which in turn contribute to the growth of
PDAC [40]. In fact, TGIF1 inactivation results in the increased pro-
duction of certain cytokines and chemokines in the murine model
of PDAC. Most notably, tumor cells produce colony-stimulating
factor-1 (CSF-1), vascular endothelial growth factor (VEGF), C–C
motif chemokine ligand 2 (CCL2), IL-4, IL-10, IL-13, and TGF-b
among others. These factors can act as chemoattractant to recruit
monocytes and eventually differentiate those cells into the M2-
like macrophage phenotype [61]. In PDAC patients, a higher num-
ber of M2-like TAMs has been reported to be associated with
metastasis and poor prognosis. In studies using CD68 as a pan-
macrophage marker and CD204 as a marker for M2 macrophage,
increased numbers of M2-phenotype macrophages were detected
in patients with invasive PDAC, as compared to the patients with
chronic pancreatitis [62]. Increased numbers of M2 macrophages
correlated with the enlarged tumor size, metastatic behavior, and
shortened survival of PDAC patients [62]. From a translational per-
spective, suppressing macrophage recruitment resulted in reduced
hepatic metastasis in the experimental model of the pancreatic
tumor [63], while enhancing macrophage phenotype towards an
M2 phenotype resulted in an increased metastatic spreading
[64]. Again, loss of TGIF1 function in PDAC could induce TAM polar-
ization towards the M2-like macrophage phenotype to promote
pancreatic tumorigenesis [40].
Fig. 2. Simplified diagram showing various cellular events that are mediated by the
disruption of the TGIF1-Twist1 axis in the genesis of PDAC.
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5. Conclusion

Recent studies from independent groups have convincingly
shown that enhancing TGF-b signaling by inactivating Tgif1 in the
pancreatic epithelium resulted in a highly aggressive and meta-
static PDAC phenotype in mice, partly mediated through facilitat-
ing Kras-driven tumorigenesis. Although there was no death in
pancreatic deleted Tgif1 mice during the entire observation period
exceeding 18 months, all the KrasG12D;Tgif1KO double mutant mice
died within 19 weeks [39]. These results clearly suggest that
enhanced TGF-b signaling, due to selective pancreatic inactivation
of Tgif1, could not avert the genesis of PDAC, when Kras activity is
normal. The available evidence implicates TGIF1 as a tumor sup-
pressor in PDAC owing to its ability to inhibit the progression of
Kras-initiated pancreatic tumor formation, possibly by inhibiting
the formation of EMT and consequently minimizing metastasis
(Fig. 2). The tumor suppressor effects of TGIF1 are partly exerted
through antagonizing the pro-tumorigenic activity of Twist1,
which is known to play key roles in malignant transformation
and tumor progression and metastasis. Manipulating the TGIF1-
Twist1 interaction and subsequent signaling might be a valid ther-
apeutic target to reduce disease burden for the patients with PDAC.
In this context, recent studies showed that inhibition of Twist1
activity by the small molecule JQ1 was able to restrain tumor
growth in vivo [65], underscoring Twist1 as an attractive candidate
target for anti-cancer therapy. Of particular relevance, JQ1 analogs
are currently under clinical trials for a variety of malignancies,
hinting at the possibility that targeting the TGIF1-Twist1 axis could
hold promise for designing breakthrough therapeutic strategies
with immediate clinical applicability in fatal PDAC.
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