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CircRNAs, covalently closed noncoding RNAs, are widely expressed in a wide range of species ranging from viruses to
plants to mammals. CircRNAs were enriched in the Wnt pathway. Aberrant Wnt pathway activation is involved in the
development of various types of cancers. Accumulating evidence indicates that the circRNA/Wnt axis modulates the
expression of cancer-associated genes and then regulates cancer progression. Wnt pathway-related circRNA expres-
sion is obviously associated with many clinical characteristics. CircRNAs could regulate cell biological functions by
interacting with the Wnt pathway. Moreover, Wnt pathway-related circRNAs are promising potential biomarkers for
cancer diagnosis, prognosis evaluation, and treatment. In our review, we summarized the recent research progress on
the role and clinical application of Wnt pathway-related circRNAs in tumorigenesis and progression.

Background

Cancer is one of the main causes of death today and has
become a serious public health problem worldwide [1-5].
It is a complex disease that involves changes in a variety
of processes, including genetic and epigenetic charac-
teristic changes [6—8]. The molecular changes in cancer
genes and related signaling pathways could provide infor-
mation for cancer diagnosis and targeted therapy [9-11].
This information could contribute to improvements in
cancer diagnosis and treatment.

Human genome sequence data indicate that more than
98% of the genome is noncoding genes [12—14]. The tran-
scripts of these genes lack protein-coding ability and are
recognized as noncoding RNAs (ncRNAs) [15-18]. ncR-
NAs were once considered byproducts of transcription
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[19-21]. With the development of high-throughput
sequencing technology, ncRNA features have gradually
been revealed. ncRNAs comprise various types of RNA
species, including microRNAs (miRNAs), long ncRNAs
(IncRNAs), and circular RNAs (circRNAs) [22-24]. Cir-
cRNA is a single-stranded, covalently closed ncRNA
without 5 end caps or 3’ end poly (A) tails [25-28]. It
is generated from its precursor mRNA by noncanonical
splicing [29-31] and is widely expressed in a wide range
of species ranging from viruses to plants to mammals
[32, 33]. circRNAs may act as transcription modulators,
miRNA sponges, or protein decoys to exert their function
in cancer progression [34-36]. In addition, circRNAs are
obviously associated with many clinical characteristics
[37-41], which could provide important guidance for the
accurate diagnosis and treatment of cancer. Accumulat-
ing evidence indicates that circRNAs play a pivotal role
in the process of cancer and have the potential to be bio-
markers in cancer diagnosis, prognosis, and treatment
[42-46].

The Wnt pathway is an evolutionarily conserved path-
way [47-49]. It plays a critical role in embryonic develop-
ment, tissue renewal and regeneration [50-52]. The Wnt
pathway can be divided into three classes: Wnt/p-catenin
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signaling, Wnt/planar cell polarity (PCP) signaling, and
Wnt/Ca signaling [47, 53, 54]. Aberrant activation of
the Wnt pathway is significantly correlated with a series
of cancers, such as lung cancer [55-57], colorectal can-
cer [58, 59], bladder cancer [60, 61], osteosarcoma [62,
63], glioma [64, 65], and chronic lymphocytic leukemia
[66, 67]. Accumulating evidence indicates that circR-
NAs regulate a series of cellular biological functions by
interacting with the Wnt pathway in the cancer pro-
cess [68-70]. These studies provided novel perspectives
into cancer diagnosis and treatment. circRNAs related
to the Wnt pathway have been the focus of many can-
cer research studies [63, 69, 71-73]. In this review, we
summarized the recent research progress regarding the
molecular mechanisms and functional roles of circRNAs
related to the Wnt pathway in tumorigenesis and tumor
progression.

The wnt pathway in tumorigenesis
The Wnt gene was first identified in mouse mammary
tumors in 1982 [74—76]. At that time, it was designated
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as intl [75, 77]. Because of the high homology between
the mouse intl gene and the Drosophila Wingless gene,
the researchers merged Wingless with Intl and assigned
the name Wnt gene [78, 79]. The Wnt gene, localized at
12q13, mediates physiological effects in a paracrine and
autocrine manner [78, 80]. The signaling pathways regu-
lated by the Wnt gene are collectively termed the Wnt
pathway. The Wnt signaling pathway is highly conserved
from Drosophila to humans. The pathway [81-83] is
critical for a wide variety of cellular functions, such as
cell polarity, movement, proliferation, asymmetric divi-
sion, and muscle tissue development. Wnts are a family
of secreted, lipid-modified proteins that bind to Frizzled
receptors to activate signaling cascades [84, 85]. The Wnt
pathway can be divided into three classes: Wnt/B-catenin
signaling, Wnt/planar cell polarity signaling, and Wnt/
Ca signaling [86-89] (Fig. 1). Wnt/p-catenin signaling, a
canonical Wnt signaling pathway, is involved in the regu-
lation of gene expression [90—92]. Wnt/planar cell polar-
ity signaling regulates cell polarity and directional cell
movements [83, 93, 94]. Wnt/Ca signaling is obviously
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Fig. 1 Wnts are a family of secreted, lipid-modified proteins that bind to Frizzled receptors to activate signaling cascades. The Wnt pathway can be
divided into three classes: Wnt/[-catenin signaling, Wnt/PCP signaling, and Wnt/Ca signaling
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associated with the release of intracellular calcium [95,
96]. Dysregulation of the Wnt pathway has a strong rel-
evance to cancer.

Wnt/B-catenin signaling

The Wnt/B-catenin signaling pathway is characterized by
the cellular redistribution and nuclear accumulation of
the B-catenin gene [97, 98]. Wnt protein combines with
Frz and LRP5/6 on the cell surface to form a trimer, which
transmits the signal and activates the protein Disheveled
[Dsh/DVL] [99, 100]. This leads to the disassociation of
the P-catenin degradation complex adenomatous poly-
posis coli (APC)/Axin/GSK-3f (glycogen synthase kinase
3B) and increases the cytoplasmic levels of P-catenin
[101, 102]. Then, upregulated P-catenin is transferred
into the nucleus. Nuclear B-catenin interacts with T cell
transcription factor (TCF])/lymphoid enhancer factor
(LEF) and finally activates the expression of downstream
target genes [98, 103—-105]. The Wnt/B-catenin signal-
ing pathway participates in the cancer process by acting
as an important modulator [106—108] of cell prolifera-
tion, metastasis, and differentiation. Overexpression of
the Wnt gene or mutation in one of the components that
causes P-catenin degradation leads to activation of the
Wnt/B-catenin pathway.

Wnt/PCP signaling

In the Wnt/PCP signaling pathway, Wnt binds to frizzled
transmembrane receptors and then activates the protein
Disheveled (Dsh/DVL), leading to a series of cell signal-
ing cascades [109-112]. DSH is connected to the down-
stream effectors Rho and ROCK (Rho-associated kinase)
through Daam1. RAC is directly activated by Dsh, and
Dsh further activates JNK by activating mitogen-acti-
vated protein kinases (MAP3Ks) and MAP2Ks [113, 114].
The PCP pathway is associated with cell polarity, cell
alignment and cell migration.

Wnt/Ca 2 + signaling

In the Wnt/Ca 2+ pathway, the Wnt protein is mainly
composed of Wntl, Wnt5A and Wntll and binds to
the Frizzled transmembrane receptor on the cell surface
[115, 116]. The combination of the Wnt protein and Friz-
zled activates Disheveled, which activates PLC through
the G protein [117, 118]. These cellular processes could
finally promote the release of intracellular Ca2+. The
activation of Disheveled could also activate the cGMP-
specific phosphodiesterase PDE6 and reduce intracellu-
lar cGMP, which leads to an increase in the intracellular
Ca2+ concentration [119-123]. Elevated cytoplasmic
Ca2+ concentrations can stimulate the nuclear fac-
tor NFAT and other transcription factors [124, 125].
These processes trigger the activation of downstream
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pathways and a series of altered cell functions. The Wnt/
Ca2 + pathway is essential for early embryonic develop-
ment, interneural communication and the inflammatory
response [126, 127].

CircRNA in the wnt pathway

CircRNAs, first found in the 1890s [128], remain enig-
matic owing to technological limitations and limited
existing knowledge. In 2013, Hansen TB et al. first pro-
posed and confirmed that circRNAs function as miRNA
sponges [129]. This finding started a new era in circRNA
research [32, 42, 130-133]. Unlike linear RNAs, circR-
NAs are single-stranded, covalently closed noncoding
RNAs without 5" end caps or 3’ end poly (A) tails [25—
28]. CircRNAs are not affected by RNA exonuclease, and
their expression is more stable [134, 135]. CircRNAs are
formed by reverse splicing events [29-31]. A mechanis-
tic model argued that the RNA is partially folded dur-
ing the transcription of pre-RNA. Initially, nonadjacent
exons are pulled closer by RNA folding, and exon skip-
ping occurs. The spanned region forms a circular RNA
intermediate, and then circRNAs are formed by further
splicing. Another model suggests that the reverse com-
plement sequence located in the intron region causes the
intron region to pair and mediate reverse splicing to form
circRNA [136-140].

CircRNAs act mainly through four molecular mecha-
nisms. In regulating gene expression, circRNAs affect
the expression of parental gene mRNA by interacting
with RNA binding proteins [141-143]. Competitive
complementary pairing between introns can strike a bal-
ance with linear RNAs during the formation of circR-
NAs. CircRNAs can also exert their functions by acting
as competing endogenous RNAs (ceRNAs) of miRNAs
[144—-147]. In addition, circRNAs are involved in the
immune response [29, 148, 149]. Endogenous circRNAs
play a role in the antiviral response, while exogenous
circRNAs can stimulate immune signaling in mamma-
lian cells by activating the pattern recognition recep-
tor RIG-L [150-153]. Moreover, although circRNAs
are noncoding RNAs, a few circRNAs can also perform
regulatory functions by encoding peptides [154—156].
Several previous studies have shown that circRNAs play
an important role in tumorigenesis and tumor progres-
sion. CircRNA_403658 facilitates aerobic glycolysis and
cell growth by upregulating LDHA expression in bladder
cancer [157]. CircRNA_103809 functions as an oncogene
in the progression of hepatocellular carcinoma [158].

Both circRNAs and the Wnt pathway play a critical
role in cancer development and progression. CircRNAs
negatively or positively regulate cancer initiation, promo-
tion, and progression by directly or indirectly interacting
with the Wnt pathway. The interaction of circRNAs and
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the Wnt pathway has a noticeable impact on cell growth,
metastasis, and other malignant cell behaviors in cancer.
The majority of circRNAs act as sponges of miRNAs to
activate or inactivate the Wnt pathway. With the deepen-
ing of research, more action modes between circRNAs
and the Wnt pathway will be found. Related studies are
expected to provide new insights for the diagnosis and
treatment of cancer.

The role of the circRNA/Wnt axis in cancer

CircRNAs related to the Wnt pathway are aberrantly
expressed in many cancers. Emerging evidence suggests
that a range of clinical characteristics have been associ-
ated with circRNAs related to the Wnt pathway (Table 1).
Moreover, the circRNA/Wnt axis contributes to cancer
progression by modulating many cell biological func-
tions. In this section, we will introduce the expression,
corresponding clinical features, functions and mecha-
nisms of the circRNAs/Wnt axis (Table 2).

Digestive tumors

Esophageal cancer

Elevated levels of circRNA_100367 were observed in
radioresistant esophageal cancer cell lines [192], while
the expression of cir-ITCH was downregulated in esoph-
ageal squamous cell carcinoma (ESCC) tissues [193]
(Fig. 2). The expression of cir-ITCH is positively associ-
ated with linear ITCH in ESCC. Functionally, colony for-
mation and Cell Counting Kit-8 (CCK-8) assays showed
that cir-ITCH could inhibit ESCC tumor growth through
the regulation of cell proliferation. Knockdown of cir-
cRNA_ 100367 attenuates cell proliferation, migration,
and radioresistance in esophageal cancer [192]. cir-
cRNA_ 100367 decreases radiation sensitivity by regulat-
ing the miR-217/Wnt3 pathway. CircRNA_100367 could
also affect esophageal cancer cell growth under irradia-
tion in vivo. Using bioinformatics tools, Su et al. [234]
found that a large number of circRNAs were closely
related to cancer progression. Further studies on these
molecules are still required.

Gastric cancer

Some Wnt pathway-related circRNAs (circ0005654,
circ-SFMBT2, circ. SMAD4, circRNA_0044516, and
circHIPK3) are markedly upregulated in gastric cancer
[73, 159, 161, 195, 197]. The expression of circ0005654,
circ_SMAD4, circHIPK3, and circheckdl are positively
associated with a poor prognosis in patients with gas-
tric cancer [73, 159-161]. Functionally, these circRNAs
all contribute to promoting tumor cell proliferation in
gastric cancer [73, 159, 161, 194, 195, 197]. Additionally,
¢irc0005654, circRNA_ASAP2, circ-SFMBT2, and circH-
IPK3 obviously promote gastric cancer cell migration and
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invasion. Circ-SFMBT2 upregulation indicates higher
levels of oxidative stress in gastric cancer [195]. Mecha-
nistically, in vitro and in vivo studies demonstrated that
¢circ0005654 functions as a ceRNA of miR-363 to upregu-
late spl in the process of gastric cancer [159]. The level
of CTNNBI1 is regulated by circ-SFMBT2, a sponge
of miR-1276 [73]. Circ-SEMBT?2 activates the Wnt/p-
catenin pathway by upregulating CTNNBI1 expression.
CircRNA_0044516 affects cancer progression by regulat-
ing the miR-149/Wnt1/f-catenin axis [197].

Interestingly, some researchers found that the expres-
sion of circCNIH4, cir-ITCH, and circ_0001649 was sig-
nificantly downregulated in gastric cancer tissues and
cells [160, 196, 198]. cir-ITCH is closely related to lymph
node metastasis and patient prognosis [160]. CircCNIH4,
cir-ITCH, and circ_0001649 markedly reduced cell pro-
liferation, migration, and invasion in gastric cancer cell
lines. CircCNIH4 and circ_0001649 also contribute to
gastric cancer progression through the regulation of cell
apoptosis [196, 198]. CircCNIH4 inhibits the Wnt/p-
catenin pathway by upregulating DKK2 and FRZB levels
(Fig. 3). Similarly, cir-ITCH reduce miR-17 levels to inac-
tivate the Wnt/B-catenin pathway. Circ_0001649 inhib-
its the ERK and Wnt/B-catenin signaling pathways by
sponging miR-20a.

Colorectal cancer [CRC]

CircRNA dysregulation has been discovered to be
closely related to the occurrence and progression of
CRC. Wnt pathway-associated circRNAs of CRC are
shown in Table 1 [70, 162—-168, 199-207]. Circ_0082182,
circ-PRKDC, circ5615, and circ_0005075 are signifi-
cantly correlated with advanced tumor-node-metastasis
(TNM) stage in CRC [70, 163, 164, 167]. The overexpres-
sion of circRASSF2, circ_0082182, circ5615, circcct3,
circ_0005075, and circRNA_100290 indicates a poor
prognosis in CRC patients [70, 162, 163, 165, 167, 168].
Circ-PRKDC is also associated with lymph node metas-
tasis and tumor size [164]. Circ_0005075 expression is
correlated with differentiation and the depth of tumor
invasion [162, 167]. Functionally, the expression of cis-
HOX facilitates the self-renewal of colorectal tumor-ini-
tiating cells [201]. Circ-ABCC1 could regulate malignant
phenotypes, such as cell sphere formation ability, cell
migration, and cell stemness, in CRC [204]. The role
of circ-PRKDC in 5-fluorouracil resistance has been
reported [164]. Additionally, the other Wnt pathway-
associated upregulated circRNAs (Table 1) inhibit CRC
cell growth and metastasis [70, 202, 205-207].

Liver cancer
Hepatocellular carcinoma (HCC) is the most com-
mon type of primary liver cancer [235-238]. The
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Table 1 Expression and characteristic features of cancer-related circRNAs in the Wnt pathway
Type circRNA Expression Prognostic indicator Clinical feature Refs
Gastric cancer circ0005654 Upregulated Overall survival [159]
Gastric cancer circ_SMAD4 Upregulated Overall survival [73]
Gastric cancer cir-ITCH Downregulated  Overall survival Lymph node metastasis [160]
Gastric cancer circHIPK3 Upregulated Overall survival [e1]
Colorectal cancer CircRASSF2 Upregulated Overall survival [162]
Colorectal cancer circ_0082182 Upregulated Overall survival TNM stage [163]
Colorectal cancer circ-PRKDC Upregulated TNM grades, lymph node metastasis, [164]
tumor size, and 5-FU Resistance
Colorectal cancer circ5615 Upregulated Overall survival T stage [165]
Colorectal cancer circCCT3 Upregulated Disease-free survival Advanced stage [166]
Colorectal cancer circ _ 0005075 Upregulated Overall survival, and disease-free Histology/differentiation, invasion [167]
survival depth, and TNM stage
Colorectal cancer circMTO1 Downregulated  Overall survival Advanced TNM stage, and lymph node [70]
metastasis
Colorectal cancer circRNA_100290 Upregulated Overall survival Tumor metastasis [168]
Liver cancer circ_0004018 Downregulated Tumor size [169]
Liver cancer circ_0003418 Downregulated Tumor size, TNM stage, and HBsAg level  [170]
Liver cancer circZKSCAN1 Overall, and recurrence-free survival [71]
rate
Liver cancer circZFR Upregulated Overall survival [172]
Liver cancer circ_0067934 Upregulated Overall survival TNM stage [173]
Liver cancer circ-ITCH Downregulated  Overall survival [174]
Lung cancer circ_000984 Upregulated Overall survival, and disease-free TNM stage, and lymph nodes metas- [175]
survival tasis
Lung cancer circ_001569 Upregulated Overall survival Tumor differentiation, lymph node [176]
metastasis, and TNM stage
Lung cancer circ_0001946 Upregulated Overall survival TNM stage, and tumor size 771
Lung cancer circ_0018414 Downregulated  Overall survival [178]
Lung cancer circ_0006427 Downregulated  Overall survival [179]
Lung cancer circ_0007059 Downregulated Different stages [180]
Lung cancer cir-ITCH Downregulated Age [181]
Glioma circ_0001730 Upregulated Clinical stage [182]
Glioma circ_0000177 Upregulated Overall survival [183]
Ovarian cancer circPLEKHM3 Downregulated Overall survival, and recurrence-free [184]
survival
Endometrial carcinoma  circ_0109046 Upregulated 5-year survival [185]
Endometrial carcinoma  circ_0002577 Upregulated Overall survival rate FIGO stage, and lymph node metastasis  [186]
Osteosarcoma circ_0002052 Downregulated  Overall survival, and progression-free (1871
survival
Thyroid cancer circ-ITCH Downregulated Clinical stage, and lymph node metas-  [188]
tasis
Breast cancer circ-EIF6 Upregulated Overall survival Histological grade, and distant metas- ~ [189]
tasis
Breast cancer circ-ITCH Downregulated  Overall survival [190]
Breast cancer circRNA_069718  Upregulated Overall survival TNM stage, and lymph node metastasis  [191]

expression of circRNA-SORE, circp-catenin, circZFR,
and circ_0067934 is relatively elevated in HCC [71, 172,
173, 210]. In particular, increased circRNA-SORE levels
were found in sorafenib-resistant HCC. CircZFR and
circ_0067934 levels are significantly associated with the

prognosis of patients with HCC [172, 173]. The expres-
sion of circ_0067934 is also markedly correlated with
tumor TNM stage in HCC [173]. CircRNA-SORE,
CZNF292, circp-catenin, circZFR, and circ_0067934
markedly facilitates cell proliferation [172, 173, 209,
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Table 2 The functions and mechanisms of Wnt-associated circRNAs in cancer
Category Type circRNA Role Functions Targeted molecule  Refs
Digestive tumors Esophageal cancer circRNA_100367 Oncogene EMT, proliferation, miR-217, and Wnt3 [192]
migration, and radi-
oresistance
Esophageal cancer cir-ITCH Tumor suppressor Cell cycle, and cell mMiRNA, Wnt [193]
proliferation
Gastric cancer circ0005654 Oncogene Proliferation, migra- miR-363, SP1, Wnt, [159]
tion, and invasiveness  and f-catenin
Gastric cancer circRNA _ asap2 Oncogene Proliferation, migra- Whnt, and B-catenin [194]
tion, invasion, and cell
apoptosis
Gastric cancer circ-SFMBT2 Oncogene Proliferation, migra- miR-885-3p, CHD?, [195]
tion, invasion, cell Whnt, and B-catenin
apoptosis, and oxida-
tive stress
Gastric cancer circCNIH4 Tumor suppressor  Proliferation, migra- DKK2. FRZB,Wnt,and  [196]
tion, invasion, and cell  3-catenin
apoptosis
Gastric cancer circ_SMAD4 Oncogene Proliferation, and cell ~ miR-1276, CTNNBI, [73]
apoptosis Wnt, and B-catenin
Gastric cancer CircRNA_0044516 Oncogene Proliferation, and cell ~ miR-149, Wnt1, and [197]
apoptosis f-catenin
Gastric cancer cir-lTCH Tumor suppressor  Cell proliferation, miR-17, Wnt, and [160]
migration, and inva-  [3-catenin
sion
Gastric cancer circ_0001649 Tumor suppressor  Proliferation, migra- miR-20a, ERK, and [198]
tion, invasion, and cell  Wnt/B-catenin
apoptosis
Gastric cancer circHIPK3 Oncogene Proliferation, and Wnt1, and B-catenin ~ [161]
migration
Colorectal cancer circ_0038718 Oncogene Cell proliferation, miR-195-5p, Axin2, [199]
migration, and inva- and Wnt/B-catenin
sion
Colorectal cancer circ_0026628 Oncogene Cell proliferation, miR-346, FUS protein,  [200]
migration, and SP1, Wnt/B-catenin,
stemness and Sox2
Colorectal tumor cis-HOX Oncogene Self-renewal, FZD3, Wnt/B-catenin,  [201]
tumorigenesis, and and KSRP
metastatic capacities
of TICs
Colorectal cancer circRASSF2 Oncogene Cell proliferation, miR-195-5p, FZD4, [162]
migration, invasion, Whnt, and B-catenin
and cell apoptosis
Colorectal cancer circSMARCAS Tumor suppressor  Cell proliferation, miR-552, Wnt, and [202]
migration, and inva- YAPT
sion
Colorectal cancer circ_0082182 Oncogene Cell proliferation, cell ~ miR-411, miR-1205, [163]
cycle, apoptosis,and  and Wnt/[-catenin
metastasis
Colorectal cancer CircAGFG1 Oncogene Cell proliferation, mir-4262, miR-185-5p, [203]
migration, stemness, YY1, CTNNBI1, Wnt, and
and apoptosis [3-catenin
Colorectal cancer circ-PRKDC oncogene 5-FU resistance, cell FOXM1, miR-375,Wnt, [164]
proliferation, and and [3-catenin
invasion
Colorectal cancer circ5615 Oncogene Cell proliferation, cell ~ miR-149-5p, TNKS, [165]
cycle, and invasion Whnt, and B-catenin
Colorectal cancer circ-ABCC1 Oncogene Cell stemness, sphere  Wnt [204]

formation, and
metastasis
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Table 2 (continued)
Category Type circRNA Role Functions Targeted molecule  Refs
Colorectal cancer circCCT3 Oncogene Cell invasion, and miR-613, Wnt3, miR- [166]
apoptosis 613, and VEGFA
Colorectal cancer circ _ 0009361 Tumor suppressor  Cell proliferation, miR-582, Wnt, and [205]
migration, invasion, B-catenin
and EMT
Colorectal cancer circ _ 0005075 Oncogene Cell proliferation, Wnt, and B-catenin [1671
migration, and inva-
sion
Colorectal cancer circMTO1 Tumor suppressor  Cell proliferation,and ~ Wnt, and -catenin [70]
invasion
Colorectal cancer circ _ 0000523 Tumor suppressor  Cell proliferation, and ~ miR-31, Wnt, and [206]
apoptosis B-catenin
Colorectal cancer circRNA_100290 Oncogene Cell proliferation, miR-516b, FZD4, Wnt,  [168]
migration, and inva-  and B-catenin
sion
Colorectal cancer cir-ITCH Tumor suppressor  Cell proliferation Wnt, and -catenin [207]
Liver cancer circRNA-SORE Oncogene Sorafenib resistance, Wnt, and B-catenin [71]
and apoptosis.,
Liver cancer circ_0004018 Tumor suppressor  Cell proliferation, and ~ miR-626, DKK3, Wnt, [169]
migration and {-catenin
Liver cancer circ-ITCH Tumor suppressor  Cell proliferation,and ~ Wnt, 3-catenin, c-Myc, [174, 208]
apoptosis and CyclinD1
Liver cancer circ_0003418 Tumor suppressor  Cell proliferation, Wnt, and B-catenin [170]
migration, invasion,
and cisplatin resist-
ance
Liver cancer circZKSCAN1 Tumor suppressor  Cell stemness FMRP, CCART, and Wnt  [171]
Liver cancer cZNF292 Oncogene Cell proliferation,and ~ Wnt, 3-catenin, and [209]
cell cycle SOX9
Liver cancer circp-catenin Oncogene Cell growth, cell Wnt, and B-catenin [210]
cycle, migration, and
invasion
Liver cancer circZFR Oncogene Cell proliferationand ~ Wnt, and -catenin [172]
EMT
Liver cancer circ_0067934 Oncogene Cell proliferation, miR-1324, FZD5, and [173]
migration, invasion, f-catenin
and apoptosis
Liver cancer circ-ITCH Tumor suppressor [174]
Pancreatic cancer circ_0030167 Tumor suppressor  Cell invasion, migra- miR-338-5p, WipT, [211]
tion, proliferation and ~ Wnt 8, and -catenin
stemness
Respiratory system Lung cancer circ-PGC Oncogene Cell viability, colony miR-532-3p, FOXR2, [212]
tumors formation, cell migra- ~ Wnt, and 3-catenin
tion, invasion, and
glycolysis metabolism
Lung cancer circ-ZNF124 Oncogene Cell proliferation, inva-  miR-498, YES, Wnt, [213]
sion, apoptosis, and and B-catenin
cycle arrest
Lung cancer circ-BIRC6 Oncogene Cell proliferation, miR-4491, Wnt2B,and [214]
migration and inva- {3-catenin
sion, and apoptosis
Lung cancer circ_0067934 Oncogene Cell proliferation, miR-1182, KIf8, Wnt, [215]
migration, invasion, and B-catenin
and apoptosis
Lung cancer circ_000984 Oncogene Cell proliferation, Whnt, and B-catenin [175]
migration, invasion,
and EMT
Lung cancer circ_001569 Oncogene Cell proliferation Whnt, and 3-catenin [176]
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Table 2 (continued)
Category Type circRNA Role Functions Targeted molecule  Refs
Lung cancer circ_0043256 Oncogene Cell proliferation,and ~ miR-1252, /TCH, and [216]
apoptosis Wnt
Lung cancer circ-SOX4 Oncogene Cell proliferation, inva-  miR-1270, PLAGL2, [69]
sion, and migration and Wnt
Lung cancer circ_0001946 Oncogene Cell proliferation miR-135a-5p, SIRTT, 77
Wnt, and B-catenin
Lung cancer circ_0018414 Tumor suppressor  Cell proliferation, miR-6807-3p, DKK1, [178]
stemness, and apop-  Wnt, and -catenin
tosis
Lung cancer circ_0006427 Tumor suppressor  Cell proliferation, miR-6783-3p, DKK1, [179]
migration, and inva- Whnt, and B-catenin
sion
Lung cancer circ_0007059 Tumor suppressor  Cell proliferation, miR-378, Wnt, and [180]
apoptosis, and EMT B-catenin
Lung cancer cir-ITCH Tumor suppressor  Cell proliferation Whnt, and 3-catenin [181]
Nervous system Glioma circ_0001730 Oncogene Cell proliferation,and ~ Sp1, miR-326, Wnt78B,  [182]
neoplasms migration and B-catenin
Glioma circKIF4A Oncogene Colony formation, miR-139-3p, Wnt,and  [217]
migration, invasion, B-catenin
and apoptosis
Glioma circ_0000177 Oncogene Cell proliferation,and ~ miR-638, FZD7, and [183]
invasion Wnt
Glioma CcZNF292 Oncogene Cell proliferation, cell ~ Wnt, and -catenin [218]
cycle, and angiogenic
potential
Genitourinary tumors  Prostate cancer cir-ITCH Tumor suppressor  Cell viability, and miR-17, Wnt, [219]
invasion B-Catenin, PI3K, AKT,
and mTOR
Ovarian cancer circABCB10 Oncogene Cell proliferation, miR-1271, Capn4, Wnt, [220]
invasion, and cell and Pcatenin
apoptosis
Ovarian cancer circPLEKHM3 Tumor suppressor  Cell growth, and miR-9, BRCAT, DNAJB6, [184]
migration KLF4, Akt1, Wnt, and
B-catenin
Endometrial carci- circ_0109046 Oncogene Cell proliferation, miR105, SOX9, Wnt, [185]
noma aggressiveness, and and B-catenin
apoptosis
Endometrial carci- circ_0002577 Oncogene Cell proliferation, miR-197, CTNND, [186]
noma migration, and inva- Wnt, and B-catenin
sion
Cervical cancer circSAMD11 Oncogene Cell proliferation, miR-503, SOX4, Wnt, [221]
migration, invasion, and [-catenin
and apoptosis
Blood system cancers  Acute myeloid circ_0121582 Tumor suppressor  Cell proliferation,and ~ miR-224, GSK33, Wnt,  [222]
leukemia cell cycle and [3-catenin
Chronic lymphocytic  circ-CBFB Oncogene Cell proliferation, cell  miR-607, FZD3, Wnt, [223]
leukemia cycle, and apoptosis  and (3-catenin
Diffuse large B-cell circ-APC Tumor suppressor  Cell viability, and cell ~ Wnt, B-catenin, TETT,  [224]
lymphoma cycle and miR-888
Musculoskeletal Osteosarcoma circUBAP2 Oncogene Cell proliferation, miR-506-3p, SEMA6D,  [225]
system tumors migration, invasion, Whnt, and B-catenin
apoptosis, and cispl-
atin resistance
Osteosarcoma circMYO10 Oncogene Cell proliferation,and ~ miR-370-3p, RUVBL1,  [63]
emt Whnt, and B-catenin
Osteosarcoma circ_0002052 Tumor suppressor Cell proliferation, miR1205, APC2, \Wnt, (1871

migration, invasion,
and apoptosis

and B-catenin
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Table 2 (continued)
Category Type circRNA Role Functions Targeted molecule  Refs
Endocrine system Thyroid cancer circRNA_102171 Oncogene Cell proliferation, CTNNBIPT, B-catenin,  [226]
tumors migration, invasion, TCF3, TCF4, LEFT
and apoptosis. complex, Wnt, and
B-catenin
Thyroid cancer circRNA_NEK6 Oncogene Cell growth, and FZD8, Wnt, and miR- [227]
invasion 370-3p
Thyroid cancer circ-ITCH Tumor suppressor  Cell proliferation, inva-  miR-22-3p, CBL, and [188]
sion, and apoptosis -catenin
Other systems tumors ~ Breast cancer circ-EIF6 Oncogene Cell proliferation, MYH9, Wnt, B-catenin, [189]
migration, and inva- and EIF6-224aa
sion
Breast cancer circARL8B Oncogene Cell viability, migra- miR-653-5p, PGE2, [228]
tion, invasion, and PI3K, AKT, GSK-3,
fatty acid metabolism ~ Wnt, and 3-catenin
Breast cancer circABCC4 Oncogene Cell viability, migra- miR-154-5p, NF-kB, [229]
tion, invasion, and Wnt, and B-catenin
apoptosis
Breast cancer circ-ITCH Tumor suppressor  Cell proliferation, inva- miR-214, miR-17, [TCH, [190]

sion, and metastasis Wnt, and B-catenin

Breast cancer circRNA_069718 Oncogene Cell proliferation,and ~ Wnt, and 3-catenin [191]
invasion

Breast cancer circFAT1 Oncogene Cell apoptosis, migra-  miR-525-5p, SKAT, [230]
tion, invasion, and Notch, and Wnt
oxaliplatin resistance

Melanoma circ_0119872 Oncogene Cell proliferation,and ~ miR-622, G3BP1,Wnt,  [231]
angiogenesis B-catenin, and mTOR

Melanoma circ-GLI Oncogene Cell metastasis, and p70S6K2, Hedgehog, [232]

(circ_0027247) angiogenesis GLI1, Cyr61, Wnt, and
-catenin
Melanoma circ_0084043 Oncogene Cell proliferation, miR-429, and homolog [233]

migration, invasion, 2,Wnt, and 3-catenin

and apoptosis

210, 239]. Additionally, cZNF292, circRNA-SORE, and
circ_0067934 reduce cell apoptosis [71, 173, 210, 239],
while c¢ZNF292 has no apparent effect on apoptosis
[209]. The overexpression of circp-catenin, circZFR and
circ_0067934 increased the migration or invasion of
HCC cancer cells [172, 173, 210]. High circRNA-SORE
levels are important for maintaining HCC sorafenib
resistance [71]. Mechanistically, some circRNAs inter-
act with Wnt/p-catenin via other molecules in HCC.
Circ_0067934 regulates HCC cell behaviors by activating
the miR-1324/FZD5/wnt/B-catenin axis [173]. cZNF292
increases Wnt/p-catenin pathway activity through the
upregulation of sex-determining region Y (SRY)-box 9
(SOX9) nuclear translocation [209].

On the other hand, the expression of circ_0004018,
circ_0003418, and circ-ITCH is significantly down-
regulated in HCC [169, 170, 174, 208]. CircZKSCAN1
and circ-ITCH are potential prognostic biomarkers
[171, 174]. Circ_0004018 and circ_0003418 are nega-
tively correlated with tumor size [169, 170]. In addition,
the expression of circ_0003418 has been reported to be

related to TNM stage and HBsAg levels in HCC [170].
Circ_0004018 and circ_0003418 contribute to cancer
development and progression by regulating many cell
biological functions, including cell proliferation, migra-
tion, and invasion. Knockdown of circZKSCAN1 could
inhibit the malignant behaviors of HCC cancer stem cells,
such as sphere formation, colony formation, cell prolifer-
ation, and metastasis. Circ_0004018 modulates the Wnt/
B-catenin pathway to accelerate HCC progression by
targeting the miR-626/DKK3 axis. CircZKSCANT1 binds
with FMRP to increase Wnt signaling activity in HCC.

Pancreatic cancer

Pancreatic cancer is a digestive tract malignancy with
limited treatment options and poor life expectancy
[240-243]. Pancreatic ductal adenocarcinoma is the most
common primary malignancy of the pancreas [244—246].
The expression of circ_0030167 is significantly elevated
in bone marrow mesenchymal stem cells (BM-MSCs)
[211]. Yao et al. isolated BM-MSCs from human bone
marrow. circ_0030167, obtained from BM-MSC-derived
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Fig. 2 Wnt pathway-associated circRNAs in digestive tumors

Wnt pathway-associated circRNA in digestive tumors

circRNA_100367
cir-ITCH

Esophageal cancer

circ_0038718 circRASSF2

circ_0026628 cir-ITCH
circSMARCA5  cis-HOX
circ_0082182 circ5615
circAGFG1 circcct3
circ-PRKDC  circMTO1
circ-ABCC1

circ _ 0009361
circ _ 0005075

circ _ 0000523

circRNA_100290

Colorectal cancer

circ_0030167

Pancreatic cancer

exosomes, attenuates pancreatic cancer cell growth,
metastasis, and stemness. Exosomal circ_0030167 acti-
vates the WIF1/Wnt8/f-catenin axis by sponging miR-
338-5p in pancreatic cancer. An increasing number of
Wnt pathway-associated circRNAs have also been found
in pancreatic ductal adenocarcinoma [247]. However, the
underlying functions and mechanisms still need to be
further explored.

The respiratory system tumor

Lung cancer

Lung cancer is the main cause of cancer-associated
mortality worldwide [248-252]. It can be classified into
non-small-cell lung cancer (NSCLC) and small-cell lung
cancer, and NSCLC accounts for the overwhelming
majority of lung cancer cases [253—-255]. Wnt pathway-
associated circRNAs of NSCLC are shown in Table 1
[69, 175-181, 212-216] (Fig. 4). The overexpression
of circ_000984 and circ_001569 is significantly corre-
lated with TNM stage and lymph node metastasis in
NSCLC [175, 176]. The circ_0001946 expression profile

is obviously associated with TNM stage and tumor size
in NSCLC [177]. Additionally, circ_000984, circ_001569,
and circ_0001946 upregulation predicts a poor progno-
sis in patients with NSCLC [175-177]. These upregu-
lated circRNAs in NSCLC could promote cell growth by
enhancing cell proliferation [69, 175-177, 212-216]. In
vitro astray assays showed that silencing circ_0067934
and circ_000984 could inhibit the epithelial-mesenchy-
mal transition (EMT) process to reduce cell metastasis
in NSCLC [175, 215]. Circ-PGC could also hinder can-
cer progression by suppressing glycolysis metabolism
[212]. Mechanistically, the majority of circRNAs interact
with miRNAs to activate the Wnt/p-catenin pathway in
NSCLC [69, 177, 212-216].

Interestingly, circ_0018414, circ_0006427,
circ_0007059, and cir-ITCH are remarkably down-
regulated in NSCLC [178-181]. Circ_0018414 and
circ_0006427 are markedly associated with the overall
survival rate [178, 179]. Circ_0006427 and circ_0007059
facilitate cell growth and motility in NSCLC [179, 180].
Circ_0018414 enhances stemness features by promoting
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DKK1 expression in NSCLC [178] (Fig. 5). CircRNAs can
inhibit NSCLC tumorigenesis and progression by regulat-
ing the circ_0018414/miR-6807-3p/dkkl/Wnt/B-catenin,
circ_0006427/ miR-6783-3p/dkkl/Wnt/B-catenin, and
circ_0007059/miR-378/Wnt/B-catenin pathways and the
cir-ITCH/miR-7/miR-214/ITCH/Wnt/p-catenin axis.

Nervous system neoplasms

Glioma

Malignant gliomas are the most common primary
tumors of the central nervous system [256—259]. Wnt
pathway-associated circRNAs have drawn much atten-
tion in glioma research in recent years [260-263]. The
levels of circ_0001730, circKIF4A, circ_0000177, and
CcZNF292 are upregulated in glioma [182, 183, 217, 218,
264] tissues versus normal brain tissues. Circ_0000177
is related to clinical stage, and patients with increased
circ_0000177 expression have a poor prognosis [183].
Circ_0001730, circKIF4A, and circ_0000177 are all
involved in tumor cell growth and metastasis in glioma
[182, 183, 217]. cZNF292 promotes cancer develop-
ment by regulating cell proliferation, the cell cycle, and

angiogenesis. Mechanistically, circ_0001730 functions
as a sponge of miR-326 to positively regulate Wnt/p-
catenin pathways in the pathophysiologic processes of
glioma. Circ_0001730 could also be upregulated by SP1
[218]. Overexpression of circ_0000177 increases FZD7
levels to activate Wnt signaling mediated by miR-638 in
glioma.

Genitourinary tumors

Prostate cancer (PCa)

PCa refers to an epithelial malignancy that occurs in
the prostate [265-269]. The expression of cir-ITCH was
significantly downregulated in PCa tissues and cell lines
[219]. Further experiments showed that cir-ITCH could
attenuate PCa cell viability and invasion. Cir-ITCH
hinders PCa development by inactivating the Wnt/f3-
Catenin and PI3K/AKT/mTOR pathways. Not much
is known about Wnt pathway-associated circRNAs in
PCa. There is a crucial need for Wnt pathway-associ-
ated circRNA research in PCa [219].
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Fig. 4 Wnt pathway-associated circRNAs in respiratory system cancer, nervous system cancer, genitourinary tumors, blood system cancers,
musculoskeletal system cancer, endocrine system cancer, and cancers of other systems

Female reproductive system cancers

Cancers that originate in the female reproductive sys-
tem are called female reproductive cancers [270]. Ovar-
ian cancer (OC), endometrial cancer (EC), and cervical
cancer are the three most common gynecological malig-
nancies [271-274]. The expression of circ-:ABCB10 is sig-
nificantly upregulated, while circPLEKHM3 expression
is downregulated in OC [184, 220]. Moreover, the level
of circPLEKHMS3 is positively associated with the over-
all survival rate in patients with OC [184]. Circ-ABCB10
remarkably facilitates cell proliferation and invasion
and reduces cell apoptosis by miR-1271 in OC [220].
Circ-ABCB10 plays a critical role in OC progression
via the regulation of Capn4/Wnt/B-catenin. CircPLE-
KHMS3 inhibits cell proliferation and migration by spong-
ing miR-9 and regulating the BRCA1/DNAJB6/KLF4/
AKT1/Wnt/B-catenin axis in OC [184]. Circ_0109046
and circ_0002577 are elevated in EC tissues and cell lines
[185, 186]. The overexpression of circ_0002577 is posi-
tively correlated with advanced FIGO stage and lymph

node metastasis in EC. High expression of circ_0109046
and circ_0002577 predicts a poor prognosis in patients
with EC. Circ_0109046 activates the Wnt/B-catenin
pathway by sponging miR-105 to increase SOX9 lev-
els. Circ_0002577 functions as a sponge of miR-197 to
regulate the CTNND1/Wnt/B-catenin axis in EC. Circ-
SAMDI11 expression is markedly upregulated in cervical
cancer [221]. Silencing of circSAMDI11 expression sup-
pressed cell proliferation and metastasis and promoted
cell apoptosis in cervical cancer. The circSAMD11/miR-
503/sox4/Wnt/p-catenin axis plays an essential role in
the progression of cervical cancer [221].

Tumors of the blood system

Hematological malignancies, also known as neoplasms
of the blood, lymph nodes and bone marrow, include
leukemia, lymphoma, and multiple myeloma [275-
278]. The common types of leukemia are acute myeloid
leukemia (AML), chronic myeloid leukemia (CML),
acute lymphoblastic leukemia (ALL), and chronic
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lymphocytic leukemia (CLL) [279-282]. Circ_0121582
expression is significantly decreased in AML [222].
Functional experiments demonstrated that the overex-
pression of circ_0121582 significantly attenuated cell
survival and promoted the cell cycle arrest in AML.
Circ_0121582 activates Wnt/B-catenin by sponging
miR-224 to increase GSK3p expression in AML. The
expression of circ-CBFB was upregulated in CLL, and it
has been reported as an independent predictive factor
for the prognosis of CLL [223]. Circ-CBFB facilitates

CLL cell proliferation and inhibits cell apoptosis by
sponging miR-607 and upregulating the FZD3/Wnt/f3-
catenin axis. Diffuse large B-cell lymphoma (DLBCL) is
the most common malignant lymphoma subtype [283—
285]. The level of circ-APC is significantly decreased in
the tissues, cell lines, and plasma of DLBCL patients
versus normal controls [224]. circ-APC inactivates the
Wnt/B-catenin pathway to suppress cell proliferation
in DLBCL through the regulation of the miR-888/APC
and TET1/APC axes.
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Tumors of the musculoskeletal systems

Osteosarcoma (OS)

OS is the most common primary malignant neoplasm of
the bone and mainly affects children, adolescents, and
young adults [286-289]. The level of circMYOL10 is sig-
nificantly elevated [63], while circ_0002052 expression
is downregulated in OS tissues and cell lines [187]. The
expression of circ_0002052 is positively associated with
overall and progression-free survival in patients with OS.
circ_0002052 inhibits cell growth and cell motility and
enhances cell apoptosis in OS by sponging miR-1205 and
modulating the APC2/Wnt/p-catenin axis. CircMYO10
functions as an oncogene in OS progression. The over-
expression of circMYO10 facilitates OS cell proliferation
and EMT in vitro. CircMYO10 facilitates histone H4K16
acetylation by regulating the miR-370-3p/RUVBL1 axis
and activating Wnt/p-catenin signaling in OS. Cisplatin
(DDP) is a conventional chemotherapy drug in the treat-
ment of OS [290-293]. Cisplatin resistance is a major
challenge for OS chemotherapy application [294, 295].
CircUBAP2 expression is increased in cisplatin-resistant
OS tissues and cells [225]. Silencing circUBAP2 inhibits
cell proliferation, migration, and invasion and induced
apoptosis in OS. CircUBAP2 knockdown also suppresses
cisplatin resistance by regulating miR-506-3p/SEMA6D
and the Wnt/B-catenin pathway [225].

Tumors of the endocrine system

Thyroid cancer

The incidence rate of thyroid cancer has been increas-
ing throughout the world [296-300]. CircRNA_ 102171
and circRNA_NEK®6 are relatively upregulated [226, 227],
while circ-ITCH is downregulated in thyroid cancer tis-
sues and cell lines [188]. The level of circ-ITCH is closely
associated with clinical stage, lymph node metastasis, and
patient prognosis in thyroid cancer. CircRNA 102171
and circRNA_NEK®6 play a promoting role in cell growth
and metastasis. CircRNA_102171 activates the Wnt/[3-
catenin pathway in a CTNNBIP1-dependent way [226].
CircRNA_NEKS facilitates thyroid cancer progression by
sponging miR-370-3p and upregulating the FZD8/Wnt
axis [227]. Circ-ITCH exerts its tumor suppressor action
by modulating miR-22-3p/CBL/-catenin in thyroid can-
cer [188].

Tumors of other systems

Breast cancer is one of the most common malignant
malignancies among females worldwide [301-304]. Circ-
EIF6, circARLS8B, circABCC4, circRNA_069718, and
circFAT1 expression levels are obviously upregulated
in breast cancer [189, 191, 228-230]. CircRNA_069718
overexpression is positively correlated with TNM stage,
lymph node metastasis, and overall survival in patients
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with breast cancer [191]. These upregulated Wnt-asso-
ciated circRNAs contribute to cancer progression by
promoting cell growth and metastasis. In addition, stud-
ies also observed that knockdown of circARL8B could
induce a suppressive effect on fatty acid metabolism
in breast cancer [228]. CircFAT1 enhances oxaliplatin
resistance through the miR-525-5p/SKA1 and Wnt path-
ways in breast cancer [230]. CircARL8B, circABCC4, and
CircFAT1 regulate the Wnt pathway by acting as sponges
of miRNAs in breast cancer. EIF6-224aa, encoded by
circ-EIF6, activates Wnt/B-catenin by regulating the
MYH9/Wnt/beta-catenin pathway [189].

Melanoma is a potentially fatal disease with increasing
incidence [305-309]. Circ_0027247 was isolated from
circ-GLI1 [232]. Circ_0119872, circ_0084043 and circ-
GLI1 (circ_0027247) are dramatically upregulated in
melanoma tissues and cell lines [231-233]. High levels of
circ_0027247 and circ_0084043 can promote cell motility
[232], while circ_0119872 has no influence on cell migra-
tion and invasion [231]. Circ_0119872 and circ_0027247
are novel negative feedback regulators of angiogenesis
in melanoma. Circ_0119872 and circ_0084043 have the
same effects on cell proliferation. Circ_0119872 activates
the Wnt/B-catenin pathway by interacting with p70S6K2
and upregulates Cyr6l expression in melanoma. The
tumorigenesis and progression of melanoma are also
regulated by the circ_0119872/ p70S6K2/Wnt/B-catenin
and circ_0027247/miR-622/G3BP1/Wnt/B-catenin axes
[231].

CircRNA, a potential biomarker in wnt pathway

Despite technological advances, cancer diagnosis and
treatment are still a challenge that may require the emer-
gence of new tumor biomarkers [310, 311]. Increasing
evidence has revealed that Wnt-associated circRNAs are
closely related to cancer progression. Wnt-associated
circRNAs may be very promising biomarkers in cancer
diagnosis, prognosis, and treatment. In this section, we
will further discuss their potential application in clinical
practice.

Diagnosis

The early screening and diagnosis of cancer is condu-
cive to the survival of cancer patients [312-316]. Iden-
tifying suitable biomarkers has always been a difficult
issue in cancer research. Wnt-associated circRNAs may
be used to assist early diagnosis in many cancers. They
are aberrantly expressed in many kinds of tumors from
multiple systems, such as digestive tumors, respiratory
system tumors, nervous system neoplasms, genitouri-
nary tumors, musculoskeletal system tumors and endo-
crine system cancers. Moreover, plasma circ-APC levels
are significantly downregulated in DLBCL [224]. This
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discovery indicates a more convenient clinical applica-
tion of circ-APC as a diagnostic marker. Studies further
evaluated the diagnostic potential for cancer by receiver
operating characteristic (ROC) curve analysis. Yang et al.
found that the AUC value of circ0005654 was 0.781 in
gastric cancer [159]. ROC analysis of circRASSF2 expres-
sion levels in colorectal cancer tissues and cells accu-
rately discriminated between CRC patients and healthy
controls (AUC: 0.9863) [162]. Further experimental veri-
fication and research on circRASSF2 in body fluids is
necessary. The corresponding AUC value for circ-CBFB
was 0.80 in chronic lymphocytic leukemia [223].

Prognosis prediction

Early prognostic information is important in making
treatment decisions [317-321]. A growing amount of
evidence shows that Wnt-associated circRNAs can be of
important prognostic value. These circRNAs are closely
related to overall survival, disease-free survival, recur-
rence-free survival, 5-year survival rate, and progres-
sion-free survival in several cancers. Patients with lower
circZKSCANT1 expression have shorter overall and recur-
rence-free survival in HCC [171]. Li et al. [166] reported
that the overexpression of circCCT3 was negatively
correlated with the disease-free survival rate in colo-
rectal cancer. Higher circ_0109046 expression predicts
a decreased 5-year survival rate in patients with endo-
metrial carcinoma [185]. Such studies have important
implications in prognosis evaluation and treatment selec-
tion. In addition, Wnt-associated circRNAs are associ-
ated with other relevant prognostic factors. For example,
downregulated circMTO1 levels predict advanced TNM
stage and lymph node metastasis in CRC [70].

Cancer treatment

Despite rapidly progressing treatment modalities, cancer
therapy remains one of the most challenging issues in the
world. CircRNA-based targeted therapeutic strategies
shed new light on the evolution of cancer treatment [42,
43, 262, 322, 323]. CircRNAs regulate many cell biologi-
cal functions by directly or indirectly interacting with the
Wnt pathway. CircRNA_NEK6 activated the FZD8/Wnt
axis to facilitate thyroid cancer progression by spong-
ing miR-370-3p [227]. Circ_0121582 promotes GSK3[
expression to activate the Wnt/p-catenin pathway by
sponging miR-224 in AML [222]. Circ-SFMBT2 con-
tributes to the development and tumorigenesis of gastric
cancer via regulation of the miR-1276/CTNNB1/Wnt/B-
catenin axis [195]. Controlling Wnt-associated circRNA
expression may be an effective approach for cancer
treatment. The knockdown of circ_. SMAD4 blocked
gastric cancer progression by negatively regulating cell
growth [73]. Silencing circ-ZNF124 expression inhibited
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malignant phenotypes in NSCLC cells [73]. In addition,
Circ-ITCH is a tumor suppressor in many cancers [160,
174, 181, 188, 190, 193, 207, 208, 219]. Wang et al. found
that upregulated circ-ITCH expression suppressed cell
proliferation and invasion in papillary thyroid cancer
[188]. However, the identification of targeted drugs that
can stably control the expression of circRNA and trans-
mit this effect is the current difficulty. This requires a
deeper understanding of the structure and function of
Wnt-associated circRNAs. The majority of circRNAs
act as sponges of miRNAs to activate or inactivate the
Wnt pathway. Regulating the target miRNAs of Wnt-
associated circRNAs may also be feasible. MiR-582 inter-
vention effectively reversed the cell biological functions
regulated by circ_0009361 in CRC [205].

Conclusions and future perspectives

The Wnt signaling pathway is highly involved in cancer
development, and essential for a wide variety of cellular
functions, such as cell polarity, movement, proliferation,
asymmetric division, and muscle tissue development.
Both circRNA and the Wnt pathway play a critical role
in cancer development and progression. Emerging data
suggest that the circRNA/Wnt axis modulates the expres-
sion of cancer-associated genes and then regulates tumor
progression. CircRNAs are enriched in the Wnt pathway.
Wnt-associated circRNAs are abnormally expressed in
digestive tumors, respiratory system tumors, nervous
system neoplasms, genitourinary tumors, musculoskel-
etal system tumors, endocrine system cancers and other
cancers. Their aberrant expression indicates their poten-
tial as diagnostic markers. However, most related experi-
ments are based on tissue and cell research. Ideal and
effective molecular markers should be stably expressed
in plasma, serum, and other body fluids. Such molecules
have greater potential for clinical applications. Wnt-asso-
ciated circRNAs are also promising potential biomarkers
in the treatment of cancer. CircRNAs negatively or posi-
tively regulate cancer initiation, promotion, and progres-
sion by directly or indirectly interacting with the Wnt
pathway. We could enhance the expression of cancer-
promoting circRNAs or inhibit the expression of tumor
suppressor circRNAs to control cancer progression. The
current goal is to find targeted drugs that can stably con-
trol the expression of circRNA and induce this effect. We
need to further understand the structure and function of
Whnt-related circRNAs. Furthermore, the interaction and
the related mechanisms between circRNAs involved in
the Wnt pathway need more studies to confirm.
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