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ABSTRACT

Recent advances in genome sequencing and func-
tional genomic profiling have promoted many large-
scale quantitative trait locus (QTL) studies, which
connect genotypes with tissue/cell type-specific
cellular functions from transcriptional to post-
translational level. However, no comprehensive re-
source can perform QTL lookup across multiple
molecular phenotypes and investigate the poten-
tial cascade effect of functional variants. We devel-
oped a versatile resource, named QTLbase, for inter-
preting the possible molecular functions of genetic
variants, as well as their tissue/cell-type specificity.
Overall, QTLbase has five key functions: (i) curating
and compiling genome-wide QTL summary statis-
tics for 13 human molecular traits from 233 indepen-
dent studies; (ii) mapping QTL-relevant tissue/cell
types to 78 unified terms according to a standard
anatomogram; (iii) normalizing variant and trait in-
formation uniformly, yielding >170 million significant
QTLs; (iv) providing a rich web client that enables
phenome- and tissue-wise visualization; and (v) inte-
grating the most comprehensive genomic features
and functional predictions to annotate the poten-
tial QTL mechanisms. QTLbase provides a one-stop
shop for QTL retrieval and comparison across multi-
ple tissues and multiple layers of molecular complex-
ity, and will greatly help researchers interrogate the

biological mechanism of causal variants and guide
the direction of functional validation. QTLbase is
freely available at http://mulinlab.org/qtlbase.

INTRODUCTION

Genome-wide association studies (GWAS) have revealed
tens of thousands of genomic loci associated with numerous
traits and diseases; however, the underlying causal mech-
anism often remains poorly understood (1–3). Causal ge-
netic variants alter initial molecular phenotypes, such as
chromatin states, and induce a cascade of biological ef-
fects, ultimately contributing to the development of traits
and diseases (4–6). Exploiting such genotype–phenotype
causality would facilitate in-depth understanding of the ge-
netic basis of complex traits. Recent advances in genome se-
quencing and functional genomic profiling have promoted
many large-scale quantitative trait locus (QTL) studies (7),
which connect genotypes with tissue/cell type-specific cel-
lular functions (i.e. molecular traits quantified by various
high-throughput assays) in different biological stages. For
example, QTL mapping has been used to study the genetic
determination of chromatin accessibility (caQTL), DNA
methylation (mQTL) and histone modification (hQTL) in
epigenetic regulation; gene expression (eQTL) and alter-
native splicing (sQTL) in transcriptional regulation; RNA
editing (reQTL) and competing endogenous RNA expres-
sion (cerQTL) in post-transcriptional regulation; ribosome
occupancy (riboQTL) and protein expression (pQTL) in
translational regulation; and cell metabolism (metaQTL) in
post-translational regulation (7,8). Here, genomic loci that
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explain all or a fraction of variation in a given molecular
trait are referred to as xQTLs.

For fundamental interpretation of the genetic basis of
human complex traits, researchers have in the last decade
performed extensive eQTL studies on most human tissues
(9) and immune cell types (10) by leveraging gene expres-
sion as molecular readouts. As the majority of GWAS
trait/disease-associated variants are located in the noncod-
ing genomic regions, the overwhelming increase in eQTL
data has greatly facilitated the discovery of novel disease
genes and benefits the dissection of variant regulatory
mechanisms in a context-dependent manner (11). Several
resources, including eQTL Browser (http://eqtl.uchicago.
edu), seeQTL (12), ExSNP (13) and ImmuneRegulation
(14), have been developed for compiling the eQTL results
for certain tissue/cell types. However, gene expression only
partially explains trait heritability and is not likely to de-
scribe most risk mechanisms (15,16); therefore, there is
an urgent need to comprehensively integrate the published
xQTL summary statistics for various molecular phenotypes.
Although several GWAS databases, such as GRASP (17)
and PhenoScanner (18), have begun to provide xQTL sum-
mary statistics in recent updates, they only incorporate a
small fraction of studies on limited tissue/cell types. In
addition, emerging data show that specific types of QTL
can be mediated through other fine-scale molecular pro-
cesses, for example, most eQTLs exert their genetic effect
on gene expression through altering open chromatin (19),
DNA methylation (20), histone modification (21,22), tran-
scription factor binding (23), chromatin interaction (24) or
other post-transcriptional events (25); pQTLs without cor-
responding cis-eQTLs can exert genetic effects on mRNA
decoys (26), alternative splicing (27) or ribosome occupancy
(28). Therefore, exploring the causal relationships among
the molecular phenotypes at specific risk loci is essential
for in-depth understanding of the genetic mechanism of
complex traits. Unfortunately, no resource can facilitate
cross-QTL investigation of genetic variants and the vari-
ous molecular phenotypes. Last but not least, translating
genetic association with causality from genome-wide QTL
signatures requires functional prioritization and follow-up
validation; hence, there is a great need for the integration
of large-scale tissue/cell type-specific functional genomics
data and allele-specific annotations for identifying causal
variants (29).

In this work, we manually curated 233 independent QTL
studies across 13 human molecular traits and mapped them
to 78 human tissue/cell types. We standardized hetero-
geneous QTL results using a uniform process and com-
piled 712 unique QTL summary statistics. By designing a
highly interactive web function, we constructed a versa-
tile database, QTLbase, which allows users to query, com-
pare and visualize QTLs at tissue-wise, phenome-wise and
variant-wise levels. QTLbase also incorporates large-scale
tissue/cell type-specific genomic features and functional an-
notations to interpret the underlying QTL mechanisms. To
the best of our knowledge, QTLbase is unique and the most
comprehensive resource for exploring the association be-
tween genetic variants and the diverse molecular pheno-
types in humans. It is free to all and can be accessed at http://
mulinlab.org/qtlbase or http://mulinlab.tmu.edu.cn/qtlbase.

MATERIALS AND METHODS

Data curation and processing

We manually curated QTL studies of human molecular
phenotypes from the literature by searching PubMed and
Google Scholar using QTL-relevant keywords, such as spe-
cific xQTL terms, as well as specific descriptions of molec-
ular phenotypes. Both cis- and trans-QTL studies were in-
cluded, and we incorporated molecular traits, whether stud-
ied in normal, treated or diseased tissue/cell types. To cre-
ate an unbiased collection and to avoid potential data re-
dundancy, we considered QTL data only from published
articles that reported genome-wide primary QTL mapping
or meta-analysis. Studies involving the reanalysis of exist-
ing QTL data or data from specific genomic loci were gen-
erally excluded. We also discarded less informative QTL
results if variant, trait or P-value information were miss-
ing. A single QTL study may involve multiple tissue/cell
types [e.g. GTEx (Genotype-Tissue Expression project)
(9) and DICE (10)], various molecular phenotypes [e.g.
BLUEPRINT (30)], several human populations (31) or dif-
ferent mapping strategies (e.g. genotype-based and allele-
specific); we split such QTL results into multiple sets and
assigned unique source IDs to distinguish the data. To en-
sure recognized tissue/cell type naming, we mapped QTL-
relevant tissue/cell types to a commonly used anatomo-
gram that has been adopted in the GTEx and the EMBL-
EBI Expression Atlas (32). For tissues with numerous QTLs
analyzed in finely sorted subregions or cell types, such as
whole blood and brain, we recorded both the main tissue
together with the sub-tissue/cell type information. Popu-
lation information was mapped to the five super popula-
tions (AFR [African], AMR [Ad Mixed American], EAS
[East Asian], EUR [European] and SAS [South Asian]) in
the 1000 Genomes project (1 KGP). If QTL mapping was
conducted on samples from multiple populations, we desig-
nated the population as ‘MIX’.

QTL summary statistics normalization

Variant normalization. As variant information may have
been heterogeneous among the collected QTL data, we syn-
chronized the originally recorded dbSNP IDs with those
in dbSNP build 151 (33). For variants whose records pro-
vide only chromosome position, we first converted them
to GRCh37 (Genome Reference Consortium Human Build
37) position using LiftOver (34) and filled in the corre-
sponding dbSNP ID. We identified the effective allele of
each QTL from the original publication or related docu-
ments, and extracted the reference and alternative alleles
from dbSNP build 151.

Molecular trait normalization. Given the complexity of
molecular trait description and genomic coordinate record-
ing, we normalized the molecular phenotypes according
to different criteria. Briefly, for genes (including long non-
coding RNA and small RNA) or transcript phenotypes,
such as eQTL and sQTL, we transformed the name or po-
sition (if not provided) according to GENCODE Release
30 (GRCh37) (35). For phenotypes measured by microar-
ray, such as most mQTLs, we recorded the probe ID as the
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trait name and the corresponding position described in the
chip manifest file. For non-gene phenotypes measured by
next-generation sequencing, the trait name was an abbre-
viation of the molecular phenotype together with the ac-
tual genomic position, for example, a hQTL was recorded as
H3K27ac (chr1:1234–5678). If trans-QTL summary statis-
tics were not provided, we defined a QTL as a trans-QTL if
the associated trait was far from the variant location (>10
Mb).

Statistical value normalization. Given the diverse QTL
mapping strategies, the summary statistics format of the
collected QTLs differed substantially. Typically, we expect
QTLbase to contain important statistical values, including
effective allele, P-value, effect size, standard error and false
discovery rate. Effect size was normalized according to ap-
plied statistical methods, including � value, t-statistic, chi-
squared statistic, odds ratio or logarithm of the odds (LOD)
score. Standard error (if not provided) was inferred from the
P-value, effect size and sample size using quantile function.

Variant annotation integration

We integrated 20 functional annotations into QTLbase,
these annotations can be divided into four major categories
according to usage: variant information, functional predic-
tion, functional evidence and disease association. For vari-
ant information, we collected variant identity from dbSNP;
and variant allele frequency was derived from gnomAD
(36) and 1 KGP Phase 3 (37). For functional prediction,
we incorporated many frequently used prediction scores, in-
cluding aggregated conservation scores from CADD (38),
aggregated noncoding variant prediction scores from reg-
Base (39), aggregated missense mutation pathogenic scores
from dbNSFP (40), aggregated splicing altering predic-
tion scores from dbscSNV (41), aggregated miRNA target
altering prediction scores from dbMTS (42), and several
function predictions from HaploReg (43), RegulomeDB
(44) and InterVar (45). For functional evidence, we inte-
grated large-scale tissue/cell type-specific epigenomic pro-
filing (e.g. histone modifications, transcription factor bind-
ing, open chromatin and nascent transcription) from dif-
ferent resources, such as the Roadmap Epigenomics Project
(46), Cistrome DB (47) and the FANTOM5 project (48).
For disease association, we included ClinVar-reported vari-
ants (49), DisGeNET-recorded variants (50) and ICGC so-
matic mutation information (51) (Supplementary Table S1).

Database design

QTLbase is built on a JAVA-based web framework. The
QTL summary statistics and annotation information are
stored in MySQL or retrieved by Tabix (52). Several dy-
namic web pages are implemented by D3.js, jQuery and re-
lated JavaScript modules.

RESULTS

Data summary of QTLbase

The literature search initially retrieved hundreds of QTL
analysis studies involving human molecular phenotypes.

After strict screening and processing, up to August 2019,
QTLbase included a total of 233 independent genome-wide
QTL studies involving 712 unique QTL summary statis-
tics across 13 molecular phenotypes and 78 tissue/cell types
(Supplementary Figures S1 and S2). Among all collected
xQTL summary statistics, 66.85% and 15.81% are from
eQTL and mQTL, respectively; however, other QTL types,
such as sQTL, pQTL, caQTL and hQTL, have recently
emerged due to the increasing affordability of omics tech-
nologies (Supplementary Figure S1). A large number of
xQTLs were from sub-tissue/cell types from whole blood
(30.79%) and brain (14.56%) (Supplementary Figure S3) to
ensure uniform naming, QTLbase mapped them to fine-
scale terms, yielding 30 more tissue/cell types than the
GTEx project (Supplementary Figure S3). Most xQTLs
were identified in tissue/cell types from European popu-
lations (47.43%) or mixed populations (44.8%) (Supple-
mentary Figure S4). Compared with GWAS on common
traits/diseases, the majority of QTL studies were performed
on limited sample sizes, with only 20 studies using >3000
samples (Supplementary Figure S5). However, xQTL anal-
ysis potentially has higher statistical power than GWAS.

Use of QTLbase

The August 2019 version of QTLbase incorporates
171 524 441 significant associations, namely 159 197 054
cis-QTLs and 12 327 387 trans-QTLs (P-value ≤ 0.05),
across numerous genomic loci, molecular traits and
tissue/cell types. Such a multidimensional data structure
presents challenges in QTL querying and visualization.
To facilitate novel discoveries using this high-content
repository, we developed a rich web client by incorporating
many interactive and user-friendly features. Generally,
users can perform both variant- and trait-level queries, and
the upcoming web pages enable highly interactive xQTL
exploration at phenome-wise, tissue-wise and variant-wise
levels (Figure 1).

Search by variant. QTLbase accepts variant-level queries
by either dbSNP ID or genomic position and displays
query results on a dynamic web page. The left panel shows
matched cis-xQTL types and the number of associated
traits. Users can click on each QTL type to inspect de-
tailed information in the panel on the right (Figure 2A).
The top-right panel displays summary information about
the selected QTL type, including the query variant, allele in-
formation, number of associated tissue/cell types, number
of associated molecular traits, total QTL associations, and
total cis- and trans-QTLs (Figure 2A). Below this summary
information, a zoomable heat map visualizes the distribu-
tion of the associated traits across tissue/cell types. Each
column represents a QTL-associated trait; each row depicts
a separate tissue/cell type. The grid color represents the me-
dian P-value of the QTLs on a particular trait and tissue
(Figure 2A). Clicking on each tissue row in the heat map
opens a phenome-wise plot that displays the genomic distri-
bution of the QTL-associated traits, accompanied by their
significance and gene annotations (Figure 2B). Clicking on
each trait column in the heat map brings a tissue-wise plot
to the front and shows the significance of the QTLs across
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Figure 1. The data structure and general function of QTLbase.

the related tissue/cell types (Figure 2C). Users can adjust
focused region size and decorate the plot using several ad-
vanced options. Clicking on each grid in the heat map will
highlight the associated QTLs with the specific trait and tis-
sue in both phenome- and tissue-wise plots. The plots are
highly interactive and can be synchronized with the bot-
tom summary statistics table, which is searchable and down-
loadable (Figure 2D). Furthermore, users can check variant
functional annotations by clicking the ‘Show Annotation’
button: a floating panel will display extensive annotation
information (Figure 2E). Importantly, users can also switch
to trans-xQTLs viewer or a tissue-oriented viewer for xQTL
comparisons in this result page (Supplementary Figures S6
and S7).

Search by trait. QTLbase also accepts trait-level queries
by either trait name or genomic position. The results page
layout is similar to that of a variant-level query: the left
panel shows the matched QTL types and the top-right panel
displays summary information about the query trait and se-
lected QTL type. On this page, the heat map plot shows the
distribution of trait-associated variants across tissue/cell
type (Figure 3A). Each column represents a trait-associated
variant; each row shows a separate tissue/cell type. The grid
color represents the median P-value of the QTLs for a spe-
cific variant and tissue. Clicking on each tissue row in the
heat map opens a variant-wise plot displaying the genomic
distribution of the trait-associated variants with their signif-

icance and gene annotations (Figure 3B). Most of the other
functions on this dynamic page are the same as in the de-
scriptions of variant-level queries.

Variant annotations. QTLbase integrates and compiles 20
annotations (Supplementary Table S1) from four major cat-
egories according to the attribute and usage of the collected
datasets: variant information, functional prediction, func-
tional evidence and trait association (details in ‘Materials
and Methods’ section). Users can activate the annotation
panel and download all related annotations by clicking on
the corresponding buttons in the query results pages.

Comparison with existing databases

We compared QTLbase with five existing QTL resources
for human molecular phenotypes. First, the existing QTL
databases collect small numbers of independent QTL stud-
ies, and the largest ones, namely PhenoScanner (18) and
GRASP (17), contain <30 independent studies. Second,
the majority of these databases, such as ImmuneRegula-
tion (14), ExSNP (13) and seeQTL (12), only report eQTL
results or involve far fewer other QTL types. Third, the
current resources incorporate limited tissue/cell types, and
the tissue/cell type descriptions are unclassified. However,
QTLbase integrates far more xQTLs for various molecular
phenotypes, and includes the most QTL-related tissue/cell
types so far, mapping them to standardized terms. Im-
portantly, QTLbase provides a highly interactive web page
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Figure 2. QTLbase variant-level query results. (A) Major result panels show matched QTL types, basic QTL statistics, and a heat map plot of associated
QTLs across traits and tissues for the queried variant. (B) Trait-wise plot of associated QTLs in specific tissue/cell type for queried variant. (C) Tissue-wise
plot of associated QTLs on specific trait for queried variant. (D) Summary statistics table of associated QTLs. (E) Floating panel for functional annotations.

to facilitate researchers to compare QTLs at tissue-wise,
phenome-wise and variant-wise levels, which is largely ab-
sent from the current resources. Finally, QTLbase incor-
porates large-scale functional annotations and tissue/cell
type-specific genomic features for in-depth interpretation
of xQTLs (see details in Supplementary Table S2). In sum-
mary, to the best of our knowledge, QTLbase largely out-
performs other databases and establishes the most compre-

hensive knowledge base for studying the associations be-
tween human genetic variants and molecular phenotypes.

Case study

We used a previously reported case to illustrate the valid-
ity and usefulness of QTLbase for identifying the poten-
tial functional effects of genetic variants. The case involved
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Figure 3. QTLbase trait-level query results. (A) Heat map plot of associated QTLs across variants and tissues. (B) Variant-wise plot of associated QTLs in
specific tissue for a queried trait.

a platelet reactivity and cardiovascular disease-associated
variant, rs12041331, that could reinforce its enhancer ac-
tivity and affect PEAR1 gene expression during megakary-
opoiesis via an allele-specific effect on DNA methylation
(53). Specifically, the G allele of rs12041331 ensures fully
methylated status and has higher enhancer activity; it was
also found that the G allele is highly correlated with a CpG
island in the PEAR1 promoter and could reduce CTCF-
binding affinity at the promoter through higher methyla-
tion, thereby liberating its enhancer activity and increasing
PEAR1 expression. QTLbase showed many pieces of evi-
dence that could validate and support the genetic effect and
possible regulatory mechanism of rs12041331 in different
molecular traits (Figure 4). First, we found that rs12041331
was supported by three blood eQTL studies with large sam-
ple sizes (>2000), and it was significantly associated with
expression of the PEAR1 gene (54–56). Second, QTLbase
showed that rs12041331 is also a hQTL linked to the en-
hancer marker H3K4me1 in several immune cells. The A
allele of rs12041331 was associated with lower H3K4me1
levels around the PEAR1 gene in naı̈ve CD4+ T cells (30),

indicating that it could modulate PEAR1 gene expression
by affecting histone modification. Notably, we found much
mQTL evidence regarding rs12041331; it could alter a spe-
cific CpG site (cg20948486) at the PEAR1 promoter in
CD16+ neutrophils (30). Finally, QTLbase functional an-
notations identified that rs12041331 overlapped with many
tissue/cell-type specific epigenomic signals, such as his-
tone modifications H3K4me1, H3K4me3 and H3K27ac in
widespread cell types; DNase I-hypersensitive sites in im-
mune cells; and transcription factor (e.g. NF-�B, STAT1,
SPI1) binding in endothelial and immune cells. Taken to-
gether, these QTLbase-derived observations not only are
consistent with the investigations of the original study, but
also provide additional biological insights into the regula-
tory mechanism of rs12041331.

CONCLUSIONS

In the post-GWAS era, interpreting risk variants that cause
the development of complex diseases, and how, is a ma-
jor, challenging task. Increasing xQTL studies on diverse
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Figure 4. Supporting evidence from QTLbase for the regulatory mechanism of rs12041331. rs12041331 is supported by three independent eQTL studies
[Bonder et al. (55), Zhernakova et al. (54) and Urmo Võsa et al. (56)] in blood and is associated with PEAR1 gene expression. rs12041331 is also a
hQTL linked to a nearby enhancer marker H3K4me1 in naı̈ve CD4+ T cells [Lu Chen et al. (30)] and has been reported as a mQTL affecting a CpG
site (cg20948486) in the PEAR1 promoter (highlighted with a blue box) in CD16+ neutrophils [Lu Chen et al. (30)]. H3K27ac, H3K4me1 and H3K4me3
histone modification ChIP-seq profiles, CTCF ChIP-seq profile and DHS clusters for HUVECs and K562 cells are shown (data from ENCODE).

molecular phenotypes have opened up a new avenue for in-
terrogating mediation paths and cascade effects between ge-
netic factors and complex diseases. By systematically curat-
ing and processing xQTL summary statistics, we developed
the comprehensive knowledge base QTLbase for biologists
and geneticists to query, compare and visualize xQTLs in
a highly efficient and interactive manner. To the best of our
knowledge, QTLbase is the largest database to integrate var-
ious QTL types across numerous tissue/cell types to en-
able evaluation of the possible molecular functions of ge-
netic variants. We believe that this database will facilitate
the QTL retrieval process for researchers and exploration
of the underlying mechanisms of the genetic association of
complex traits.

Given the rapid development of advanced biotechnolo-
gies, new QTL types will continue to be identified at differ-
ent molecular levels. During the curation and construction
of QTLbase, we found that several newer QTL studies had
connected genetic variants to more complex molecular phe-
notypes, such as CRD-QTLs, which correlate genetic effect
with cis-regulatory domains representing local chromatin
organization (24). Therefore, QTLbase will integrate more
novel QTLs in the future and be updated frequently.
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FUNDING

National Natural Science Foundation of China [31701143,
31871327]; Natural Science Foundation of Tianjin [18JC
ZDJC34700]. Funding for open access charge: National
Natural Science Foundation of China [31701143].

Conflict of interest statement. None declared.

REFERENCES
1. Visscher,P.M., Wray,N.R., Zhang,Q., Sklar,P., McCarthy,M.I.,

Brown,M.A. and Yang,J. (2017) 10 Years of GWAS Discovery:
biology, function, and translation. Am. J. Hum. Genet., 101, 5–22.

2. Tam,V., Patel,N., Turcotte,M., Bosse,Y., Pare,G. and Meyre,D. (2019)
Benefits and limitations of genome-wide association studies. Nat.
Rev. Genet., 20, 467–484.

3. Mills,M.C. and Rahal,C. (2019) A scientometric review of
genome-wide association studies. Commun. Biol., 2, 9.

4. Albert,F.W. and Kruglyak,L. (2015) The role of regulatory variation
in complex traits and disease. Nat. Rev. Genet., 16, 197–212.

5. Schaid,D.J., Chen,W. and Larson,N.B. (2018) From genome-wide
associations to candidate causal variants by statistical fine-mapping.
Nat. Rev. Genet., 19, 491–504.

6. Huang,D., Yi,X., Zhang,S., Zheng,Z., Wang,P., Xuan,C., Sham,P.C.,
Wang,J. and Li,M.J. (2018) GWAS4D: multidimensional analysis of
context-specific regulatory variant for human complex diseases and
traits. Nucleic Acids Res., 46, W114–W120.

7. Vandiedonck,C. (2018) Genetic association of molecular traits: a help
to identify causative variants in complex diseases. Clin. Genet., 93,
520–532.

8. Li,M.J., Yan,B., Sham,P.C. and Wang,J. (2015) Exploring the
function of genetic variants in the non-coding genomic regions:
approaches for identifying human regulatory variants affecting gene
expression. Brief. Bioinform., 16, 393–412.

9. GTEx Consortium (2017) Genetic effects on gene expression across
human tissues. Nature, 550, 204–213.

10. Schmiedel,B.J., Singh,D., Madrigal,A., Valdovino-Gonzalez,A.G.,
White,B.M., Zapardiel-Gonzalo,J., Ha,B., Altay,G., Greenbaum,J.A.,
McVicker,G. et al. (2018) Impact of genetic polymorphisms on
human immune cell gene expression. Cell, 175, 1701–1715.

11. Li,M.J., Li,M., Liu,Z., Yan,B., Pan,Z., Huang,D., Liang,Q., Ying,D.,
Xu,F., Yao,H. et al. (2017) cepip: context-dependent epigenomic
weighting for prioritization of regulatory variants and
disease-associated genes. Genome Biol., 18, 52.

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkz888#supplementary-data


D990 Nucleic Acids Research, 2020, Vol. 48, Database issue

12. Xia,K., Shabalin,A.A., Huang,S., Madar,V., Zhou,Y.H., Wang,W.,
Zou,F., Sun,W., Sullivan,P.F. and Wright,F.A. (2012) seeQTL: a
searchable database for human eQTLs. Bioinformatics, 28, 451–452.

13. Yu,C.H., Pal,L.R. and Moult,J. (2016) Consensus Genome-Wide
expression quantitative trait loci and their relationship with human
complex trait disease. OMICS, 20, 400–414.

14. Kalayci,S., Selvan,M.E., Ramos,I., Cotsapas,C., Harris,E., Kim,E.Y.,
Montgomery,R.R., Poland,G., Pulendran,B., Tsang,J.S. et al. (2019)
ImmuneRegulation: a web-based tool for identifying human immune
regulatory elements. Nucleic Acids Res., 47, W142–W150.

15. Finucane,H.K., Reshef,Y.A., Anttila,V., Slowikowski,K., Gusev,A.,
Byrnes,A., Gazal,S., Loh,P.R., Lareau,C., Shoresh,N. et al. (2018)
Heritability enrichment of specifically expressed genes identifies
disease-relevant tissues and cell types. Nat. Genet., 50, 621–629.

16. Chun,S., Casparino,A., Patsopoulos,N.A., Croteau-Chonka,D.C.,
Raby,B.A., De Jager,P.L., Sunyaev,S.R. and Cotsapas,C. (2017)
Limited statistical evidence for shared genetic effects of eQTLs and
autoimmune-disease-associated loci in three major immune-cell
types. Nat. Genet., 49, 600–605.

17. Zhang,X., Gierman,H.J., Levy,D., Plump,A., Dobrin,R.,
Goring,H.H., Curran,J.E., Johnson,M.P., Blangero,J., Kim,S.K. et al.
(2014) Synthesis of 53 tissue and cell line expression QTL datasets
reveals master eQTLs. BMC Genomics, 15, 532.

18. Kamat,M.A., Blackshaw,J.A., Young,R., Surendran,P., Burgess,S.,
Danesh,J., Butterworth,A.S. and Staley,J.R. (2019) PhenoScanner
V2: an expanded tool for searching human genotype-phenotype
associations. Bioinformatics, doi:10.1093/bioinformatics/btz469.

19. Degner,J.F., Pai,A.A., Pique-Regi,R., Veyrieras,J.B., Gaffney,D.J.,
Pickrell,J.K., De Leon,S., Michelini,K., Lewellen,N., Crawford,G.E.
et al. (2012) DNase I sensitivity QTLs are a major determinant of
human expression variation. Nature, 482, 390–394.

20. Banovich,N.E., Lan,X., McVicker,G., van de Geijn,B., Degner,J.F.,
Blischak,J.D., Roux,J., Pritchard,J.K. and Gilad,Y. (2014)
Methylation QTLs are associated with coordinated changes in
transcription factor binding, histone modifications, and gene
expression levels. PLoS Genet., 10, e1004663.

21. Waszak,S.M., Delaneau,O., Gschwind,A.R., Kilpinen,H.,
Raghav,S.K., Witwicki,R.M., Orioli,A., Wiederkehr,M.,
Panousis,N.I., Yurovsky,A. et al. (2015) Population variation and
genetic control of modular chromatin architecture in humans. Cell,
162, 1039–1050.

22. Grubert,F., Zaugg,J.B., Kasowski,M., Ursu,O., Spacek,D.V.,
Martin,A.R., Greenside,P., Srivas,R., Phanstiel,D.H., Pekowska,A.
et al. (2015) Genetic control of chromatin states in humans involves
local and distal chromosomal interactions. Cell, 162, 1051–1065.

23. Tehranchi,A.K., Myrthil,M., Martin,T., Hie,B.L., Golan,D. and
Fraser,H.B. (2016) Pooled ChIP-Seq Links variation in transcription
factor binding to complex disease risk. Cell, 165, 730–741.

24. Delaneau,O., Zazhytska,M., Borel,C., Giannuzzi,G., Rey,G.,
Howald,C., Kumar,S., Ongen,H., Popadin,K., Marbach,D. et al.
(2019) Chromatin three-dimensional interactions mediate genetic
effects on gene expression. Science, 364, 6439.

25. Li,M.J., Zhang,J., Liang,Q., Xuan,C., Wu,J., Jiang,P., Li,W., Zhu,Y.,
Wang,P., Fernandez,D. et al. (2017) Exploring genetic associations
with ceRNA regulation in the human genome. Nucleic Acids Res., 45,
5653–5665.

26. Pai,A.A., Cain,C.E., Mizrahi-Man,O., De Leon,S., Lewellen,N.,
Veyrieras,J.B., Degner,J.F., Gaffney,D.J., Pickrell,J.K., Stephens,M.
et al. (2012) The contribution of RNA decay quantitative trait loci to
inter-individual variation in steady-state gene expression levels. PLoS
Genet., 8, e1003000.

27. Li,Y.I., van de Geijn,B., Raj,A., Knowles,D.A., Petti,A.A., Golan,D.,
Gilad,Y. and Pritchard,J.K. (2016) RNA splicing is a primary link
between genetic variation and disease. Science, 352, 600–604.

28. Battle,A., Khan,Z., Wang,S.H., Mitrano,A., Ford,M.J.,
Pritchard,J.K. and Gilad,Y. (2015) Genomic variation. Impact of
regulatory variation from RNA to protein. Science, 347, 664–667.

29. Gallagher,M.D. and Chen-Plotkin,A.S. (2018) The Post-GWAS Era:
From association to function. Am. J. Hum. Genet., 102, 717–730.

30. Chen,L., Ge,B., Casale,F.P., Vasquez,L., Kwan,T.,
Garrido-Martin,D., Watt,S., Yan,Y., Kundu,K., Ecker,S. et al. (2016)
Genetic drivers of epigenetic and transcriptional variation in human
immune cells. Cell, 167, 1398–1414.

31. Wu,L., Candille,S.I., Choi,Y., Xie,D., Jiang,L., Li-Pook-Than,J.,
Tang,H. and Snyder,M. (2013) Variation and genetic control of
protein abundance in humans. Nature, 499, 79–82.

32. Papatheodorou,I., Fonseca,N.A., Keays,M., Tang,Y.A., Barrera,E.,
Bazant,W., Burke,M., Fullgrabe,A., Fuentes,A.M., George,N. et al.
(2018) Expression Atlas: gene and protein expression across multiple
studies and organisms. Nucleic Acids Res., 46, D246–D251.

33. Sherry,S.T., Ward,M.H., Kholodov,M., Baker,J., Phan,L.,
Smigielski,E.M. and Sirotkin,K. (2001) dbSNP: the NCBI database
of genetic variation. Nucleic Acids Res., 29, 308–311.

34. Hinrichs,A.S., Karolchik,D., Baertsch,R., Barber,G.P., Bejerano,G.,
Clawson,H., Diekhans,M., Furey,T.S., Harte,R.A., Hsu,F. et al.
(2006) The UCSC Genome browser database: update 2006. Nucleic
Acids Res., 34, D590–D598.

35. Frankish,A., Diekhans,M., Ferreira,A.M., Johnson,R., Jungreis,I.,
Loveland,J., Mudge,J.M., Sisu,C., Wright,J., Armstrong,J. et al.
(2019) GENCODE reference annotation for the human and mouse
genomes. Nucleic Acids Res., 47, D766–D773.

36. Karczewski,K.J., Francioli,L.C., Tiao,G., Cummings,B.B., Alföldi,J.,
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