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contrast, between-group differences in network density were small and of
questionable significance when classifying patients according to prior
exacerbation history (mean ¢: 0.082 among Ex™ subjects and 0.072 in the
Ex" group). The degree of connectivity of any given disease with the rest of
the network also varied depending on the selected phenotypic trait. The
classification of patients according to the CB™/CB" groups revealed
significant differences between groups in the degree of conectivity between
comorbidities. On the other side, grouping the patients according to the
Ex /Ex*' trait did not disclose differences in connectivity between network
nodes (diseases).

Conclusions: The multimorbidity network of a patient with COPD differs
according to the underlying clinical characteristics, suggesting that the connec-
tions linking comorbidities between them vary for different phenotypes and
that the clinical heterogeneity of COPD could influence the expression of
latent multimorbidity. Network analysis has the potential to delve into the
interactions between COPD clinical traits and comorbidities and is a promis-
ing tool to investigate possible specific biological pathways that modulate mul-
timorbidity patterns.

KEYWORDS

1 | INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a
highly complex and heterogeneous condition, in which
other concomitant diseases contribute to symptom sever-
ity and cast a shadow on the patients’ vital prognosis.'™
Precision medicine has emerged in recent years as a new
paradigm in the management of diseases. However, this
approach is difficult to implement in patients with multi-
morbidity because of a lack of understanding on the com-
plex relationships between different diseases.

Network analysis, a procedure designed to study com-
plex systems, allows us to examine and draw links
between distinct components.®° Such charts are made
up of individual elements, called nodes, and a network of
connecting lines, which represent their associations,
thereby revealing the base system (a hierarchical, ran-
dom, or scale-free network). The network structure helps
to identify highly connected nodes and offers great poten-
tial for its use in medicine.”

Furthermore, cluster analyses have been shown to
identify subgroups of patients who share clinical and
prognostic characteristics."' ' This finding provides the
basis for defining clinical phenotypes in COPD. Chronic
bronchitis (CB) and frequent exacerbator (Ex) are pheno-
types of recognized prognostic relevance in COPD.'®'*

chronic bronchitis, comorbidities, COPD, exacerbation, network, phenotype

Furthermore, they are easily identified in clinical prac-
tice, in all healthcare settings. Consequently, some clini-
cal practice guidelines have relied heavily on the
classification of patients according to these phenotypes to
propose different treatment regimens for COPD."

Our hypothesis was that the biologic pathways that
link the comorbidities would be different for the different
clinical phenotypes of COPD and, as a consequence, the
multimorbidity network of a patient with COPD would
vary depending on such phenotypes. The objective of our
study was to explore potential differences in the structure
of the base system according to the thereby defined clini-
cal phenotypes, applying the presence of CB and history
of previous severe exacerbations as classification criteria.
For this, the overall density of the network and the
degree of connectivity of each disease (node) with the rest
of the network were studied.

2 | METHODS
2.1 | Study population and settings
An observational, non-interventional multicenter historic

cohort study was performed involving three cohorts of
patients with COPD from the University Hospital
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Nuestra Sefiora de Candelaria, Santa Cruz de Tenerife,
the Galdakao-Usansolo Hospital, Galdakao and the Uni-
versity Hospital Lucus Augusti, Lugo, all in Spain. These
cohorts have been presented separately in previous, pub-
lished works.'**#1?

Patients meeting the following criteria were included:
follow-up in a pneumology service, aged >40 years, active
or former smokers with a pack-year index (PYI) > 10 and
a forced expiratory volume in 1s (FEV,)/forced vital
capacity (FVC) ratio < 70% after administration of 400 pg
of salbutamol. Exclusion criteria were the presence of
chronic airflow obstruction without tobacco smoke expo-
sure or with a PYI < 10 and chronic respiratory diseases
other than COPD (e.g., interstitial lung disease and
pneumoconiosis).

2.2 | Variables

The variables used for analysis were age, sex, body mass
index (BMI [kg m?]) and history of tobacco consump-
tion (PYI, current versus former smoker), assessed at first
visit from each patient of each cohort.

Information about the following comorbid diseases
was obtained: arterial hypertension (AHT), type 2 diabe-
tes mellitus (T2DM), dyslipidaemia (DLP), sleep apnoea/
hypopnoea syndrome (SAHS), obesity (defined as
BMI > 30 kg/m?®), underweight (BMI < 18,5 kg/m?),
atrial fibrillation (AF), ischaemic heart disease (IHD),
heart failure (HF), cerebrovascular accidents (CVAs),
peripheral arterial disease (PAD), chronic kidney disease
(CKD), neoplasia (solid tumours, lymphoma, leukaemia),
osteoporosis, heavy smokers (PYI > 50) and mood disor-
ders (anxiety and depression). Each disease was con-
firmed by a comprehensive review of the computerized
medical records, results of diagnostic procedures and
disease-specific therapies. Self-reported diagnoses were
not considered. The Charlson comorbidity index score*
was determined for each patient. Forced-spirometry data
following bronchodilation were recorded as FEV,%, FVC
% and the FEV,/FVC ratio.

Moreover, the presence of CB (cough with sputum
expectoration for at least 3 months a year during a period
of at least 2 consecutive years) as well as the number of
hospital admissions due to COPD exacerbation (episode
of increasing respiratory symptoms, particularly dys-
pnoea, cough, sputum production and increased sputum
purulence) in the 2-year period prior to inclusion
were recorded at first patient visit. The presence of CB
was systematically registered in the databases of all the
cohorts, and previous admissions were confirmed by
review of hospital records. Based on the aforementioned,
patients with or without symptoms of CB were assigned

to the groups CB" and CB™, respectively, and patients
with or without previous hospitalizations for COPD exac-
erbation to the groups Ex" and Ex ™, respectively.

2.3 | Data analysis

Multimorbidity network analysis was performed with the
following objectives: (1) to evaluate network density by
assigning patients to either of the two groups of clinical
phenotypes (CB"/CB~ and Ex'/Ex"); (2) to analyse the
degree of connectivity of a specific disease with the rest
of the network for each of the mentioned phenotypic
groups.

Depending on their distribution, quantitative vari-
ables were given as mean =+ standard deviation (SD) or
medians (interquartile ranges) and qualitative variables
as frequencies (%). Quantile—quantile (QQ) plots were
applied to graphically compare probability distributions.
For quantitative variables, groups were compared by
means of one-way analysis if variance (ANOVA). The
chi-square test was applied for qualitative variables. In
case of statistical significance between the three cohorts,
paired differences between them were calculated and
Holm’s procedure applied to correct for multiple
comparisons.

Point prevalence of disease was calculated by estimat-
ing proportions following the Clopper-Pearson method
implemented in the binGroup package.”’ Associations
between diseases were analysed by chi-square test or
Fisher’s test when the requirements for the former were
not met. The degree of associations between diseases was
quantified by relative risk (RR) estimation with 95% con-
fidence intervals (CIs) as well as the correlation coeffi-
cient Phi (¢), proposed by Hidalgo et al.” The RR of
observing a pair of diseases in the same patient was cal-
culated using the equation RRij = (Cij.N)/(Pi.Pj), where
Cij stands for the number of patients with both diseases
(ij), N is the total of patients and P indicates the number
of patients with one of the two diseases. The correlation
¢ was calculated using the ¢ function of the psych pack-
age.”” The ¢ correlation coefficient is similar to the Pear-
son’s correlation for dichotomous variables in its
interpretation. The ¢ correlation coefficient ranges from
—1 to +1, where +1 indicates perfect direct relationship,
—1 indicates perfect inverse relationship and 0 indicates
no relationship.

Out of the 16 evaluated diseases, 14 were finally used
for analysis, as their prevalence was >3.5% in any of the
subgroups (osteoporosis and underweight were excluded
because its prevalence was <3.5%). To ensure homogene-
ity of the subgroup size, bootstrap re-sampling was used.
A sample size of 400 was used for re-sampling Ex" and
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Ex~ and 800 for CB" and CB™ (applying for each pair a
value close to the size of the smallest group). For each of
the bootstrap re-samples, the correlation ¢ between
each pair of combinations and their associated probabil-
ities of ¢, the RRs as well as the associated probabilities
and the prevalence of each disease were calculated. The
final result was a mean ¢ from at least 10 000 re-sam-
ples. The correlation between diseases was considered
significant when the 2.5 percentile of ¢ was >0. Total
network density was calculated as the mean of all ¢,

with values ranging from —1 to 1. Differences in net-
work connectivity and density were based on numerical
parameters.

Associations between the different diseases were plot-
ted for each group. Node size was represented in propor-
tion to the prevalence of the disease, and connecting
lines between two nodes were drawn when the associa-
tion between the two diseases was statistically significant
with a ¢ > 0. Each connecting line was given a width in
proportion to the square of the ¢ coefficient.

TABLE 1 Baseline characteristics of all included patients with COPD

Overall HGU HUNSC HULA p value
Patients (n) 1726 506 439 781
Age (years) 68.4 + 9.2 68.2 + 8.1 69 + 9.8 68 £ 9.4 0.20
Sex, men 1534 (88.9) 490 (96.8) 346 (78.8) 698 (89.4) <0.001 ABC
BMI 28.2 £ 5.3 282 +44 28.3 +£ 6.0 28.2 £5.3 0.99
Current smoker 476 (27.6) 122 (21.1) 154 (35.1) 210 (26.9) <0.001 AC
PYL; npypa = 694 50 (35-63) 45 (30-60) 40 (30-60) 50 (40-80) <0.001 ABC
PYI > 50; ngura = 694 652 (39.8) 199 (39.3) 128 (29.2) 325 (46.8) <0.001 ABC
Charlson index 22+15 24+14 24+ 1.5 20+1.3 <0.001 BC
FEV, (%) 529 £17.1 55.0 £13.1 55.3 £20.2 50.1 £17.1 <0.001 BC
FVC (%); Dura = 759 77.3 +£17.9 76.43 + 14.3 82.89 + 21.2 74.69 +17.3 <0.001 AC
FEV,/FVC 51.0 £ 11.5 5447 £ 9.4 51.08 +11.8 48.7 £ 12.1 <0.001 ABC
CB 898 (52) 368 (72.7) 147 (33.5) 383 (49) <0.001 ABC
Previous hospitalization 418 (24.2) 132 (26.1) 90 (20.5) 196 (25.1) 0.10
Comorbidities
Obesity; npyra = 755 610 (35.9) 163(32.2) 169 (38.5) 278 (36.8) 0.103
Underweight; nyyra = 755 41 (2.4) 6(1.2) 19 (4.3) 16 (2.1) 0.006 ABC
AHT; npura = 279 624 (51.0) 191 (37.7) 290 (66.1) 143 (51.3) <0.001
T2DM 334 (19.4) 82 (16.2) 143 (32.6) 109 (14) <0.001 AC
DLP; nycu = 0; Nxura = 278 409 (57) ND 295 (67.2) 114 (41) <0.001 c
AF 235 (13.6) 66 (13) 89 (20.3) 80 (10.2) <0.001 AC
ERC, npunsc = 438 95 (5.5) 8 (1.6) 56 (12.8) 31 (4) <0.001 ABC
SAHS 232 (13.4) 36 (7.1) 05 (23.9) 91 (11.7) <0.001 ABC
HF 219 (12.7) 74 (14.6) 63 (14.4) 82 (10.5) 0.045
IHD 201 (11.6) 31(6.1) 71 (16.2) 99 (12.7) <0.001 AB
CVA 108 (6.3) 38 (7.5) 32(7.3) 38 (4.9) 0.094
PAD 177 (10.3) 47 (9.3) 49 (11.2) 81 (10.4) 0.632
MD 183 (10.6) 62 (12.3) 72 (16.4) 49 (6.3) <0.001 AC
Np 109 (6.3) 0(0) 48 (10.9) 61 (7.8) <0.001 AB

Note: Data are presented as n and n (%), mean £ SD or median (interquartile range). A stands for significant differences between HGU and HUNSC, B for
significant differences between HGU and HULA and C for significant differences between HUNSC and HULA.

Abbreviations: AF, atrial fibrillation; AHT, arterial hypertension; CB, presence of chronic bronchitis; CKD, chronic kidney disease; CVA, cerebrovascular
accident; DLP, dyslipidaemia; FEV; (%), percent-predicted forced expiratory volume in 1 s; FVC (%), percent-predicted forced vital capacity; HF, heart failure;
HGU, Galdakao-Usansolo Hospital; HULA, University Hospital Lucus Augusti; HUNSC, University Hospital Nuestra Sefiora de Candelaria; IHD, ischaemic
heart disease; MD, mood disorder; ND, no data (not available); Np, neoplasia; PAD, peripheral arterial disease; PYI, pack-year index; SAHS, sleep apnoea/

hypopnoea syndrome; T2DM, type 2 diabetes mellitus.
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Multivariable logistic regression analyses were per-
formed in order to evaluate the predictors of being classi-
fied within the Ex" or the CB" groups using
comorbidities as predictive variables. Given the number
of subjects belonging to the CB" group (898) and the
EX" group (418), these analyses adhered to the 10 events
per predictive variable rule.”

2.4 | Ethics

The study was approved by the Ethics Committee of the
University Hospital Nuestra Sefiora de Candelaria (refer-
ence number CHUNSC_2019_64).

3 | RESULTS

A total of 1726 patients were included. The baseline char-
acteristics of the study population are given in Table 1.

Participants were mostly men with a mean age of
68 £+ 9.2 years; 27.6% were active smokers with a pre-
dicted FEV, of 52.9 + 17.1% after bronchodilation. The
CB™ group comprised 52% of the patients; 25.6% of the
patients of the former group compared with 22.7% of the
CB™ group had required hospitalization in the 2 years
prior to inclusion (p = 0.176). Also, 55% of the patients in
the Ex" presented with mucus hypersecretion, compared
to 51% of Ex  patients (p = 0.172). Hospital admission
for COPD exacerbation in the 2 years before inclusion
had been necessary for 24.2% of the participants, regard-
less in which of the three hospitals. As to diseases, CB™
patients had a higher prevalence of AHT and HF than
CB" patients; the latter presented a higher smoking load
(Table S1). AF, HF and CVA were more prevalent in Ex*
than in Ex™ patients (Table S2).

Network analysis comprised the 91 possible links
between 14 diseases. Network density values, assessed by
mean ¢, were modest (i.e., below 0.1) for all study
groups, but differences were found between mutually
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FIGURE 1

Multimorbidity network morphology and density according to clinical phenotypes in chronic obstructive pulmonary disease

(COPD). (A) Patients without chronic bronchitis; (B) patients with chronic bronchitis; (C) patients without previous severe exacerbations;

(D) patients with previous severe exacerbations. Node size is represented in proportion to the prevalence of the disease. Connecting lines

between two nodes stand for a statistically significant association between the two diseases and for ¢ > 0. The width of each connecting line
is proportional to the square of the ¢ coefficient. AF, atrial fibrillation; AHT, arterial hypertension; CKD, chronic kidney disease; CVA,
cerebrovascular accident; DLP, dyslipidaemia; HF, heart failure; IHD, ischaemic heart disease; MD, mood disorder; Np, neoplasia; PAD,

peripheral arterial disease; PYI, pack-year index; SAHS, sleep apnoea/hypopnoea syndrome; T2DM, type 2 diabetes mellitus
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exclusive phenotype-defined groups. Analyses based on
grouped data revealed the largest differences were found
between the CB phenotypes. The highest density was
found in the CB™ group (mean ¢ = 0.098) compared
with the CB" group (mean ¢ = 0.050). Differences in
density network between the two Ex groups were smal-
ler, with a mean ¢ = 0.082 in the Ex~ group and a mean
¢ = 0.072 in the Ex" group (Figure 1).

The connectivity of a specific node (a disease) with
the rest of the network varied according to the analysed
phenotype (Figure 2). In the CB™ group, the nodes
related to cardiovascular risk factors (AHT, DLP, T2DM),
SAHS, HF and CKD displayed the largest connectivity
within the network. In the CB* group, the most intensely
connected nodes were T2DM, AF and HF. In contrast,
there was no difference in the degree of connectivity of
disease between the groups Ex" and Ex~ (Figure 3). On

Mean Phi between each comorbility
and others comorbidities in COPD
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FIGURE 2 Degree of connectivity of each node (disease) with

the rest of the network in accordance with the phenotype groups of
chronic bronchitis (CB* vs CB™). There are differences between
both groups; the degree of connectivity is higher (higher value of
Phi) for most of the nodes in the CB™ group. AF, atrial fibrillation;
AHT, arterial hypertension; CKD, chronic kidney disease; CVA,
cerebrovascular accident; DLP, dyslipidaemia; HF, heart failure;
THD, ischaemic heart disease; MD, mood disorder; Np, neoplasia;
PAD, peripheral arterial disease; PYI, pack-year index; SAHS, sleep
apnoea/hypopnoea syndrome; T2DM, type 2 diabetes mellitus

both Ex groups, the nodes AHT, T2DM, SAHS and AF
displayed the largest connectivity within this network.

4 | DISCUSSION
The conclusions drawn from this study are as follows:
(1) Multimorbidity network densities vary with the
underlying clinical features within COPD patients.
(2) The degree of connectivity of a specific disease varies
according to the phenotype group it belongs to.
Morbidity associated with COPD increase the risk of
mortality. The evaluation of comorbid conditions is an
important subject of clinical research in this disease.
Mortality increases with the number of long-term dis-
eases in a given patient, but there is more than just the
cumulative number of multimorbidities, and previous

Mean Phi between each comorbility
and others comorbidities in COPD
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FIGURE 3 Degree of connectivity of each node (disease) with
the rest of the network, according to the exacerbation background,
that is, having suffered (Ex") or not (Ex ") severe exacerbations in
the past. Differences were not significant (Phi values between the
two groups overlap). AF, atrial fibrillation; AHT, arterial
hypertension; CKD, chronic kidney disease; CVA, cerebrovascular
accident; DLP, dyslipidaemia; HF, heart failure; IHD, ischaemic
heart disease; MD, mood disorder; Np, neoplasia; PAD, peripheral
arterial disease; PYI, pack-year index; SAHS, sleep apnoea/
hypopnoea syndrome; T2DM, type 2 diabetes mellitus
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studies suggest that in the general population, some dis-
ease clusters are more strongly associated with all-cause
mortality relative to the number of coexisting diseases
alone.** A cluster that includes COPD, diabetes and car-
diovascular diseases seems to have the greatest impact on
mortality.”* Therefore, it is desirable to delve into the
relationships between comorbid conditions and COPD.

Network analysis can provide new insights into the
pathobiology of diseases. Hidalgo et al.” investigated con-
nections between multimorbidities in a Medicare database
and found that diseases with high connectivity within the
network were associated with decreased survival com-
pared with ‘less connected’ comorbidities. The comorbid-
ity network behaves analogous to airport networks; with
their dissimilarly connected airports, air traffic will suffer
mainly when delays affect centres with more traffic.’ It
could be hypothesized that network disruption could be
achieved through highly connected diseases.’

Our aim was to identify possible different patterns
within the COPD comorbidity network that could increase
our understanding of the complex relationships between
multimorbid diseases. This could potentially serve as the
basis for personalized follow-up or therapeutic strategies,
that is, intervening on the nodes that could lead to destabi-
lization of the network. Given the heterogeneity of COPD,
it is plausible that the biological pathways leading to
adverse clinical outcomes may differ between patients
with different clinical characteristics. We decided to ana-
lyse the influence of two phenotypic traits (chronic spu-
tum production and frequent severe exacerbations) on the
structure of the comorbidity network. These traits were
selected because of their recognized prognostic relevance
and also because they are easily recognizable in all the
clinical settings where COPD patients are managed,
including primary care medicine.

Although the resulting four groups showed a similar
underlying pattern, with special relevance for AHT, DLP
and T2DM, the morphology and density of the comorbid-
ity network varied with the phenotype group. It should
be noted that the density of comorbidity networks was
not high in any of the study groups, but we found differ-
ences between the different phenotypes. The resulting
network of the CB™ group had a higher density than that
of the CB" patients, and cardiovascular risk factors
(AHT, T2DM, DLP), as well as SAHS, were highly con-
nected in this group. If network alteration could be
achieved by acting on highly connected conditions, the
modification of these risk factors in the CB~ group of
COPD patients could have a greater impact on the integ-
rity of the system than in CB" patients. Although the
overall network of the latter showed a lower density, we
observed that the major determinants of network integ-
rity were the nodes representative of some established

heart diseases (AF and IHD), rather than the cardiovas-
cular risk factors. Anderson et al. described an increase
in left ventricular mass in normoxemic COPD patients
regardless of their history of AHT.*® This finding points
to a potential underlying mechanism beyond classical
cardiovascular risk factors that would favour the develop-
ment of heart disease. A persistent, low-grade inflamma-
tory state might be this underlying mechamism.**>®
Because low grade systemic inflammation might be
higher in subjects with CB,* it is plausible that acting on
nodes that represent classic cardiovascular risk factors
such as AHT or T2DM provides a lower benefit in CB*
than in CB™ patients.

On the contrary, we did not find a significantly differ-
ent behaviour of the comorbidity network when classifiy-
ing patients into groups regarding the incidence of
exacerbations. Cardiovascular risk factors (AHT, T2DM
and DLP) were also the most connected nodes, and there-
fore, acting on them should theoretically have a greater
impact on the integrity of the network and, consequently,
offer the greatest clinical benefit. However, our findings
do not support the possibility that this phenotypic trait
(frequent severe exacerbations) by itself impact the rela-
tionship between comorbidities. This is counterintuitive
but could be explained by a survival bias effect due to the
study design. Exacerbations that require hospitalization
are major determinants of a poor clinical course and are
associated with an increase in mortality that multiplies
with each episode.*** As this was a study that retrospec-
tively defined the frequent exacerbator phenotype, only
patients who survived the exacerbations were included.
Therefore, we could have selected patients with milder
disease or with a lower comorbidity burden, which could
have biassed our results.

To our knowledge, this is the first study to analyse the
multimorbidity network in COPD according to clinical
phenotypes. Among the strengths of the study are its rela-
tively large sample size and multicentre design. The differ-
ences in the characteristics of the patient between the
different cohorts, far from being a limitation, allowed us
to cover the heterogeneity of the population with COPD.
On the other hand, the retrospective design is a significant
limitation that could have biassed the results of the analy-
sis based on the exacerbator phenotype, as previously
mentioned. Also, we were unable to include some ele-
ments that could have further clarified the interactions
within the network, such as markers of systemic inflam-
mation. Further prospective studies including other poten-
tial modifiers of the network structure are warranted.

In conclusion, we have found that the structure of the
multimorbidity network of COPD patients can vary
depending on some underlying clinical phenotypes. This
finding suggests that there are different biological
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mechanisms that influence the interactions between mul-
timorbidities for different phenotypes. Additional studies,
using network analysis, should be performed to further
clarify the association between biomarkers, clinical phe-
notypes and multimorbidities and to identify those ele-
ments that can be modified to obtain greater disruption
of the multimorbidity network in different groups of
patients. This could possibly identify novel treatable traits
and help design personalized treatment strategies
in COPD.
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