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Abstract
Transactive response DNA-binding protein 43 kDa (TDP-43) encoded by the TARDBP gene is an evolutionarily conserved 
heterogeneous nuclear ribonucleoprotein (hnRNP) that regulates multiple steps of RNA metabolism, and its cytoplasmic 
aggregation characterizes degenerating motor neurons in amyotrophic lateral sclerosis (ALS). In most ALS cases, cytoplas-
mic TDP-43 aggregation occurs in the absence of mutations in the coding sequence of TARDBP. Thus, a major challenge in 
ALS research is to understand the nature of pathological changes occurring in wild-type TDP-43 and to explore upstream 
events in intracellular and extracellular milieu that promote the pathological transition of TDP-43. Despite the inherent 
obstacles to analyzing TDP-43 dynamics in in vivo motor neurons due to their anatomical complexity and inaccessibility, 
recent studies using cellular and animal models have provided important mechanistic insights into potential links between 
TDP-43 and motor neuron vulnerability in ALS. This review is intended to provide an overview of the current literature on 
the function and regulation of TDP-43-containing RNP granules or membraneless organelles, as revealed by various mod-
els, and to discuss the potential mechanisms by which TDP-43 can cause selective vulnerability of motor neurons in ALS.

Introduction

Abnormal aggregation of proteins that normally function as 
components of ribonucleoprotein (RNP) granules is a hall-
mark of neurodevelopmental and neurodegenerative diseases 
[1–3]. Under normal physiological conditions, RNP granules 
form membraneless partitions in the nucleus and cytoplasm 
to control the flow of genetic information. Assembly of RNP 
granules may also be driven by external stimuli, such as 
during stress granule (SG) formation in response to cellu-
lar stresses. A remarkable feature of RNP granules is their 
compositional heterogeneity and structural flexibility. A sin-
gle RNP, depending on the interacting partner (proteins or 
RNAs), can form either liquid-like physiological assemblies 

or solid-like fibers [4, 5]. Such solid-like RNPs are a can-
didate source for pathological aggregates that accumulate 
over time during the progression of diseases, although some 
evidence suggests that protein aggregates without RNA are 
associated with cellular toxicity [6, 7].

Transactive response DNA-binding protein 43 kDa (TDP-
43) is an evolutionarily conserved RNA/DNA-binding pro-
tein encoded by the TARDBP gene and regulating transcrip-
tion [8–10], RNA metabolism [11–14], anti-viral response 
[15], DNA damage response [16], and chromatin structure 
[17]. In 97% of amyotrophic lateral sclerosis (ALS) cases, 
the most common motor neuron disease, and in 45% of fron-
totemporal dementia (FTD) cases [18], aggregation of TDP-
43 is detectable in degenerating neurons. TDP-43 protein 
has a homo-oligomerization domain, RNA-binding domains, 
and an intrinsically disordered region (IDR) in tandem, each 
containing amino acid sequence motifs for the various regu-
lation, such as post-translational modification, nucleocyto-
plasmic transport, and proteolysis. In sporadic ALS, which 
accounts for approximately 90% of ALS cases, TDP-43 
aggregation occurs without mutation in the coding sequence 
of the TARDBP gene, rendering the mechanism underly-
ing aggregation of wild-type TDP-43 largely unknown. On 
the other hand, in familial ALS cases associated with the 
TARDBP locus, mutations have mostly, but not exclusively, 
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been found in the IDR [19, 20]. Given that by mediating 
a multitude of intermolecular interactions, IDRs typically 
drive the transition from soluble protein to liquid droplets 
of protein [21], dysregulation of IDR-dependent homo-
meric and heteromeric TDP-43 assembly likely underlies 
the pathogenesis of ALS. Under physiological conditions, 
TDP-43-containing RNP granules exist in various subcel-
lular compartments, each granule differing in its protein: 
RNA composition according to its function. Currently, an 
understanding of how a cell monitors the global and local 
levels of intracellular TDP-43 and specifies division of labor 
for granular and non-granular TDP-43 is far from complete.

At the systems level, TDP-43 is a ubiquitously expressed 
protein, like the misfolded proteins in other neurodegen-
erative diseases, such as amyloid β in Alzheimer’s disease, 
α-Synuclein in Parkinson’s disease, and huntingtin in Hun-
tington’s disease [22]. However, as observed in these neuro-
degenerative diseases, selective subpopulations of neurons 
are affected in ALS: upper and lower motor neurons. Despite 
being a pathological hallmark of ALS, the extent to which 
TDP-43 aggregation accounts for the selective vulnerabil-
ity of motor neurons is largely unknown. This is primar-
ily due to the anatomical complexity and inaccessibility of 
motor neurons, hampering in vivo investigation of TDP-
43 dynamics in live motor neurons [23, 24]. Thus, for an 
understanding of the pathogenesis of ALS associated with 
TDP-43 aggregation, it is imperative to fully figure out the 
functions and regulation of TDP-43-containing RNP com-
plexes that assemble in the normal physiological conditions, 
investigate the nature of pathological changes occurring in 
wild-type TDP-43, and explore upstream intracellular and 
extracellular factors that promote the pathological transition 
of TDP-43 in motor neurons in vivo (Fig. 1). With these 
challenges in mind, in the present review, we present an 
overview of the domain structure of TDP-43 and its regu-
lation. We subsequently discuss the known functions and 
properties of TDP-43 granules that have been elucidated via 
numerous cell culture and animal models. Finally, we review 
neuron-specific TDP-43 properties to explore the potential 
link between TDP-43 pathology and selective neuronal vul-
nerability in ALS.

DNA and RNA‑binding functions of TDP‑43

TDP-43, a ubiquitous DNA/RNA binding protein, plays 
multiple roles in both the nucleus and cytoplasm. First iden-
tified as a cellular factor that bound to a regulatory element 
of the human immunodeficiency virus type 1 (HIV-1) long 
terminal repeat (LTR) and repressed its transcription [8], 
TDP-43 was later characterized as a binding protein for the 
spermatid-specific promoter of the SP-10 gene [9]. Beyond 
transcription, TDP-43 is also implicated in the maintenance 

of chromatin structure around long interspersed nuclear ele-
ments [17] and DNA damage response [16], both of which 
are presumably mediated by its DNA-binding capacity. 
TDP-43, as an RNA-binding protein, associates with more 
than 6000 target RNAs, including those encoding proteins 
for neuronal development and function [10, 25–33]. Encom-
passing a wide range of RNA metabolisms, the RNA-regula-
tory roles of TDP-43 include RNA splicing, RNA transport, 
translation [11, 12, 14], and biogenesis of non-coding RNAs 
[13, 34]. In the following sections, we present an overview 
of evidence that the diverse functions of TDP-43 are under-
pinned both by its modular molecular architecture and by 
its capacity for assembling RNP granules or other protein 
complexes.

TDP‑43 structure and post‑translational 
modification

The multimerization status of TDP-43 governs its physi-
ological and pathological functions. Under normal physi-
ological conditions, the N-terminus of TDP-43 mediates 
homo-oligomerization, which is necessary for its role in 
RNA regulation (Fig. 2) [35–38] and can drive liquid–liquid 
phase separation (LLPS) [39]. The nuclear import receptor 
importin α recognizes the nuclear localization signal (NLS) 
embedded in the N-terminus of TDP-43 [40, 40], imply-
ing the close coordination of oligomerization and nuclear 
import. The NLS is subjected to ubiquitination [42], and 
the ubiquitination at lysine-95 within the NLS likely inhibits 
nuclear import, targeting TDP-43 for proteolysis in the cyto-
plasm [43]. The NLS also contains the poly (ADP-Ribose) 
(PAR)-binding motifs (PBMs) that regulate recruitment to 
SGs [44]. These observations suggest that the N-terminus 
domain of TDP-43 mediates the multilayer TDP-43 control 
of protein multimerization, localization, and stability under 
normal and stress conditions.

RNA binding of TDP-43 is mediated by the two RNA 
recognition motif (RRM) domains (RRM1 and RRM2) that 
reside in the middle of the primary protein structure [11]. 
RRM1 and RRM2 have differential affinities with different 
types of RNAs and, under stress conditions, have distinct 
functions in the assembly and maintenance of nuclear TDP-
43 granules [45]. The RRM2 contains a putative nuclear 
export signal (NES) predicted via bioinformatics [40, 46, 
47]. Mutations in the putative NES or inhibition of the 
nuclear export receptor exportin-1 (XPO1) by leptomycin 
B treatment lead to nuclear TDP-43 granule formation [40, 
45]. However, independent studies have failed to estab-
lish TDP-43 as a direct substrate of XPO1 [47–49], and 
exact mechanisms for the nuclear TDP-43 granule forma-
tion caused either by the mutation of the putative NES or 
leptomycin B treatment remined to be clarified. The RRM 
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domains are also dominant sites of acetylation and cysteine-
mediated disulfide cross-linking, two processes that impair 
the RNA-regulatory functions of TDP-43 [50–52].

The IDR in the C-terminus comprises a glycine-rich 
domain and a region enriched in glutamine (Q) and aspar-
agine (N). Proteins with IDRs reversibly phase separate 
into droplets; however, such assembly of IDR proteins may 
become irreversible when they aggregate due to mutations, 
prolonged stress, or changes in protein concentration [53]. 
Supporting this view, most of the ALS-linked TDP-43 
mutations are found in this C-terminal IDR [19]. Peptides 

in this region can efficiently form amyloid-like fibrils 
in vitro that can exhibit prion-like infectious seeding abil-
ity in cells expressing the soluble TDP-43 [54–57]. Under 
pathological conditions, TDP-43 is hyperphosphorylated, 
ubiquitinated, and cleaved to generate aggregation-prone 
C-terminal fragments (CTFs) (Fig. 2) [58–61]. Intracel-
lular aggregation of the full-length TDP-43 that is recog-
nized by the antibody against S409/S410 phosphorylation 
(p409/410) precedes the generation of TDP-43 CTFs, sug-
gesting that CTFs are not essential for the formation of 
intracellular TDP-43 aggregates [62].

Fig. 1  Diagrams depicting TDP-43 in motor neurons under physi-
ological (a) and pathological (b) conditions. a Under physiologi-
cal conditions, TDP-43 (magenta) is primarily nuclear and regulates 
transcription and pre-mRNA processing. TDP-43 also forms mRNA 
transport granules and supports translation at neuromuscular syn-
apses. Intracellular  Ca2+ homeostasis is maintained by mitochondria. 
b In sporadic ALS or familial ALS associated with TARDBP muta-
tions, the cytoplasmic pool of TDP-43 increases and forms aggre-

gates (purple). The nuclear pool of TDP-43 is instead depleted. 
Transport granules containing pathological TDP-43 frequently dis-
play retrograde movement, which may result in diminished translation 
in the synaptic terminal and denervation. Dysregulated  Ca2+ homeo-
stasis and/or excessive  Ca2+ influx due to neuronal hyperactivation 
may promote calpain-dependent TDP-43 cleavage, promoting TDP-
43 aggregation. Neuronal hyperactivation produces the aggregation-
prone splice isoforms of TDP-43
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TDP‑43 granules in the nucleus 
and cytoplasm

Nuclear bodies (NBs)
In mammalian cells, both endogenous TDP-43 and exog-

enously expressed TDP-43 at a normal endogenous level 
show a demixed distribution as rounded particles in the 
nucleus [7, 63]. TDP-43 is a known component of several 
kinds of membraneless nuclear structures (i.e. nuclear bod-
ies, or NBs), which are enriched with specific nuclear fac-
tors in continuous exchange with the surrounding nucleo-
plasm [64], such as paraspeckles (PSs) [65] and Cajal 
bodies [66–68]. When incorporated into the PSs, TDP-43 
is prevented from regulating alternative polyadenylation of 
pluripotency factor mRNAs in embryonic stem cells, thereby 
influencing cellular differentiation [69]. On the inactive X 
chromosome, a set of RNA-binding proteins including TDP-
43 form heteromeric condensates with the long non-coding 
RNA Xist to initiate and maintain gene silencing [70]. These 
observations elucidate the close linking of the intranuclear 
phase transition of TDP-43 to its RNA-regulatory roles. The 
granular appearance of nuclear TDP-43 is enhanced when 
cells are under stress, assembling dynamic and reversible 
TDP-43-containing NBs [45, 51, 71]. Upon arsenite treat-
ment, TDP-43 associates with distinct RNA species, such 
as long non-coding RNA NEAT1 or short tRNAs, for NB 
assembly via its two RRM domains [45]. Sequestration of 

TDP-43 into stress-induced NBs may be a neuroprotective 
strategy, because the recruitment of TDP-43 to NBs is com-
promised by the ALS-causing D169G mutation in RRM1, 
resulting in the incorporation of the mutant TDP-43 into 
SGs in the cytoplasm [45]. TDP-43 is colocalized with PSs 
in the spinal motor neurons of sporadic ALS patients [67], 
and excessive PS formation has been observed in ALS-FUS 
[72]. Although PS hyper-assembly has been shown to have 
a protective effect [34], the significance of TDP-43 recruit-
ment to PSs in ALS pathology remains elusive. An intra-
nuclear spherical shell structure that is formed by an RNA-
binding-deficient TDP-43 and includes HSP70 chaperones 
in the core was recently identified and termed anisosome 
[73]. This HSP70 chaperone-dependent droplet harbors a 
liquid crystalline property and prevents RNA-free TDP-
43 from forming round cytoplasmic droplets and convert-
ing into gel/solid-states, which might be precursors of the 
TDP-43 aggregates observed in neurodegenerative diseases, 
including ALS. Besides its RNA-regulatory roles, TDP-43 
is also implicated in DNA damage repair. TDP-43 deple-
tion causes an accumulation of DNA double-strand breaks 
(DSBs), while TDP-43 overexpression is protective against 
DSBs [16, 74–77]. TDP-43 is rapidly recruited at DSB sites 
upon induction of DNA damage to stably interact with fac-
tors regulating DNA damage response and non-homologous 
end joining [74, 75]. The association between the role of 
TDP-43 in DNA damage repair and TDP-43-containing NB 
assembly remains to be determined.

Fig. 2  Structure of TDP-43 and its variants. TDP-43 contains 
414 amino acid residues and comprises the N-terminal domain 
(NTD), two RNA recognition motif domains (RRM1 and RRM2), 
and a C-terminus intrinsically disordered region (IDR). The NTD 
includes the nuclear localization signal (NLS), overlapping with the 
poly(ADP-Ribose) (PAR)-binding motifs (PBMs). The NLS is ubiq-
uitinated at K95. The RRM domains are acetylated at K145 and 
K192, and are subjected to cysteine-mediated disulfide cross-linking 
at C173, C175, C198 and C244. RRM2 includes a bioinformatically 
identified putative nuclear export signal (NES). Green bars indicate 

regions required for mitochondrial localization (M1, M3, and M5). 
RRM1 contains an ALS-associated mutation, D169G. For more com-
prehensive views of ALS-associated TDP-43 mutations and ubiqui-
tination sites, see [20] and [42], respectively. The IDR domain con-
tains regions rich in glutamine and asparagine residues (Q/N-rich) 
and glycine residues (Glycine-rich). The region containing 12 cal-
pain-cleavage sites is indicated by a dashed line. Amino acid numbers 
are shown above the protein structure. CTF35 and CTF25 are gener-
ated by caspase-dependent cleavage. sTDP-43-1 and sTDP-43-2 are 
the products of neuronal activity-dependent alternative splicing
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RNP transport granules

Membraneless organelles formed via condensation of pro-
tein–RNA complexes, or phase transition, is relevant for 
the long-range transport of biomolecules particularly for 
large-sized and polarized cell types, including motor neu-
rons, where transcription in the nucleus and translation at the 
synapse can be as far apart as the entire length of the spinal 
cord, arms, or legs. A fraction of cytoplasmic TDP-43 in 
neuronal cells functions as a component of RNP granules 
that undergo microtubule-dependent transport along the 
axon [12, 78]. Exogenous expression of human TDP-43 in 
the fly motor neurons and rodent primary cortical neurons 
results in the formation of RNP granules containing human 
TDP-43 in the axons [12, 78]. The TDP-43-containing RNP 
granules are transported bidirectionally, with brief pauses, 
for long distances, and display liquid-like properties such as 
fusion, fission, and exchange of TDP-43 with the cytoplas-
mic soluble TDP-43 pool. The biophysical traits of these 
TDP-43 granules vary depending on the axonal location; the 
TDP-43 granules in the mid-axon display a more enhanced 
motility, a rapid molecular exchange rate and higher sphe-
ricity, while those in the proximal axon tend to have limited 
motility, a lower molecular exchange rate, and more irregu-
lar contours [78]. LLPS mediates TDP-43 granule formation 
in the mid-axon; treatment with 1,6-hexanediol, which dis-
rupts weak hydrophobic interactions in RNP granules [79], 
rapidly and reversibly dissolves TDP-43 granules in the mid-
axon without affecting the integrity of those in the proximal 
axons. Remarkably, the ALS-linked mutations in the IDR 
increase the viscosity of the granules and promote retro-
grade, but not anterograde, transport, resulting in the accu-
mulation of TDP-43-containg granules in the proximal axons 
[12, 78]. TDP-43 also displays granular localization in the 
dendritic arbors, enhanced by neuronal depolarization [14]. 
ALS-linked TDP-43 mutations reduced the depolarization-
dependent dendritic localization [80]. Overall, the liquid-like 
properties of TDP-43-containing RNP transport granules are 
a critical determinant of the distance that mRNAs can travel 
along the axons and dendrites, and loss of these properties 
may underlie ALS pathology by affecting local proteomes 
in axons and dendrites of motor neurons.

SGs

To sustain cell survival, global repression of translation 
occurs in response to cellular stresses. SGs are cytoprotec-
tive membraneless organelles comprising RNA–protein 
complexes, and seen in the cytoplasm of cells under stress 
[81, 82]. TDP-43 is not a ubiquitous component of SGs, 
but is recruited in response to many, but not all, stressors 
[51, 83–85]. The recruitment of TDP-43 to SGs is promoted 
by the binding of PAR, a negatively charged biopolymer, 

to the PAR-binding motif (PBM) embedded in the NLS of 
TDP-43 (Fig. 2) [44]. The incorporation of TDP-43 into SGs 
protects it against pathological phosphorylation of the IDR 
at S409/S410, as shown by the formation of cytoplasmic 
granules distinct from SGs under stress by TDP-43 mutants 
defective in binding to PAR, and more prone to show the 
pathological phosphorylation [44]. Upon stress, the amount 
of TDP-43 recruited to SGs is also influenced by the assem-
bly of TDP-43-containing NBs in the nucleus. The stress-
dependent recruitment of TDP-43 to NBs is diminished by 
the ALS-causing D169G mutation within RRM1, while the 
formation of TDP-43-containing SGs is conversely signifi-
cantly enhanced in the cytoplasm, raising the possibility 
that assembly of TDP-43-containing NBs works as the first 
line of defense against stress to prevent excessive recruit-
ment and accumulation of TDP-43 in cytoplasmic SGs 
[45]. Although recruitment of TDP-43 to SGs may in the 
short term be beneficial, exposure to high levels of stress 
for a prolonged period leaves aggregates of pathologically 
phosphorylated TDP-43 after SG resolution [44]. Moreover, 
chronic optogenetic induction of SG assembly leads even-
tually to the deposition of pathologically phosphorylated 
TDP-43-containing aggregates and causes cytotoxicity [85]. 
These observations suggest that TDP-43 having experienced 
a prolonged SG incorporation may become a precursor for 
pathological TDP-43 aggregates. On the other hand, recent 
reports have described pathological TDP-43 granules devoid 
of SG-resident proteins and associated with cytotoxicity [6, 
7, 44]. The extent of the contribution by SGs to the for-
mation of pathological TDP-43 aggregates in ALS and a 
subtype of frontotemporal lobar degeneration (FTLD-TDP) 
remains to be evaluated.

TDP-43 in myo-granules

Cytoplasmic TDP-43 granules have been shown to play 
important physiological roles in skeletal muscles. Reduced 
levels of TDP-43 in skeletal muscles lead to age-related 
muscle weakness in mice and flies [86–88] and to muscle 
degeneration in zebrafish [89]. While TDP-43 is abundant 
in the nuclei of C2C12 myoblasts and primary mouse myo-
blasts, during their differentiation into multinucleated myo-
tubes, cytosolic TDP-43 increases, resulting in the forma-
tion of 50–250 nm assemblies with amyloid-like properties, 
called myo-granules [90]. TDP-43 in myo-granules, which 
bind to mature mRNAs encoding sarcomeric components, 
is essential for skeletal muscle cell differentiation in culture 
and skeletal muscle regeneration in mice [90]. Analogously, 
in axotomized motor neurons in mice, cytoplasmic TDP-
43 granules transiently accumulate that colocalize strongly 
with the RNA transport granule marker Sauften and moder-
ately with the generic SG marker TIA-1 [91], implying that 
cytoplasmic TDP-43 redistribution is a part of the normal 
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and physiological response to cellular injury. These findings 
have demonstrated that the multimerization status of TDP-43 
differs depending on physiological cellular conditions and 
that TDP-43 oligomers can be both beneficial and harmful, 
depending on the cell-type and possibly the age. The abil-
ity of TDP-43 in myo-granules to seed TDP-43 aggregation 
in motor neurons, via its prion-like ability to spread across 
neuronal connectivity [92], remains undetermined.

Pathological TDP-43 aggregates

Cytoplasmic inclusions of TDP-43, appearing as rounded or 
skein-like inclusions in degenerating neurons, are a reliable 
pathological hallmark of ALS and FTLD-TDP [93, 94]. In 
FTLD-TDP, TDP-43 pathology can be categorized into four 
subtypes (types A–D) based on the histology of the TDP-
43-positive structures, and disease severity is correlated 
with the distinct forms of pathological TDP-43 [95, 96]. 
The distinct histological traits of TDP-43 aggregate suggest 
multiple pathways for aggregation. Indeed, in cultured cells, 
cytoplasmic TDP-43 aggregation is driven by at least two 
distinct pathways upon expression of inherited ALS/FTLD 
causative genes: RNA-binding protein-mediated LLPS pro-
moting granular-type aggregation and histone deacelylase 
6 (HDAC6)-mediated aggresome formation promoting 
skein-like aggregation [97]. In the spinal cord of patients 
with ALS, most of the phosphorylated TDP-43 inclusions 
show significant skein-like immunoreactivity of lysine-145 
acetylation in RRM1, which may be promoted by oxidative 
stress [50]. This implies that the cellular stresses specify the 
form of TDP-43 aggregates. The dipeptide repeat proteins 
expressed from the C9orf72 locus carrying repeat expan-
sions, a cause of familial ALS, also causes TDP-43 aggrega-
tion [43, 98–102]. Intracellular TDP-43 is aggregated in a 
self-templating manner when the cultured cells are treated 
with seeds isolated from the brains of patients with ALS 
and FTLD-TDP, as well as synthetic peptide-derived TDP-
43 CTF fibrils; this suggests that the alternate pathologi-
cal TDP-43 conformations in ALS and FTLD-TDP could 
also arise from the prion-like properties of TDP-43 [57, 
62, 103, 104]. Of note, in a synthetic peptide-dependent 
TDP-43 aggregation assay, phospho-deficient mutations 
in the CTF have little effect on the aggregation propensity 
of TDP-43 [57], hinting at the possibility of a toxic TDP-
43 variant undetectable via conventional phospho-CTF 
immunostaining. A recent report of neurotoxicity observed 
in the presence of cytoplasmic TDP-43 granules lacking 
S409/S410 phosphorylation supports this view [6]. Inter-
cellular transfer of TDP-43 has been demonstrated in vitro 
[103–106]. In vivo transmission of TDP-43 along neuronal 
connectivity was first demonstrated using animal models 
by injecting human brain-derived FTLD-TDP extract into 
mouse brain overexpressing TDP-43 [92]. Microvesicle/

exosome-dependent intercellular TDP-43 transport might 
mediate transmission and de novo formation of pathologi-
cal TDP-43 aggregates in a distant brain area [62, 103], 
which may not be dependent on SG formation because the 
assembled phosphorylated TDP-43-positive inclusions did 
not colocalize with SG markers in immunofluorescence [92].

TDP‑43 and selective neuronal vulnerability

In sporadic ALS, pathological TDP-43 phosphorylation rec-
ognized by the pS409/S410 antibody is observed through-
out many areas of the central nervous system (CNS) [107], 
showing that ALS is a multisystem TDP-43 proteinopathy. 
Studies using animal models also suggest that the deposi-
tion of cytoplasmic aggregates does not always accompany 
TDP-43 neurotoxicity [24, 108]. These observations ques-
tion the extent to which cytoplasmic TDP-43 aggregates, as 
end products, explain the selective vulnerability of motor 
neurons in ALS. Although the answer is largely elusive at 
present, several studies have begun to reveal neuron-specific 
properties and regulatory function of TDP-43, including the 
alternative splicing of TDP-43 mRNA and proteolytic cleav-
age of TDP-43 protein. In both physiology and pathology, 
motor neuron-specific properties of TDP-43 could modify 
functions of TDP-43-containing membraneless organelles, 
and would be key to explaining selective vulnerability of 
motor neurons in ALS.

Neural activity-dependent alternative splicing of TDP-43

Motor neurons are large cells with large membrane surface 
areas, which demand high levels of energy for generating 
an action potential, as well as for maintaining homeostatic 
ionic gradients across the plasma membrane in the resting 
state. The energetic demand is particularly high in large fast-
fatigable motor neurons, the most vulnerable neuronal type 
in ALS [109], and these neurons are prone to hyperexcitation 
due to low GABAA and glycine receptor expression [110]. 
Accordingly, cortical hyperexcitability and mislocaliza-
tion of TDP-43 are salient and highly conserved features 
of ALS. Recently, hyperexcitability was found to lead to 
the expression of two shortened splice isoforms of TDP-43 
(sTDP-43-1 and sTDP-43-2), wherein the entire glycine-rich 
domain of TDP-43 is replaced by short tails generated by the 
inclusion of a new exon encoding a unique 18-amino acid 
C-terminus not found in the wild-type full-length TDP-43 
(Fig. 2) [111]. The sTDP-43-1 isoform is prone to cytoplas-
mic localization due to a de novo NES created by the neural 
activity-dependent splicing. In rodent primary mixed cor-
tical neurons, overexpression of sTDP-43-1 is neurotoxic, 
and promotes the cytoplasmic deposition and nuclear clear-
ance of endogenous TDP-43 through N-terminus- and/or 
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RRM-mediated aggregation. Moreover, significant expres-
sion of the sTDP-43-1 isoform is detectable in several dif-
ferent regions of the human CNS, including spinal motor 
neurons. Major challenges in proving a causal link between 
neuronal hyperexcitability and cytoplasmic TDP-43 aggre-
gation in the selective vulnerability of human motor neurons 
in ALS include the elucidation of mechanisms underlying 
the neural activity-dependent alternative splicing and effects 
of the sTDP-43 isoforms on TDP-43-containing membrane-
less organelles.

Ca2+-dependent cleavage of TDP-43

Elevated intracellular  Ca2+ levels caused by excessive 
stimulation of glutamate receptors have been implicated in 
the selective vulnerability of neurons in ALS [112–115]. 
Glutamate-mediated excitotoxicity is associated with the 
stoichiometry of both  Ca2+-permeable subunits GluA1, 3, 
and 4 and the typically  Ca2+-impermeable subunit GluA2 
[116–124]. TDP-43 pathology in sporadic ALS is corre-
lated with the downregulation of an RNA-editing enzyme, 
adenosine deaminase acting on RNA 2 (ADAR2), which 
edits GluA2 pre-mRNA to produce the  Ca2+-impermeable 
GluA2 subunit [125–128], suggesting that exaggerated  Ca2+ 
influx could lead to TDP-43 aggregation. The observation 
that TDP-43 is subject to proteolysis in a  Ca2+ -dependent 
manner provides a mechanistic link between the exagger-
ated  Ca2+ influx and TDP-43 aggregation [129] (Fig. 3). 

In mouse motor neurons, TDP-43 is cleaved by calpains 
 (Ca2+-dependent cysteine proteases) at the C-terminus, 
which is distinct from the caspase-dependent cleavage sites 
(Fig. 2) [61, 130], to generate an aggregation-prone proteo-
lytic product [129]. Calpain-dependent TDP-43 fragments 
are detectable in the spinal cord and brain of patients with 
ALS. Thus, the calpain-mediated TDP-43 cleavage is a cru-
cial downstream target of an excessive intracellular  Ca2+ 
load, potentially affecting TDP-43-containing membraine-
less organelles via generation of aggregation-prone TDP-43 
fragments and contributing to the selective vulnerability of 
motor neurons in ALS.

TDP-43 and mitochondria

The high energetic demand of motor neurons is met by ATP 
provision via mitochondrial metabolism. Inevitably, mito-
chondria are major sources of reactive oxygen species (ROS) 
within most mammalian cells, and modulation of cellular 
redox activity has been shown to influence self-interaction, 
aggregation, and cytotoxicity of TDP-43 [131–133]. Oxida-
tive stress-induced cysteine oxidation and disulfide bond for-
mation in the RRM domains lead to impaired splicing func-
tion and reduced solubility of TDP-43 [51, 52]. The RRM1 
is also acetylated at lysine-145 in response to oxidative 
stress by histone acetylase cAMP response element-binding 
(CREB)-binding protein (CBP), impairing RNA-binding and 
promoting deposition of skein-like TDP-43 inclusions [50]. 

Fig. 3  Possible upstream mechanisms that promote pathological 
TDP-43 phase transition and aggregation. Cellular redox activity 
influences self-interaction, aggregation, and cytotoxicity of TDP-43 
by promoting lysine acetylation, methionine oxidation, and cysteine 
disulfide bonding of TDP-43. An exaggerated  Ca2+ influx elevates 
cytosolic  Ca2+ concentration, which leads to calpain-mediated cleav-
age of TDP-43 that, in turn, generates aggregation-prone TDP-43 
fragments. These post-translational TDP-43 modifications may fre-
quently occur at mitochondria-rich subcellular compartments, includ-

ing, but not restricted to, pre-synaptic axon swellings (illustrated), 
where ROS is actively produced due to high energy metabolism and 
efficient  Ca2+ buffering is needed. Neuronal hyperexcitability drives 
the expression of two shortened splice isoforms of TDP-43 (sTDP-
43-1 and sTDP-43-1), which are also aggregation-prone. The mech-
anisms underpinning how neuronal hyperexcitability drives TDP-
43 alternative splicing are elusive. ER endoplasmic reticulum, MT 
microtubule, VGCC  voltage-gated calcium channel
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Furthermore, methionine oxidization in the IDR of TDP-43 
affects its ability to self-assemble into an oligomeric struc-
ture [134]. These observations suggest that high mitochon-
drial metabolism could alter the phase behavior of TDP-43 
via ROS production especially in a mitochondrial-rich sub-
cellular compartment, such as pre-synaptic terminals [135, 
135] (Fig. 3). Another essential function of mitochondria 
is the maintenance of cellular  Ca2+ homeostasis, which is 
regulated through interactions between the endoplasmic 
reticulum (ER) and mitochondria via a region in the ER 
called mitochondria-associated membranes (MAM) [137, 
138]. MAM is implicated in neurodegenerative diseases 
[139–145]. Tightening of MAM-mediated ER-mitochondria 
contacts can cause  Ca2+ overload in mitochondria, whereas 
its loosening diminishes mitochondrial ATP synthesis and 
increases cytosolic  Ca2+ [146–149]. Increases in cytosolic 
 Ca2+ could in turn induce calpain-mediated cleavage of 
TDP-43, leading to TDP-43 aggregation [129] (Fig. 3); a 
direct link between MAM disruption and calpain-dependent 
TDP-43 cleavage, however, remains to be demonstrated. 
Taken together, mitochondria are key organelles influenc-
ing phase behaviors of TDP-43 through ROS generation 
and maintenance of  Ca2+ homeostasis, whose dysfunction 
could contribute to selective vulnerability of motor neurons 
in ALS.

Of note, induced pluripotent stem cell (iPSC)-derived 
motor neurons from patients carrying TDP-43 mutation 
display high glutamate-induced  Ca2+ release and delayed 
buffering of cytosolic  Ca2+ [150], suggesting that TDP-43 
regulates mitochondria, as well as being influenced by them. 
Indeed, endogenous TDP-43 is detectable in the mitochon-
dria of brain samples with or without FTLD-TDP pathol-
ogy, using immuno-electron microscopy [151]. Further-
more, in brain samples from patients with FTLD-TDP and 
ALS-FTLD-TDP, electron dense TDP-43-positive protein 
aggregates and impaired mitochondrial morphology have 
been observed [151]. These human studies suggest the mito-
chondrial roles of TDP-43, but in the studies using cellular 
and animal models, conflicting results have been reported for 
direct involvement of TDP-43 in mitochondrial respiratory 
complex and ATP synthesis [145, 151–155]. Further studies 
are thus necessary to understand the mitochondrial function 
of TDP-43 expressed at physiological levels. TDP-43-me-
diated mitochondrial control has also been suggested from 
overexpression experiments. Overexpression of TDP-43 dis-
rupts MAM and increases cytosolic  Ca2+ at the expense of 
mitochondrial  Ca2+ storage [142]. The TDP-43-dependent 
MAM disruption is mediated via the activation of GSK 
-3β, although the mechanism whereby excessive TDP-43 
is sensed by GSK-3β remains unknown [142]. In cellular 
and mice models, overexpression of TDP-43 also leads 
to invasion of TDP-43 into the mitochondria, the release 
of mitochondrial DNA (mtDNA) into the cytoplasm, and 

inflammation driven by the cytoplasmic DNA sensor cyclic 
guanosine monophosphate (GMP)-AMP synthase (cGAS)/
STING pathway [156]. The mitochondrial dysfunctions 
caused by TDP-43 overexpression may be relevant to an 
understanding of TDP-43 pathology in ALS, and whether 
the TDP-43-dependent release of mtDNA and  Ca2+ from 
mitochondria involves TDP-43 phase transition remains an 
open question.

Stability and dynamics of TDP-43 in motor neurons

Mainly due to anatomical inaccessibility, TDP-43 dynam-
ics have rarely been explored in vivo in mammalian motor 
neurons. Direct observation of TDP-43 in live motor neu-
rons is, however, feasible in an optical-friendly vertebrate 
model, zebrafish [23, 24]. We have found that optogenetic 
oligomerization of TDP-43 with the C-terminally tagged 
CRY2olig [157] resulted in an efficient increase in cyto-
plasmic TDP-43 in the spinal motor neurons of zebrafish, 
leading eventually to the accumulation of cytoplasmic 
TDP-43 aggregates positive for pS409/S410 immunoreac-
tivity [24]. Intriguingly, in epithelial cells or differentiated 
myofibers, this light-dependent cytoplasmic shift of TDP-43 
is not as efficient or is almost absent. While the mechanism 
underlying this motor neuron-specific cytoplasmic TDP-43 
accumulation remains to be determined, this observation 
implies that motor neurons possess a unique mechanism for 
responding to oligomeric TDP-43. One possible explana-
tion for the efficient cytoplasmic TDP-43 accumulation in 
motor neurons is that oligomeric TDP-43 is more stable in 
the cytoplasm of motor neurons than in that of other cell 
types. This idea might be consistent with the observations 
that TDP-43 has a longer half-life in primary rodent corti-
cal neurons (approximately 18 h) [158], than in fibroblasts, 
HeLa cell lines (4–12 h) [159], and Neuro2a cell lines 
(12.6 h) [160]. It is also worth noting that in the cytoplasm, 
the TDP-43-containing transport granules display differen-
tial TDP-43 exchange rates between the mid and proximal 
regions of axons [78], suggesting that the dynamics and sta-
bility of TDP-43 granules differ locally, within the axons and 
possibly dendrites. The stability and dynamics of TDP-43 in 
motor neurons thus requires further study. How motor neu-
rons control global and local levels of TDP-43 is a pivotal 
question to be addressed in the future, and is likely relevant 
to understanding the selective vulnerability of motor neurons 
in ALS.

Outlook

Here, we enumerated different forms of TDP-43 granules 
in different intracellular locations and contexts. However, 
these various forms of TDP-43 are insufficient in providing 
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a complete understanding of multifaceted TDP-43 dynam-
ics, in healthy and diseased states. Therefore, it is necessary 
to explore further TDP-43 granules and their regulatory 
mechanisms that have not yet been discovered. Aberrant 
phase behavior of TDP-43 in RNP granules results in at 
least three reasonably conceivable consequences, differing 
in their gain-/loss-of-function nature: (1) generation of toxic 
TDP-43 oligomers or aggregates that further propagate via 
phase transition in a dominant fashion, (2) loss/reduction 
of proteins that are otherwise normally expressed, due to 
TDP-43-mediated regulation, and (3) generation of truncated 
translation products of abnormally spliced transcripts caus-
ing proteostatic cellular stress. These multiple phenotypes 
are likely to occur simultaneously rather than sequentially. 
Thus, an understanding of the upstream cellular events caus-
ing abnormal TDP-43 phase transition may be as important 
as the conventional gain-of-function versus loss-of-function 
dichotomy. An emerging figure, while largely omitted from 
this review, is the multisystem nature of ALS and FTLD, 
where TDP-43 pathology in degenerating neurons has been 
linked to extracellular factors, including inflammation, 
microglial toxicity, and intercellular C9orf72-derived dipep-
tide transmission [43, 161–163]. Studies investigating the 
precise mechanisms of upstream events of TDP-43 pathol-
ogy at the multisystem levels therefore warrant intensive 
efforts and potentially provide effective treatment targets 
applicable to a wide range of different ALS subtypes and 
other TDP-43 proteinopathies.
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