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Astragalus propinquus Schischkin and Panax notoginseng (A&P) has been widely used in clinical practice to treat chronic kidney disease
(CKD) for many years and achieved a remarkable improvement of these outcomes. However, its mechanisms for ameliorating CKD are
still poorly obscure. In the current study, integrated network analysis was carried out to analyze the potential active ingredients and
molecular mechanism of A&P on CKD, and 39 active ingredients and a total of 570 targets were obtained. Furthermore, the potential
disease-related genes were obtained from the NCBI GEO database by integrating 2 microarray datasets, and 24 significant genes were
utilized for subsequent analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis
displayed that pathways including cell oxidative stress and Akt signaling pathway are medicated by A&P. Of note, Heat Shock
Transcription Factor 1 (HSF1) and RELA Proto-Oncogene (RELA) were regarded as hub genes considering their central roles in the gene
regulatory network. What’s more, the effect of A&P and potential genes was furthermore verified by using unilateral ureteral ligation
(UUO) in rodent model. *e results showed that the expression of HSF1 and RELA both at transcript and protein level was significantly
upregulated inUUOmodel, but the expressionwasmarkedly reversed afterA&P intervention. To further guide the interpretation of active
ingredients from A&P on the effect of HSF1 and RELA, we performed a molecular docking assay and the results showed that active
ingredients such as coptisine docked well into HSF1 and RELA. In total, these results suggest that A&P may improve RF in CKD by
regulating HSF1 and RELA, which provides a basis for further understanding the mechanism of A&P in the treatment of RF and CKD.

1. Introduction

With the increasing incidence, morbidity and mortality of
chronic kidney disease, CKD, have been recognized by the
international medical community as global public health and
social problem [1]. *e total prevalence of CKD in the
general population worldwide has reached 14.3% [2], and
the number of patients with CKD worldwide has reached
697.5 million. Of note, the number of RIF patients has also
shown an upward trend. It is conceivable that the figures in
less-developed regions are even more alarming. In clinical
practice, the main strategies to delay the progress of CKD

include symptomatic treatment such as control of urinary
protein, blood pressure, blood glucose, and blood lipid,
correction of complications, dialysis (hemodialysis and
peritoneal dialysis) [3], and end-stage renal replacement
therapy of renal transplantation. However, these strategies
have also shown limited success.

It is widely accepted that renal fibrosis (RF) is a final
common pathological pathway of chronic kidney disease
(CKD) and its progression significantly promotes renal
failure. RF is characterized by the decreases in renal func-
tion, the accumulation of fibroblasts, apoptosis of renal
tubular epithelial cells, and infiltration of immune cells
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including T cells and macrophages. Unresolved inflamma-
tion after a chronic injury caused by CKD is a continuous
driving factor for renal fibrosis. *e vicious circle of in-
flammation, tissue damage, and fibrosis increases the
pressure of profibrotic cytokines, which inevitably leads to
the activation of stromal-producing cells, indicating that
renal fibrosis plays a vital role in the progression of CKD. It
is now acknowledged that the degree of renal fibrosis is
closely related to renal function and CKD [4]. Related re-
search has demonstrated that renal fibrosis could be re-
versible [5]. Consequently, effective inhibition of renal
fibrosis may be a pivotal strategy to prevent the progression
of CKD. Currently, there is no specific treatment for CKD.

Traditional Chinesemedicine (TCM) compounds, rather
than a single herb, have been widely used for thousands of
years for the prevention and treatment of kidney diseases.
For the past few years, TCM has been an increasingly im-
portant strategy for the treatment of CKD in China due to its
good therapeutic effect and low toxic side effects. In recent
years, a tremendous amount of research has shown that the
natural compound possesses obvious advantages, especially
in the treatment of fibrosis [6]. For example, protocatechuic
aldehyde (PCA), a natural phenolic acid isolated from Salvia
miltiorrhiza, can preserve the moderate to severe deterio-
ration of renal function [7]. In addition, isoliquiritigenin
(ISL) extracted from Glycyrrhiza uralensis can inhibit renal
fibrosis, which is also protected from kidney damage in a
rodent model [8]. A broad variety of active compounds from
natural sources enrich the understanding of TCM. However,
TCM herb compound formula, which is often composed of
different compounds, makes it difficult to ascertain its ef-
ficacy and mechanism. Network pharmacology, a recently
developed and powerful tool, which integrates systems bi-
ology and polypharmacology, molecular network data,
bioinformatics, and computer simulation, is well suited for
TCM compound and extensively used by relevant re-
searchers [9]. In brief, network pharmacology focuses on its
active ingredients and targets in the interactome in a holistic
manner to elaborate the pharmacological mechanism of
drug formulas which is consistent to a certain degree with a
holistic view of TCM [10].

In this article, Astragalus propinquus Schischkin and
Panax notoginseng (A&P), a TCM compound preparation
under the guidance of the theory of “kidney flaccidity” in
traditional Chinese medicine, is composed of Astragalus
propinquus Schischkin, Ecklonia kurome, Angelica sinensis,
Achyranthes bidentata, Panax notoginseng (the formula is
listed in Table 1) [11]. Astragalus propinquus Schischkin and
Panax notoginseng play a major role in compound pre-
scriptions as monarch drugs [12]. *ese two Chinese herbal
medicines have been extensively studied for their powerful
pharmacological effects and pharmaceutical value. Astra-
galus is widely grown in Northeast China, North China, and
Northwest China, as well as Mongolia and Korea [13]. It has
good immunomodulatory activity, anti-inflammatory ac-
tivity, antioxidant activity, and antiviral activity [14]. Panax
notoginseng has been used for four centuries. It is a precious
traditional Chinese medicine with a history of more than
400 years for medical purposes. It has been extensively

studied for its antitumor [15], antioxidant, antiphotoaging,
anti-inflammatory, antidiabetic, and neuroprotective ac-
tivities [16]. Previous studies including clinical studies and
preclinically experimental investigations on A&P revealed
that A&P could significantly improve the total effective rate
and quality of life of patients with stage III chronic kidney
disease [17]. However, considering the sophisticated action
characteristics of TCM, it has brought many impediments to
scientific interpretation of the efficacy characteristics of A&P
and the process of disease prevention and remedy. In the
present study, we primarily elaborated the potential
mechanism of A&P by identifying its active ingredients and
its CKD-related targets by network pharmacology. Fur-
thermore, these results were validated by experimental
studies, where we determined the protective effect of A&P in
UUO in a rodent model. What’s more, a molecular docking
assay was performed to evaluate the hub genes and its targets
interaction (the detailed flowchart is listed in Figure 1).

2. Materials and Methods

2.1. Identification of Active Ingredients of A&P and 3eir
Potential Targets. In clinical practice, oral administration is
the main route in the of administration for TCM. Oral
bioavailability (OB) and drug likeness (DL) are important
pharmacokinetic parameters in the drug’s ADME related to
absorption, distribution, and metabolism [18]. Hence, we
manually retrieved the active ingredients of A&P on the
platform, the Traditional Chinese Medicine Systems Phar-
macology (TCMSP, https://www.tcmspw.com/tcmsp.php)
by using the keywords “huangqi”, “sanqi” “danggui”,
“niuxi”, “kunbu” [19]. Furthermore, the active ingredients
were filtered with the parameters ofOB≥ 30% andDL≥ 0.18.
Immediately thereafter, the targets of potential active in-
gredients were performed on the Swiss Target Prediction
database (*e inclusion criteria are as follows: the species is
“Homo sapiens” and the probability ≥0.6) [20] and TCMSP.
Finally, the targets both in the Swiss Target Prediction da-
tabase and TCMSP were regarded as the real targets of
potential active ingredients.

2.2. Acquisition of CKD-Related Targets. *e microarray
dataset was retrieved with the keyword “CKD” and the
number of samples per group ≥20 on the NCBI GEO da-
tabase (https://www.ncbi.nlm.nih.gov/geo/). A total of 2 sets
of microarrays was obtained; *e R package “limma” is
applied for background correction and normalization when
processing with the original data. We also integrated the
female tubulointerstitial and male tubulointerstitial group as

Table 1: *e component of A&P.

Components Content (gram)
Astragalus propinquus Schischkin 3
Ecklonia kurome 3
Angelica sinensis 3
Achyranthes bidentata 3
Panax notoginseng 1
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the model group and sham is used as the control group. *e
differentially expressed genes between the model group and
the control group were considered as CKD-related targets.

2.3. Construction of A&P-Active Ingredients-Targets Inter-
gated Network. On the above basis, we further aim to
construct a drug-target-disease molecular network. In order
to obtain more accurate targets for A&P intervention in
CKD, the cut-off criteria were set as follows: |logFC|> 1and
p-vaule <0.1. *en, the differential genes were obtained by
intersecting the targets of active ingredients in A&P and
CKD-related targets. Furthermore, network visualization
was accomplished by using Cytoscape software (version
3.6.1) and the MCODE plug-in in Cytoscape was used to
identify the hub genes. Next, Gene Ontology (GO) and the
Kyoto Encyclopedia of Genes and Genomes (KEGG)
functional enrichment were performed by using the clus-
terProfiler software package of the R platform.

2.4. Evaluation of Active Ingredients and Hub Genes’ Inter-
action by Molecular Docking. *e crystal structures of hub
genes were obtained from RCSB PDB database (https://
www.rcsb.org/pdb/) and Pymol2 software was used to
remove solvents, and organic and AutoDock 4.2.6 software

was employed to add polar hydrogen atoms and charges to
the protein crystal structures. Additionally, the structures of
the active ingredients were retrieved from NCBI PubChem,
and AutoDock Vina software was used to perform the in-
teraction between the targets and the active ingredients.
What’s more, PLIP was employed to expand the scope of the
protein-ligand interaction profiler [21].

2.5. UUO-Induced Animal Model and A&P Treatment.
*e male C57BL/6 mice (aged at 8 weeks, weighing about
20 g) were obtained from Dashuo BioTechnique Co. Ltd.
(Chengdu, China) and raised in an environment with a
constant temperature of 20–22°C and a humidity of 50%–
60%. *e mice were randomly divided into Sham group,
UUO group, A&P low group (1972mg/kg/day, added to the
experimental diets) and A&P high group (7888mg/kg/day,
added to the experimental diets) (n� 8 per group). All mice
were sacrificed on the 7th day. All animal handling and
experimental procedures were approved by the Animal
Ethics Committee of Southwest Medical University.

2.6. Histology and Immunohistochemical Staining. Mouse
kidney tissues were carefully isolated, fixed with 4%
paraformaldehyde, and embedded in paraffin. *en, the

A&P CKD

Astragalus Angelica Achyranthes Khumbu Notoginseng

Compounds of A&P
(TCMSP datebase)

Targets of A&P
(Swiss Target Prediction database)

Targets of CKD
(NCBI GEO database)

"GSE6649" & "GSE12682"

Intersection targets
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Herb Compound Targets-
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Difference analysis
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Figure 1: Flowchart of investigation on the mechanism of A&P in the treatment of renal fibrosis in chronic kidney disease. First, the
potential active components and targets were obtained from TCMSP and Target Prediction database. Second, CKD-related microarrays on
NCBI were used to obtain disease-related targets. *e intersection of active ingredient targets and disease targets is regarded as a common
target. *irdly, Go and KEGG enrichment analyses were performed for common targets. *e differences of common targets were analyzed
and visualized; heatmap was made. Cytoscape is used to construct the regulatory network of TCM. *en, UUO model was constructed to
verify the hub gene and determine the effects of A&P. PyMOL is used for molecular docking of potentially active components and hub genes.
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paraffin-embedded specimens were sectioned, depar-
affinized, and rehydrated with gradient ethanol and
subjected to subsequent detections including HE, Masson
trichrome staining, and immunohistochemistry. Immu-
nohistochemistry was performed according to the fol-
lowing procedures: the sections were immersed in citric
acid antigen repair buffer based on microwave-based
antigen retrieval technology as described before [7].
*en, the sections were reacted with indicated primary
antibodies including α-SMA (1 : 100, China, Boster), fi-
bronectin (1 : 100, USA, Abcam) overnight at 4°C. Im-
mediately after that, the sections were rinsed with PBS,
incubating with Biotin-Streptavidin HRP-based SPlink
Detection Kits (ZSGB-Bio, China), and color was de-
veloped with DAB. Finally, Counterstaining was per-
formed with hematoxylin. Signals were detected with a
Virtual Slide Microscope (VS120, Olympus, Japan).

2.7. Western Blot Assay. Total proteins of the kidney cortex
were extracted RIPA lysis buffer (Beyotime, China), and the
concentration was measured by the BCA method. *e
samples were transferred to PVDF membrane, blocked with
5% BSA at room temperature for 1 hour, and the PVDF
membrane was incubated with the corresponding antibodies
including anti-HSF1 (1 : 500, Santa cruz (cat# sc-8402),
USA)/RELA (1 : 500, Santa cruz (cat# sc-17757), USA) at 4°C
overnight. Furthermore, the membranes were incubated
with the corresponding HRP-conjugated secondary anti-
body after rinsing and exposed with ECL Chem-
iluminescence Kit (*ermo, Waltham, MA, USA). Image J
software was conducted to analyze the gray value, and the
protein levels were corrected for the housekeeping gene
GAPDH.

2.8. RNA Isolation and Real-Time PCR. Total RNA was
isolated by using Trizol (Invitrogen, cat# 15596018)
according to the manufacturer’s instructions. Next, a reverse
transcription kit (Vazyme, cat# R323-01) was used to
conduct reverse transcription. *en, a quantitative real-time
PCR was performed to detect the expression of genes at the
transcriptional level using a LightCycler® 480 II Real-Time
PCR System (Roche, Germany). *e sequence of primers
used is listed in Table 2, and the relative expression of genes
was normalized against GAPDH by the 2−ΔCt method.

2.9. Statistical Analysis. All the results are expressed as the
mean± standard deviation (SD). Statistical analyses were
performed with one-way ANOVA and the Newman-Keuls
multiple comparison tests by GraphPad Prism 7.0
(GraphPad Software, La Jolla, CA, USA). P-values <0.05
were considered to be statistical significance.

3. Results

3.1. Identifying thePotentialActive Ingredients andRegulatory
Proteins of A&P. To screen the active components of A&P,
we preliminarily obtain the main ingredients of A&P from

the TCMSP platform. Furthermore, a total of 37 candidate
components of A&P was filtered according to oral avail-
ability (OB)≥ 30% and drug likeness (DL)≥ 0.18, of which
15 active ingredients in “huangqi”, 1 active ingredients in
“danggui”, 11 active ingredients in “niuxi”, 4 active ingre-
dients in “sanqi”, and 6 active ingredients in “kunbu.”
Detailed information on these active compounds is listed in
Table 3.*e protein targets of the 37 active compounds were
then obtained from the intersection of the Swiss Target
Prediction database and the TCMSP platform. Following the
removal of duplicates, 1157 potential targets of the 37
compounds in total were employed for further analysis (as
listed in Figure 2(a)).

3.2. Construction of the Integrated Network of A&P on CKD.
In order to obtain CKD related-targets, we retrieved the
NCBI GEO database with “CKD” as a keyword (conditional
parameters: gene expression profile microarray data, the
number of samples in a single group is greater than 20);a
total of 2 sets of microarrays are obtained, named
“GSE6649″ and “GSE12682”. After removing the redundant
genes, we obtained 1546 CKD-related target genes by
intergating the two microarrays (*e differential genes are
listed in SupplementaryMaterials S1). On the above basis, an
integrated network of A&P on CKD was constructed, and a
Venn diagram on the potential protein targets of A&P and
CKD related targets was drawn including a total of 98 genes
(as shown in Figure 2(b)).

3.3. Enrichment Analysis by GO and KEGG Analyses. To
further elaborate on the potential biological function of A&P
on CKD, we performed GO and KEGG analysis. *e results
showed that the biological processes involved in the coacting
targets are closely related to factors such as cell oxidative
stress and protein serine and threonine kinase activity
(Figures 3(a) and 3(b)). In addition, these molecules are also
mainly involved in transcription regulation (Figure 3(c)).
KEGG analysis results revealed that A&P therapeutic targets
for CKD are significantly enriched in the AKT signaling
pathways (Figure 3(d)).

Table 2: Primers used for RT-PCR analysis.

Gene
name Gene sequence

GAPDH

Forward primer:
5’-AGGTCGGTGTGAACGGATTTG-3’

Reverse primer: 5’-
TGTAGACCATGTAGTTGAGGTCA-3’

HSF1

Forward primer: 5’-AACGTCCCGGCCTTCCTAA-
3’

Reverse primer: 5’-AGATGAGCGCGTCTGTGTC-
3’

RELA

Forward primer: 5’-
AGGCTTCTGGGCCTTATGTG-3’

Reverse primer: 5’-
TGCTTCTCTCGCCAGGAATAC-3’
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3.4. Selection of Hub Genes of A&P on CKD. To gain further
insights into the relationship between the potential active
ingredients and coaction genes, a network of Chinese herbal
compound was built by using cytoscape software
(Figure 4(a)). In order to obtain more accurate targets for
A&P intervention in CKD, we tightened up the selection
criteria, and HSF1 and RELA exhibited to be the central hub
of the integrated network. What’s more, increasing evidence
also revealed that HSF1 and RELA play a vital role in fibrosis
and inflammation related disease [22, 23]. Based on above,
we regarded HSF1 and RELA as hub genes.

3.5. 3e Protective Effect of A&P on CKD. Next, we deter-
mined the effect of A&P on CKD in the rodent model.
Firstly, the pathological results from histology discovered
that increased renal tubulointerstitial fibrosis, tubular
dilation, glomerular sclerosis, and flattened tubular epi-
thelial cells in the UUO group while the lesion was sig-
nificantly modified after AP treatment in a dose-

dependent manner (Figure 5(a)). In addition, the fibrosis
lesions in the UUO group showed a similar tendency as
evidenced by the Masson staining and the immunohis-
tochemistry of α-SMA (Figures 5(a) and 5(b)). In con-
clusion, A&P administration could dramatically improve
the kidney injury of CKD.

3.6.VerificationofHubGenes andDockingAnalysis. We next
assessed the expression of hub genes including HSF1 and
RELA after A&P on CKD. As shown in Figures 6(a) and
6(b), the expression of HSF1 and RELA both at the tran-
scriptional and protein levels in UUO was markedly in-
creased, whereas A&P administration reversed the aberrant
upregulation (Figures 6(a) and 6(b)). To gain better elab-
oration of A&P on the effect of HSF1 and RELA, we per-
formed molecular docking between active ingredients of
A&P and hub genes. *e binding affinity between active
ingredients and hub genes is listed in Table 4 and visualized
in Figures 7(a) and 7(b). It should be noted that active

Table 3: Basic information of AP’s potential ingredients.

Drug Molecule name MolID OB DL
Huangqi Mairin MOL000211 55.38 0.78
Huangqi Jaranol MOL000239 50.82 0.29
Huangqi Hederagenin MOL000296 36.91 0.75

Huangqi (3S,8S,9S,10 R,13R,14S,17R)-10,13-dimethyl-17-[(2R,5S)-5-propan-2-yloctan-2-yl]-
2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol MOL000033 36.23 0.78

Huangqi Isorhamnetin MOL000354 49.6 0.31
Huangqi 3,9-Di-O-methylnissolin MOL000371 53.74 0.48
Huangqi 7-O-Methylisomucronulatol MOL000378 74.69 0.3
Huangqi (6aR,11aR)-9,10-dimethoxy-6a,11a-dihydro-6H-benzofurano[3,2-c]chromen-3-ol MOL000380 64.26 0.42
Huangqi Bifendate MOL000387 31.1 0.67
Huangqi Formononetin MOL000392 69.67 0.21
Huangqi Calycosin MOL000417 47.75 0.24
Huangqi Kaempferol MOL000422 41.88 0.24
Huangqi FA MOL000433 68.96 0.71
Huangqi (3R)-3-(2-Hydroxy-3,4-dimethoxyphenyl)chroman-7-ol MOL000438 67.67 0.26
Huangqi Quercetin MOL000098 46.43 0.28
Niuxi Poriferasta-7,22E-dien-3beta-ol MOL001006 42.98 0.76
Niuxi β-Ecdysterone MOL012542 44.23 0.82
Niuxi Berberine MOL001454 36.86 0.78
Niuxi Coptisine MOL001458 30.67 0.86
Niuxi Wogonin MOL000173 30.68 0.23
Niuxi Delta 7-stigmastenol MOL002643 37.42 0.75
Niuxi Baicalein MOL002714 33.52 0.21
Niuxi Baicalin MOL002776 40.12 0.75
Niuxi Epiberberine MOL002897 43.09 0.78
Niuxi Beta-sitosterol MOL000358 36.91 0.75
Niuxi Inophyllum E MOL003847 38.81 0.85
Kunbu CLR MOL000953 37.87 0.68
Kunbu Saringosterol MOL010615 43.48 0.62
Kunbu 24-Methylenecholesterol MOL010625 43.54 0.76
Kunbu Fucosterol MOL009622 43.78 0.76
Kunbu 1553-41-9 MOL010617 45.66 0.21
Kunbu Eckol MOL010616 87.06 0.63
Danggui Stigmasterol MOL000449 43.83 0.76
Sanqi Mandenol MOL001494 42 0.19
Sanqi DFV MOL001792 32.76 0.18
Sanqi Diop MOL002879 43.59 0.39
Sanqi Ginsenoside rh2 MOL005344 36.32 0.56
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Figure 2: Schematic diagram of network pharmacology analysis. (a) Network Pharmacology. (b) Venn diagram of drug-disease common
targets.
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Figure 6: Hub genes’ verification. (a) Effect of AP on the protein level of HSF1, and RELA was detected by western blotting analysis. (b)
Effect of AP onmRNA expression of α-SMA, FN, HSF1, and RELA according to real-time PCR analysis. ∗P< 0.05 and ∗∗∗P< 0.001 with the
indicated group.

Table 4: Molecular docking of A&P’s potential ingredients and core genes.

Drug Molecule name MolID
Affinity (kcal/mol)

HSF1 RELA
Niuxi Inophyllum E MOL003847 −7.1 −7.3
Niuxi Coptisine MOL001458 −7.0 −7.4
Huangqi Isorhamnetin MOL000354 −6.8 −7.5
Niuxi Baicalin MOL002776 −6.8 −7.4
Sanqi Ginsenoside rh2 MOL005344 −6.7 −6.7
Niuxi Berberine MOL001454 −6.6 −6.6
Huangqi Hederagenin MOL000296 −6.4 −7.1
Niuxi Ecdysterone MOL012542 −6.4 −6.7
Niuxi Wogonin MOL000173 −6.3 −6.5
Niuxi Baicalein MOL002714 −6.3 −6.6
Kunbu Eckol MOL010616 −6.3 −7.6
Huangqi Jaranol MOL000239 −6.2 −6.6
Niuxi Epiberberine MOL002897 −6.2 −6.2
Danggui Stigmasterol MOL000449 −6.2 −7.1
Huangqi Quercetin MOL000098 −6.1 −6.7
Niuxi Poriferasta MOL001006 −6.1 −6.6
Huangqi Mairin MOL000211 −6.0 −7.2
Kunbu Fucosterol MOL009622 −6.0 −6.9
Huangqi 7-O-Methylisomucronulatol MOL000378 −5.9 −6.6
Huangqi Formononetin MOL000392 −5.9 −6.6
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ngredients including Inophyllum E, Baicalin displayed rel-
atively stable binding free energy with both RELA and HSF1.
In summary, the active ingredients of A&P on RELA and
HSF1 may partially explain the treatment effect of A&P on
CKD.

4. Discussion

It is well accepted that the global incidence of CKD is ex-
tremely high year after year. Currently, there is no specific
treatment for CKD, and interventions have limited efficacy

Table 4: Continued.

Drug Molecule name MolID
Affinity (kcal/mol)

HSF1 RELA
Huangqi Calycosin MOL000417 −5.9 −6.7
Niuxi Beta-sitosterol MOL000358 −5.9 −6.8
Kunbu 24-Methylenecholesterol MOL010625 −5.9 −7.0
Sanqi Diop MOL002879 −5.9 −6.9
Kunbu Saringosterol MOL010615 −5.7 −6.9
Sanqi DFV MOL001792 −5.7 −6.0
Huangqi Bifendate MOL000387 −5.5 −6.0
Huangqi FA MOL000433 −5.4 −5.3
Huangqi Kaempferol MOL000422 −5.3 −6.8
Sanqi Mandenol MOL001494 −4.9 −4.5
Kunbu 1553-41-9 MOL010617 −4.0 −4.1

(b)(a)
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Figure 7: Molecular docking of some potential active ingredients and hub genes. (a) *e interaction of RELA and indicated active in-
gredients. (b) *e interaction of HSF1 and indicated active ingredients.
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[24].*erefore, there is an urgent need to search for effective
and safer treatment. Herbal medicine is the main treatment
of TCM, and A&P has been used in the treatment of CKD
patients for a long time [25]. Our recent research has
revealed that A&P can improve renal injury in diabetic
nephropathy partly through inhibiting apoptosis or pro-
moting autophagy [25]. However, up to now, evidence on
A&P improving CKD remains to be poorly elaborated. In
light of this, an integrated network was constructed to
scientifically elaborate the potential mechanism of A&P on
CKD in this paper.

First, we retrieved the potential active ingredients and
regulatory proteins of A&P from the TCMSP and Swiss
Target Prediction database and 37 candidate components
and corresponding potential targets. Secondly, an integrated
network of A&P on CKD was constructed, and hub genes
including HSF1 and RELA were identified. Immediately
after that, we validated the reliability of hub genes in UUO
mice in the rodent model. Consistent with the expectation,
A&P treatment reversed the aberrant upregulation of HSF1
and RELA in UUO in a dose dependent manner both at the
transcriptional and protein levels. What’s more, the results
of molecular docking also suggest that potential effective
compounds have relatively stable binding energy with HSF1
and RELA, which provides a strong theoretical basis for us to
further explore the role of HSF1 and RELA in A&P delaying
or even reversing CKD induced by renal fibrosis.

Renal fibrosis in the process of CKD is the proliferation
of stromal cells such as fibroblasts. Previous studies suggest
that normal renal homeostasis requires HSF1 dependent
selective HSPs transcription to protect renal cells from
oxidative stress under physiological conditions, and HSP27
activation may have great potential in the treatment of renal
IRI. In addition, HSF1 is also involved in the process of liver
fibrosis, and the mechanismmay be that mir-455-3p reduces
the activation of hepatic stellate cells and liver fibrosis by
inhibiting the expression of HSF1 [23]. In the current study,
we observed that HSF1 laid a central role in A&P on CKD
and multiple active ingredients exhibited an intense binding
free energy with HSF1. RELA, also known as p65, is one of
NF-κB, a dimeric monopeptide protein that is ubiquitous in
mammals and has a wide range of biological functions. It is
well accepted that RELA participates in inflammation and
oxidative stress [26]. Similar to HSF1, active ingredients of
A&P such as eckol docked well into the RELA binding cavity
with strong binding affinity. In conclusion, molecular
docking and network pharmacology were used for the first
time to clarify the material basis of A&P in the treatment of
CKD. *is study is expected to broaden the selection range
of AP treatment methods and further prove the feasibility of
network pharmacology in the analysis of traditional Chinese
medicine prescriptions.

It should be remarked here that there were also short-
comings to the study: firstly, the active ingredients of A&P
were obtained from the TCMSP platform. *is may neglect
some potential active ingredients. In our future study, we
aim to resolve the active ingredients of A&P by HPLC-MS.
Secondly, it is better to perform RNA sequencing to elu-
cidate the targets of A&P rather than integrating the data

from microarrays, which causes the loss of information,
especially in the epigenetic field. Hence, we plan to carry out
RNA sequencing to obtain unbiased targets. In total, our
current study laid the foundation for elucidating the pro-
tective effect of A&P.
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