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Abstract

Connective Tissue Growth Factor (CTGF) and Transforming growth factor-b1 (TGF-b1) are key growth factors in regulating
corneal scarring. Although CTGF was induced by TGF-b1 and mediated many of fibroproliferative effects of TGF-b1, the
signaling pathway for CTGF production in corneal scarring remains to be clarified. In the present study, we firstly
investigated the effects of c-Jun N-terminal kinase (JNK) on CTGF expression induce by TGF-b1 in Telomerase-immortalized
human cornea stroma fibroblasts (THSF). Then, we created penetrating corneal wound model and determined the effect of
JNK in the pathogenesis of corneal scarring. TGF-b1 activated MAPK pathways in THSF cells. JNK inhibitor significantly
inhibited CTGF, fibronectin and collagen I expression induced by TGF-b1 in THSF. In corneal wound healing, the JNK
inhibitor significantly inhibited CTGF expression, markedly improved the architecture of corneal stroma and reduced corneal
scar formation, but did not have a measurable impact on corneal wound healing in vivo. Our results indicate that JNK
mediates the expression of CTGF and corneal scarring in corneal wound healing, and might be considered as specific targets
of drug therapy for corneal scarring.
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Introduction

The cornea is a highly transparent tissue located at the anterior

surface of the eye. Corneal scarring caused by injury or surgery is

one of the main causes of blindness worldwide [1]. So far, there is

no effective and safe strategy for the prevention or inhibition of

corneal scar formation in clinical practice. Therefore, research on

how to reduce corneal scarring in corneal wound healing will be of

great clinical value.

TGF-b1 has been found to play an important role in promoting

fibrosis and scarring in numerous tissues [2]. Many of the scarring

effects of TGF-b1 are mediated by CTGF [3]. CTGF is a 38-kDa

secreted protein belonging to the CCN family [4], and its expression

is induced by TGF-b1 in cultured fibroblasts [5,6]. CTGF has

been shown to promote the synthesis of various constituents of the

extracellular matrix [7,8] and its over-expression can promote

fibrosis and scar formation in skin, kidney, liver, brain, lung, human

gingiva, vasculature and pancreas [9,10,11].

TGF-b1 and CTGF are key growth factors in regulating corneal

scarring [12,13]. We have previously shown that expression of

TGF-b1 and CTGF increased dramatically during corneal wound

healing, TGF-b1 could induce CTGF expression in vivo [14].

TGF-b1 played an important role in the activation of quiescent

corneal keratocytes [15], CTGF was induced by TGF-b1 and

mediated the effect of TGF-b1 on collagen, fibronectin synthesis

[16]. This was consistent with other reports in which TGF-b1

increased CTGF expression in human corneal fibroblasts [12].

Antisense oligonucleotides and neutralizing antibodies to CTGF

decrease TGF-b1 induced collagen synthesis, cell proliferation and

matrix contraction in corneal fibroblast [17,18]. CTGF plays a

critical role in mediating many of the important fibroproliferative

effects of TGF-b1 in corneal fibroblasts. Therefore, understanding

mechanisms regulating expression of CTGF increased by TGF-b1

is of great importance to inhibit corneal scarring.

SMAD proteins are the primary substrates of TGF-b1 receptors

[19], whereas we previously found that TGF-b1 up-regulated

CTGF expression was not via SMAD pathways in rabbit corneal

wound healing [14]. In addition to SMAD proteins, the mitogen-

activated protein kinase (MAPK) pathways were involved in TGF-

b1 signaling [20]. MAPK pathways are a family of serine-

threonine protein kinases that are activated in response to a variety

of extra cellular stimuli. Extracellular signal-regulated kinase

(ERK), JNK and p38 pathway constitute three major subfamilies

of MAPK pathways [21]. It has been shown that TGF-b1 can

activate the ERK [22], JNK [23] and p38 [24] pathway. There

is evidence that TGF-b1 induced CTGF expression is medi-

ated through JNK in human lung fibroblasts [25]. In gingival

fibroblasts, the sole MAPK mediates the TGF-b1 stimulated

CTGF expression was JNK [26]. ERK mediates TGF-b1 induced

CTGF expression in skin fibroblasts [27]. Inhibition of p38 could
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suppress collagen I, fibronectin and CTGF expression induced by

TGF-b1 in conjunctival fibroblasts [28]. Our Previous studies

have shown that TGF-b1 induced the activation of JNK in corneal

fibroblast, inhibition of JNK pathway can effectively inhibit TGF-

b1 induced CTGF expression and subsequent corneal fibroblast

proliferation and collagen over-expression in corneal fibroblasts

[15]. However, the signaling pathway of CTGF production in

corneal wound healing remains unclear.

Based on these findings, it was hypothesized that MAPK

pathways could mediate CTGF expression and corneal scarring in

corneal wound healing. In the present study, we investigated

whether TGF-b1 could induced MAPK pathways phosphoryla-

tion in THSF cells, and determined the effect of the MAPK

pathways in TGF-b1 induced CTGF, fibronectin and collagen I

mRNA expression in THSF cells were investigated. Then, the

penetrating corneal wound model was created in vivo and the

effect of JNK on CTGF expression and corneal scarring in corneal

wound healing was identified.

Results

TGF-b1 induced MAPK pathways phosphorylation in
THSF cells

We investigated whether TGF-b1 could induce MAPK

pathways phosphorylation in THSF cells. THSF cells were treated

with 3 ng/ml of TGF-b1 for 15, 30, 60 and 120 minutes, followed

by extraction of the cellular protein. The expressions of total

and phosphorylated ERK1/2, p38, and JNK were determined by

Western blot analysis. As shown in Figure 1, THSF cells stimu-

lated with TGF-b1 induced a rapid increase in the phosphoryla-

tion of ERK, p38 and JNK. The maximum phosphorylation of

ERK was observed after 15 min of stimulation with TGF-b1.

While the maximum phosphorylation of p38 and JNK were

observed after 30 min of stimulation with TGF-b1.

Inhibitory effect of PD98059, SB203580 and SP600125 on
TGF-b1 induced MAPK pathways phosphorylation

The inhibitory effects of the three MAPK pathways-specific

inhibitors on TGF-b1 induced MAPK phosphorylation were

evaluated. THSF cells were pretreated with ERK inhibitor

(PD98059, 30 mM), p38 inhibitor (SB203580, 10 mM) or JNK

inhibitor (SP600125, 30 mM) for 1 h, respectively. Then the cells

were stimulated with TGF-b1 (3 ng/ml) for 15 min (ERK) or

30 min (p38, JNK). The expressions of total and phosphorylated

ERK1/2, p38, and JNK were determined by Western blot

analysis. As shown in Figure 2, TGF-b1 induced phosphorylation

of ERK, p38 or JNK were significantly inhibited by PD98059,

SB203580 or SP600125, respectively.

Effect of MAPK-specific inhibitors on expression and
secretion of CTGF induced by TGF-b1

To determine MAPK pathways requirements for the TGF-b1

induced CTGF expression, THSF cells were treated in the

absence or presence of ERK inhibitor (PD98059, 30 mM), p38

inhibitor (SB203580, 10 mM) or JNK inhibitor (SP600125, 30 mM)

for 1 h, respectively. TGF-b1 (3 ng/ml) was subsequently added to

the culture for 24 h. Expression of CTGF mRNA was determined

by real time PCR analysis. Figure 3 A shows that the presence of

SP600125 markedly inhibited CTGF mRNA expression. In

contrast, PD98059 and SB203580 showed weak effects on TGF-

b1 induced CTGF mRNA expression.

In addition, the concentration of CTGF secretions into the

medium was measured by ELISA analysis. As shown in Figure 3

B, compared with control, TGF-b1 significantly stimulated the

secretions of CTGF after 24 h treatment. SP600125 markedly

inhibited TGF-b1 stimulated CTGF secretion. However,

SB203580 or PD98059 had no effect on the secretion of CTGF

induced by TGF-b1.

Figure 1. TGF-b1 induced MAPK pathways phosphorylation in
THSF cells. THSF cells were incubated with TGF-b1 (3 ng/ml) for the
times indicated. The total and phosphorylation of ERK (A), p38 (B) and
JNK (C) MAPK were determined by using Western blot analysis. Data are
representative of three independent experiments. *, P,0.05 vs. control
cells without TGF-b1 stimulation.
doi:10.1371/journal.pone.0032128.g001

JNK Regulates Corneal Scarring
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Effect of MAPK-specific inhibitors on expression of
fibronectin and collagen I induced by TGF-b1

Next, we determined if MAPK pathways play any role in

TGF-b1 induced fibronectin and collagen I expression. THSF

cells were pretreated with ERK inhibitor (PD98059, 30 mM),

p38MAPK inhibitor (SB203580, 10 mM) or JNK inhibitor

(SP600125, 30 mM) for 1 hour, respectively. Subsequently they

were treated with TGF-b1 (3 ng/ml) for 24 hour. Expression of

fibronectin and collagen I protein was determined by Western

blot analysis. As shown in Figure 4, TGF-b1 significantly up-

regulated expression of fibronectin and collagen I. Fibronectin

expression was markedly decreased in the presence of SP600125

or SB203580. In contrast, no significant influence of PD98059 on

fibronectin expression was observed. In addition, expression of

collagen I was markedly attenuated by SP600125, whereas

PD98059 or SB203580 showed weak effects on TGF-b1 induced

collagen I expression.

Figure 2. Inhibitory effect of PD98059, SB203580 or SP600125
on TGF-b1 induced MAPK pathways phosphorylation in THSF
cells. THSF cells were pretreated with ERK inhibitor (PD98059, 30 mM),
p38 inhibitor (SB203580, 10 mM) or JNK inhibitor (SP600125, 30 mM) for
1 h, respectively. Then the cells were subsequently treated with TGF-b1
(3 ng/ml) for 15 min (A) or 30 min (B, C), followed by protein extraction
and Western blot analysis for total and phosphorylated ERK1/2 (A), p38
(B), and JNK (C). Data are representative of three independent
experiments. *, P,0.05 vs. control; #, P,0.05 vs. TGF-b1 group.
doi:10.1371/journal.pone.0032128.g002

Figure 3. SP600125 inhibited TGF-b1 induced CTGF expression
and secretion in THSF cells. THSF cells were pretreated with ERK
inhibitor (PD98059, 30 mM), p38MAPK inhibitor (SB203580, 10 mM) or
JNK inhibitor (SP600125, 30 mM) for 1 hour, respectively. Subsequently
they were treated with TGF-b1 (3 ng/ml) for 24 hour. (A) CTGF mRNA
expression levels were detected by real time PCR. (B) CTGF protein was
measured in conditioned medium samples using ELISA and results were
normalized for total protein concentration. Data are representative of
tree independent experiments. *, P,0.05 vs. control; #, P,0.05 vs. TGF-
b1 group.
doi:10.1371/journal.pone.0032128.g003

JNK Regulates Corneal Scarring
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SP600125 inhibited JNK phosphorylation induced by
penetrating corneal wound

We next examined whether JNK was indeed phosphorylated in

response to penetrating corneal wound and the effect of

subconjunctival injection of SP600125 on JNK phosphorylation

in vivo. Expression of p-JNK in the injured corneas was examined

by immunofluorescence analysis. As shown in Figure 5 A, there

was little expression of p-JNK in the cornea of normal rat, whereas

positive p-JNK staining was markedly increased in the corneal

stroma at 1 d after penetrating corneal wound (Figure 5 B). In

SP600125 group, p-JNK expression was significantly reduced

compared with control group received physiological saline

treatment (Figure 5 C). These results suggest that JNK was

activated after injury, subconjunctival injection of SP600125

notably inhibited JNK activation induced by penetrating corneal

wound.

SP600125 inhibited CTGF expression induced by
penetrating corneal wound

To investigate the effect of JNK on CTGF, TGF-b1 expression

after corneal injury in vivo, JNK was inhibited with subconjunctival

injection of SP600125. Expressions of CTGF, TGF-b1 mRNA were

determined by real time PCR analysis and expression of CTGF

protein was determined by immunofluorescence analysis. There

was little expression of TGF-b1, CTGF mRNA in the corneal

stroma without injury. After penetrating corneal wound, TGF-b1,

CTGF mRNA expression markedly increased and reached a peak

at 3 d. Inhibition of JNK with subconjunctival injection of

SP600125, expression of CTGF mRNA was clearly reduced

compared with control group received physiological saline treat-

ment (Figure 6 A), but there was no change of TGF-b1 mRNA

expression between groups (Figure 6 B). Figure 6 C shows that there

was dramatic expression of CTGF protein in the corneal stroma at

3 d after injury. In SP600125 group, expression of CTGF protein

was significantly reduced at 3 d after injury. These results suggest

that inhibition of JNK with subconjunctival injection of SP600125

could inhibit CTGF expression in corneal wound healing, whereas

it did not influence expression of TGF-b1.

SP600125 inhibited corneal scarring in rat corneal wound
healing

Finally, whether inhibition of JNK activation could affect

corneal scarring and corneal wound healing in vivo was

investigated. HE stained histological sections showed that there

were lamellar patterns and ordered collagen fibrils in normal

Wistar rat corneas. As shown in Figure 7, corneal epithelial

healing was almost completed at 3 d in both groups. In control

group, the newly produced corneal stroma was comprised of

disordered collagen fibrils and with loss of normal lamellar pattern.

Whereas in SP600125 group, subconjunctival injection of

SP600125 markedly improved the architecture of cornea and

reduced scarring. In SP600125 group, corneal stroma healing did

not completed at 3 d after injury, but subconjunctival injection of

SP600125 post-wounding daily did not have a significant impact

on wound stroma healing at 14 d and 21 d. These results suggest

that exogenous addition of SP600125 inhibits corneal scarring in

corneal wound healing.

Discussion

The transparency of the cornea is very important for the

maintenance of normal vision. Clinically, the major problem with

corneal healing following injury or surgery is corneal scarring. A

corneal scar may cause hypopsia or even blindness [29]. Fibroblast

proliferation and matrix synthesis induced by growth factors have

been assumed to be involved in initiating and maintaining fibrosis

[30]. Although the underlying mechanisms are complex, many of

the harmful aspects are mediated by the different effects of TGF-

b1 as the final universal pathway. TGF-b1 has been implicated in

many fibrotic disorders of the lung, liver, kidney and pancreas.

Treatment with antisense oligonucleotides or antibodies to TGF-

b1 in cell culture or animal models decreased extracellular matrixc

(ECM) synthesis or reduced scarring. Many of the effect of TGF-

b1 on ECM production, collagen synthesis and cell proliferatio-

nare mediated by CTGF. Namely, CTGF plays a critical role in

mediating the fibroproliferative effects of TGF-b1. Levels of

Figure 4. Effect of MAPK-specific inhibitors on expression of
fibronectin and collagen I induced by TGF-b1 in THSF cells.
THSF cells were pretreated with ERK inhibitor (PD98059, 30 mM),
p38MAPK inhibitor (SB203580, 10 mM) or JNK inhibitor (SP600125,
30 mM) for 1 hour, respectively. Subsequently they were treated with
TGF-b1 (3 ng/ml) for 24 hour. Expression of fibronectin and collagen I
protein was determined by Western blot analysis. (A) SB203580 or
SP600125 significant inhibited TGF-b1 induced fibronectin expression.
(B) SP600125 significant suppressed TGF-b1 induced collagen I
expression. Data are representative of three independent experiments.
*, P,0.05 vs. control; #, P,0.05 vs. TGF-b1 group.
doi:10.1371/journal.pone.0032128.g004

JNK Regulates Corneal Scarring
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CTGF are correlated with increased expression of ECM, such as

collagen I, integrins, and fibronectin. Therefore, it is important to

define the signaling pathway through which TGF-b1 induces

CTGF expression.

It is widely accepted that TGF-b1 stimulation results in the

activation of the MAPK pathways [27,31]. The MAPK pathways

are a family of serine threonine protein kinases that are activated

in response to a variety of extracellular stimuli [32]. ERK, p38 and

JNK constitute three major subfamilies of MAPK [33]. ERK plays

a major role in cell proliferation and differentiation, as well as in

survival mediated by various growth factors. JNK and p38 are

activated by various inflammatory cytokines and environmental

stressors and they play important roles in apoptosis and cytokine

production. Studies in renal fibroblasts and mesangial cells

demonstrated the requirement of ERK for TGF-b1 induced

CTGF expression [34,35]. However, in smooth muscle cells both

ERK and JNK are required for CTGF induction by TGF-b1 [36].

In another study using lung fibroblasts, it was determined that

CTGF expression was dependent on JNK, not p38 or ERK [25].

Inhibition of JNK suppressed TGF-b1 induced CTGF and

collagen I expression in mesangial cells [37]. In cultures of human

corneal epithelial cells, synthesis of CTGF induced by TGF-b1 is

through ERK [38]. Studies have shown that there are differences

in the requirement of specific MAPK for CTGF expression

inducted by TGF-b1 and this discrepancy may be explained due

to different cell lines and species.

In our study, THSF cells stimulated with TGF-b1 induced a

rapid activation of ERK, p38 and JNK (Figure 1). Pretreatment of

THSF cells with three MAPK pathways-specific inhibitors

(PD98059, SB203580 or SP600125) could significantly inhibited

the activation of ERK, p38 or JNK, respectively (Figure 2). To

elucidate which member of MAPK may be responsible for the

TGF-b1 induced CTGF, fibronectin and collagen I expression in

THSF cells, activation of p38, ERK and JNK were inhibited by

incubating THSF cells with SB203580, PD98059 and SP600125

for 1 hour before stimulation with TGF-b1, 24 h later expression

of CTGF, fibronectin and collagen I were determined. Our data

showed that inhibition of JNK by SP600125 suppressed expression

of CTGF, fibronectin and collagen I in response to TGF-b1

stimulation, whereas inhibition of p38 by SB203580 only resulted

in suppression of TGF-b1 induced fibronectin expression. On the

other hand, inhibition of ERK by PD98059 did not significantly

alter expression of CTGF, fibronectin or collagen I in response to

TGF-b1 (Figure 3 A, 4). CTGF is a secreted protein. We also

measured the concentrations of CTGF in cell culture superna-

tants. Our data showed that TGF-b1 significantly increased

CTGF secretions and SP600125 markedly inhibited TGF-b1

stimulated CTGF secretion. However, SB203580 or PD98059 had

no effect on the secretion of CTGF induced by TGF-b1 (Figure 3

B). These findings indicate that JNK is a key pathway in

modulating the signals through which TGF-b1 promotes CTGF,

fibronectin and collagen I expression in corneal fibroblasts.

Previous studies demonstrated that inhibition of JNK can

effectively inhibit TGF-b1 induced CTGF expression in corneal

fibroblasts [15,16]. The present results concur with the previous

report and expand the findings by demonstrating that p38 and

ERK are not required for CTGF induction by TGF-b1.

Our group previously demonstrated that TGF-b1 and CTGF

were upregulated dramatically in corneal stroma during corneal

wound healing, CTGF expression decreased dramatically in group

Figure 5. Evaluation of inhibitory effect of SP600125 on penetrating corneal wound induced JNK phosphorylation in Wistar rats. (A)
p-JNK was examined by immunofluorescence analysis. Five micrometer corneal sections were stained with antibodies to p-JNK (green) as well as with
nuclear staining dye (blue). There was little expression of P-JNK in the normal mice cornea of normal rats. (B) Penetrating injury was made in the
central cornea of Wistar rats, control group received daily subconjunctival injection of physiological saline. Positive p-JNK staining was markedly
increased in the corneal stroma at 1 d after injury. (C) Subconjunctival injection of SP600125 notably inhibited JNK activation in the corneal stroma at
1 d after injury. n = 4 rat in each group, Bars: 40 mm.
doi:10.1371/journal.pone.0032128.g005

JNK Regulates Corneal Scarring
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that wounded eyes were injected with TGF-b1 antibody

subconjunctivaly. TGF-b1 neutralizing antibody may inhibit

the biological functions of TGF-b1. Therefore, we indicated that

TGF-b1 could induce CTGF expression in vivo. To further

investigate the role of JNK in mediating CTGF expression and

corneal scarring in vivo, a penetrating corneal wound model

was created and JNK was inhibited with subconjunctival injection

of SP600125. Immunofluorescence results showed that there

was little expression of p-JNK in corneas of normal rat, but

p-JNK expression was greatly increased in the corneal stroma

after penetrating corneal wound. Subconjunctival injection of

SP600125 could inhibite p-JNK expression compared with

control group received physiological saline treatment (Figure 5).

This indicated that subconjunctival injection of SP600125 could

significantly inhibit activation of JNK induced by corneal

wounding. It was also found that expression of TGF-b1 mRNA,

CTGF mRNA and protein markedly increased in corneal stroma

after injury. Subconjunctival injection of SP600125 could clearly

inhibit CTGF mRNA and protein expression, but did not

influence TGF-b1 mRNA expression (Figure 6). These results

suggest that inhibition of JNK with subconjunctival injection of

SP600125 could inhibit CTGF expression in corneal wound

healing. Histological results showed that the newly produced

corneal stroma was comprised of disordered collagen fibrils and

with loss of normal lamellar pattern in control group, whereas

subconjunctival injection of SP600125 markedly improved the

architecture of corneal stroma and reduced corneal scarring

(Figure 7). The present results indicated that inhibition of JNK

could significantly inhibit corneal scarring after injury. These

findings established that excessive CTGF expression was

responsible for corneal scarring, and inhibition of JNK could

markedly decrease excessive expression of CTGF, and down-

regulation of CTGF expression caused a reduction of corneal

scarring.

It was also found that corneal epithelial healing was almost

complete at 3 d after injury in both groups and subconjunctival

injection of SP600125 did not have a significant impact on wound

stroma healing at 14 d and 21 d. Inhibition of JNK could

effectively reduce corneal scarring without having a deleterious

effect on healing in vivo. Previous reports have indicated that

CTGF cooperates with fibronectin in enhancing the attachment

and migration of human corneal epithelial cells [39]. Also, recent

studies demonstrated that in cultures of human corneal epithelial

cells, TGF-b1 induced CTGF synthesis through ERK and this is

required for cell migration [38]. However, it has been shown that

during re-epithelialisation of mouse corneas, TGF-b1 was found to

Figure 6. Evaluation of inhibitory effect of SP600125 on penetrating corneal wound induced CTGF expression in Wistar rats. (A) Real
time PCR was used to measure CTGF mRNA expression. The expression of CTGF mRNA was upregulated significantly in wounded corneas and
reached a peak at 3 d after injury, subconjunctival injection of SP600125 significantly inhibited injury-induced CTGF mRNA expression. (B) Real time
PCR was used to measure TGF-b1 mRNA expression. Subconjunctival injection of SP600125 did not influence the expression of TGF-b1. Data are
representative of three independent experiments. *, P,0.05 vs. 0 d; #, P,0.05 vs. control group at the same time point. (C) immunofluorescence was
used to measure CTGF protein expression. Five micrometer corneal sections were stained with antibodies to CTGF (red) as well as with nuclear
staining dye (blue). There was dramatic expression of CTGF protein in the corneal stroma at 3 d after injury. Subconjunctival injection of SP600125
notably inhibited CTGF expression. n = 4 rat in each group, Bars: 40 mm.
doi:10.1371/journal.pone.0032128.g006

JNK Regulates Corneal Scarring
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enhance re-epithelialisation by enhancing cell migration via p38

[40].

In summary, the present study demonstrates that TGF-b1 and

penetrating corneal wound induce JNK activation, and JNK

mediates CTGF expression induced by TGF-b1 and penetrating

corneal wound. Inhibition of JNK could inhibit excessive

expression of CTGF and subsequent corneal scarring without

clearly affecting wound healing in vivo. JNK could potentially

serve as a new strategy to reduce corneal scar formation.

Materials and Methods

Animals
Wistar rats (10-week-old male, 200–300 g) were obtained from

the Animal Supplier Center of Shandong University. All the

animal studies were approved by the Ethics Committee of

Shandong University, and animals were used in compliance with

the Association for Research in Vision and Ophthalmology

Statement for the Use of Animals in Ophthalmic and Vision

Research.

Reagents
TGF-b1 was obtained from Peprotech (Rocky Hill, NJ). Anti-

Collagen I antibody was purchased from Abcam (Cambridge,

MA), Antibodies against CTGF, fibronectin were purchased from

Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). Antibodies

against JNK, ERK1/2, p38 MAPK, phospho-JNK (Thr183/

Tyr185), phospho-ERK1/2 (Thr202/Tyr204) and phospho-p38

MAPK (Thr180/Tyr182) were obtained from Cell Signaling

Technology, Inc. (Danvers, MA). PD98059 and SB203580 were

purchased from Calbiochem (San Diego, CA), SP600125 was

obtained from A. G. Scientific, Inc (San Diego, CA).

Cell culture and treatment
THSF cells were maintained in Dulbecco Modified Eagle

Medium (DMEM; Invitrogen Life Technologies, Carlsbad, CA)

with 10% fetal bovine serum (Gibco, Carlsbad, CA) in a

humidified 5% CO2 incubator at 37uC. The cells were seeded

into 6-well plates at a density of 26105 cells per well in normal

growth medium. Before treatment, the cells were cultured in

serum-free DMEM for 24 h. The cells were treated in the absence

or presence of ERK inhibitor (PD98059, 30 mM), p38 inhibitor

(SB203580, 10 mM) or JNK inhibitor (SP600125, 30 mM) for 1 h,

respectively; TGF-b1 (3 ng/ml) was subsequently added to the

culture for the determined time depending on the different

purposes. The cells of control group were added to an equal

volume of serum-free medium. The culture media and cells were

harvested at the indicated time-points for measurement of RNA

and protein levels.

Enzyme-Linked Immunosorbent Assay (ELISA)
CTGF is a secreted protein, we measured the concentrations of

CTGF in cell culture supernatants by ELISA according to the

manufacturer’s instructions (Uscn Life Science Inc.,Wuhan,

China). Standards were run with each assay to ensure accuracy.

For quantitative results, the signal of unknown samples was

compared against a standard curve. CTGF levels were normalized

for total protein content in the sample using BCA Protein Assay

Kit (Beyotime, Jiangsu, China) and were expressed as ng mg21

protein for three replicate samples for each condition.

Animal model
The previously described experimental model was used for this

study [41]. Briefly, Wistar rats were anesthetized with chloral

hydrate and placed beneath a stereoscopic microscope. After

instilling Oxybuprocaine Hydrochloride eye drops for local

anesthesia, a penetrating linear incision of uniform size (3 mm)

was made with a scalpel in the center of cornea and treated with

interrupted suture. Erythromycin ophthalmic ointment was

applied for prevention of infection. Only one eye of each animal

was operated, another eye was used as the control. All corneal

surgeries were performed by the same surgeon to ensure

consistency across specimens. The process of corneal wound

healing was observed everyday by slit lamp. Only those corneas

that showed clinically normal healing without complication were

used in this study.

For experimental group, the wounded eyes received subcon-

junctival injection of SP600125 (50 mM) daily after operation.

While control group, the wounded eyes received subconjunctival

injection of physiological saline. The eyes of rats were examined

daily by slit lamp and sacrificed at 1, 3, 5, 7, 14 and 21 days

following the treatment.

HE and Immunofluorescent staining
Histological analysis of the cornea was as previously described

[42]. Briefly, half corneas of rats were fixed in 3.7% formaldehyde

for 24 hours and then were frozen in an optimal cutting

temperature (OCT; Sakura Finetek, Torrance, CA) compound.

Five micrometer corneal sections were sliced with a cryostat. Parts

of the sections were stained with hematoxylin and eosin. Sections

Figure 7. Evaluation of inhibitory effect of SP600125 on
penetrating corneal wound induced corneal scarring in Wistar
rats. A penetrating corneal wound model was created with Wistar rats
and inhibition of JNK activation by subconjunctival injection of
SP600125 daily post-wounding. (A) HE stained histological sections
showed that corneal epithelial healing was almost complete at 3 d in
both groups. Subconjunctival injection of SP600125 after injury daily
markedly improved the architecture of cornea and reduced scarring and
did not have a significant impact on wound stroma healing at 14 d (B),
21 d (C). n = 4 rat in each group, Bars: 40 mm.
doi:10.1371/journal.pone.0032128.g007

JNK Regulates Corneal Scarring
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for immunofluorescence analysis were blocked with 2% BSA in

PBS, and primary antibodies were applied overnight in a moist

chamber at 4uC. Fluorescein conjugated secondary antibodies was

applied for 1 hour in a dark incubation chamber at room

temperature. The negative control was prepared by incubation

with secondary antibody alone. HE stain was observed and

photographed using a Nikon UFX-IIA microscope, immunoflu-

orescence stain was examined under a fluorescence microscope.

Every sample was treated simultaneously to reduce variations

among fixation, embedding and section procedures.

Real-time RT-PCR
Real time RT-PCR was performed as previously reported

method [43]. In brief, RNA was isolated with Trizol, 2 mg RNA

was reverse-transcribed using oligo (dT), random hexamers and

Moloney murine leukemia virus (MMLV) reverse transcriptase

(Promega) in a final volume of 20 ml. The resulting cDNA was

used for quantitative real-time PCR with SYBR Green I (Tiangen

Biotech, Beijing, China) on ABI 7000 (Applied Biosystem Inc.,

CA, USA). Primers sequences were: CTGF: forward 59-GCTG-

GAGAAGCAGAGTCGTC-39, reverse 59-CCACAGAACTTA-

GCCCGG TA-39; TGF-b1: forward 59- GTCAACTGTGGAG-

CAACACG-39, reverse 59-AGAC AGCCACTCAGGCGTA-39;

b-actin: forward 59-CGTTGACATCCGTAAAGACC-39, reverse

59-TAGAGCCACC AATCCACA-39. All real-time PCR reac-

tions for each cytokine were performed in triplicate. Gene

expression levels were calculated and normalized by dividing the

calculated values for the mRNA samples by that of b-actin mRNA

at the same time point.

Western blot analysis
Western blotting proceeded as previously described [44].

Briefly, cultured cells were collected at the indicated times and

lysed by shaking at 4uC for 30 min in RIPA buffer (50 mM Tris-

HCl, 1% NP-40, 0.25% Na-deoxycholate, and 150 mM NaCl,

1 mM Na3VO4 and NaF) containing protease inhibitors (1 mg/ml

each of EDTA and phenylmethylsulfonyl fluoride). Cell lysates

were centrifuged at 12,000 g for 15 min at 4uC. The supernatant

was transferred to new Eppendorf tubes (Zhizhuang Biotech, Co.,

Ltd., Shanghai, China) and boiled for 5 min in sample buffer

(12 mM Tris-HCl, 10% glycerol, 10% sodium dodecyl sulfate and

1% 2-mercaptoethanol and 0.1% bromophenol blue, pH 6.8).

Total protein was quantified and 30 mg protein samples were

subjected to 10% sodium dodecyl sulfate-polyacrylamide gel

electrophoresis, and then transferred to nitrocellulose membranes.

The membranes were blocked with 5% skim milk in Tris-buffered

saline containing 0.05% Tween-20 for 2 h at room temperature

before overnight incubation at 4uC with primary antibodies. After

incubation with primary antibodies, nitrocellulose membranes

were extensively washed with Tris-buffered saline with 0.05%

Tween-20 and incubated with secondary antibodies for 2 h at

37uC. Protein bands were visualized using enhanced chemilumi-

nescence as described by the supplier (GE Healthcare). Densito-

metric analysis has been carried out with Quantity One software

(Bio-Rad, Hercules, CA).

Statistical analysis
Results were expressed as means 6 SD. Student’s t-test was

used to compare two groups of Results, whereas ANOVA was

used in multiple group comparisons. P,0.05 was considered

statistically significant. Data analysis was carried out with the

Statistical Package for Social Sciences (SPSS version 11.0).
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