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Abstract

Objectives

Clinical and experimental research studies have demonstrated that the emotional experi-

ence of anxiety impairs heart rate variability (HRV) in humans. The present study investi-

gated whether changes in state anxiety (SA) can also modulate nonlinear dynamics of

heart rate.

Methods

A group of 96 students volunteered to participate in the study. For each student, two 5-min-

ute recordings of beat intervals (RR) were performed: one during a rest period and one just

before a university examination, which was assumed to be a real-life stressor. Nonlinear

analysis of HRV was performed. The Spielberger’s State-Trait Anxiety Inventory was used

to assess the level of SA.

Results

Before adjusting for heart rate, a Wilcoxon matched pairs test showed significant decreases

in Poincaré plot measures, entropy, largest Lyapunov exponent (LLE), and pointwise corre-

lation dimension (PD2), and an increase in the short-term fractal-like scaling exponent of

detrended fluctuation analysis (α1) during the exam session, compared with the rest period.

A Pearson analysis indicated significant negative correlations between the dynamics of SA

and Poincaré plot axes ratio (SD1/SD2), and between changes in SA and changes in

entropy measures. A strong negative correlation was found between the dynamics of SA

and LLE. A significant positive correlation was found between the dynamics of SA and α1.

The decreases in Poincaré plot measures (SD1, complex correlation measure), entropy

measures, and LLE were still significant after adjusting for heart rate. Corrected α1 was

increased during the exam session. As before, the dynamics of adjusted LLE was signifi-

cantly correlated with the dynamics of SA.
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Conclusions

The qualitative increase in SA during academic examination was related to the decrease in

the complexity and size of the Poincaré plot through a reduction of both the interbeat interval

and its variation.

Introduction
Anxiety is a negative emotional response to threatening circumstances [1]. State anxiety (SA)
can be conceptualized as “a state in which an individual is unable to instigate a clear pattern of
behavior to remove or alter the event/object/interpretation that is threatening an existing goal”
[2]. The neural organization of anxiety spans multiple levels of the brain, from the complex vis-
ceral and somatic integration of the limbic system, to the elementary adaptive activity of the
brainstem [3]. Anxiety is associated with elevated high blood pressure [4], increased heart rate
(HR) [5] and an enhanced respiratory rate [6]. A key system, involved in the generation of this
physiological arousal is the autonomic nervous system (ANS) [7]. The ANS responds both to
central stimuli and to activation of reflex sensory inputs [8]. The simple reciprocal concept of
sympathovagal balance has been the keystone of ANS physiology for many years [9]. Reciproc-
ity is true for many autonomic reflexes, such as the baroreflex [10] or orthostatic stress [11]. In
contrast to homeostatic sensory inputs, however, descending influences from rostral brain
structures can evoke different patterns of autonomic reactivity, such as reciprocal, independent
or coactive changes in the parasympathetic and sympathetic branches of the ANS [7].

The principal property of the ANS is variability. Autonomic outflow has been well estab-
lished as intrinsically periodic [12, 13]. Some researchers [14, 15] proposed that brainstem
autonomic circuits generate this rhythm (the central oscillator theory). This theory is sup-
ported by the observation that different oscillations are present in the firing of sympathetic-
related neurons of the medulla [16]. The alternative theory (the baroreflex feedback loop the-
ory) postulates that a combination of time delays and feedback results in the oscillation of
blood pressure and HR [17, 18]. Mathematical models of the ANS reveal nonlinear properties
of these rhythms [19, 20].

Heart rate variability (HRV) is the difference between consecutive instantaneous beat inter-
vals (RR) [21]. HRV may be an independent marker of cardiovascular health [22] and an indi-
cator of ANS activity [23]. The HRV seems to show a beat-to-beat regulation to which the
sympathetic and parasympathetic modulatory influences are probably opposite [24, 25]. The
physiological background of HRV has been extensively described using statistical and linear
spectral analysis methods [26].

A physiological system, that generates the RR time series data, has been conceptualized as a
network of biological oscillators with non-linear proprieties [27]. Chaos is apparently a lawless
behavior of a nonlinear system totally ruled by deterministic laws [28]. A healthy cardiovascu-
lar system is associated with HRV of a chaotic nature; this chaotic nature reflects adaptability,
which can be defined as the capacity to respond to unpredictable stimuli [29]. Consequently,
nonlinear behavior would indicate greater flexibility and smaller predictability than a linear
behavior [30]. Complex temporal patterns of physiological signals can result from interaction
between nonlinear oscillatory systems, including those demonstrating chaotic behavior [30].

Different nonlinear measures of HRV quantify different features of nonlinear dynamics of
HR. Lyapunov exponents and entropy rates are measures of the dynamics on an attractor. The
correlation dimension describes the complex structure of the attractor approximating the
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fractal dimension. The Poincaré plot describes the evolution of a system. Detrended fluctuation
analysis (DFA) quantifies the fractal correlation properties in physiological time series. By
combining different nonlinear measures, different aspects of the underlying physiological pat-
terns may be captured [19, 20, 27, 30].

The Poincaré plot is a scatterplot in which current R-R is plotted as a function of previous
interval [31]. Poincaré plot analysis is based on a technique from nonlinear dynamics and pro-
vides detailed beat-to-beat information on the activity of the sinus node [31]. Analysis of the
Poincaré plot can be used to not only to classify the signal into one of various classes (e.g. tor-
pedo, butterfly, parabola, or comet) but also to fit an ellipse, which enables quantification of
the Poincaré map [32]. Application of this method includes measurement of autonomic modu-
lation, or randomness, of HR in physiological and clinical studies [32, 33, 34]. Anxiety is associ-
ated with a prominent reduction in the standard deviation of the Poincaré plot perpendicular
to the line of identity (SD1) [35, 36]. Karmakar et al. [37] proposed a novel descriptor, the
Complex Correlation measure (CCM), to quantify the temporal aspect of the Poincaré plot. In
contrast to SD1 and dispersion along the line of identity (SD2), this measure incorporates
point-to-point variation in the signal.

In time series analysis, time irreversibility refers to the lack of invariance of the statistical
properties of a signal under the operation of time reversal [38]. Asymmetric patterns (i.e.,
those with the ascending side shorter than the descending side or vice versa) suggest irrevers-
ibility, but irreversibility might not imply the presence of asymmetrical patterns [39].

Asymmetry is present in physiological systems as it is an essential property of a non-equilib-
rium system [40]. A visible and statistically highly significant asymmetry has been shown in
the Poincaré plot [41]. Porta et al. [39] examined the asymmetry of a Poincaré plot and showed
an interrelationship between time irreversibility, pattern asymmetry, and nonlinear dynamics.
Recent studies indicate that simple irreversibility indexes are sensitive to autonomic changes
during active orthostasis [42] and head-up tilt [39]. Some studies utilized the Poincaré plot in
the case of university examinations [43], mental effort [44], and anxiety disorders [35], but the
utility of irreversibility indexes and complex correlation measure for anxiety research have not
been well defined.

Fishman et al. [45] pioneered an innovative method of temporal Poincaré variability (TPV),
which is a novel analysis to quantify the temporal distribution of points and to detect nonlinear
sources responsible for physiological variability. Two measures of the Poincaré plot are pro-
posed. The first, called time-delayed TPV (TPVTD) is the measure of the similarity of an inter-
val to its successor. TPVTD is equivalent to SD1; and hence we excluded this method from
consideration. The second measure is called long-term TPV (TPVA) and is calculated using
the distance from the center of mass to the origin.

Another approach to the nonlinear analysis of HRV is quantification of complexity. The
most commonly used non-linear complexity measures are fractal dimensions of various kinds,
and measures based on entropy [46].

Entropy is the measure of system randomness and predictability, with greater entropy often
associated with more randomness and less system order [46]. The concept of entropy, as it
applies to signals such as RR intervals, is to quantify the repetition of patterns in that signal
[47]. Pincus [48] developed approximate entropy (ApEn) as a measure of system complexity.
ApEn (m,r,N) is approximately the negative natural logarithm of the conditional probability
that a dataset of length N, having repeated itself within a tolerance r form points, will also
repeat itself form + 1 points. Reduced ApEn values, indicating large predictability and less
complexity in HR dynamics, have been reported in patients with congestive heart failure [49]
and schizophrenia [50]. In addition, ApEn increases during exercise have been reported [51].
Cholinergic blockade with atropine does not significantly impact ApEn [52].
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To eliminate its limitation of dependency on the record length, Richmann and Moorman
modified the ApEn and introduced Sample Entropy (SampEn) [53]. SampEn is precisely the
negative natural logarithm of the conditional probability that two sequences similar for m
points remain similar for m+1 points, within a tolerance r, excluding self-matches [54]. Thus, a
higher value of SampEn also indicates less self-similarity in the time series [54]. Mateo et al.
[55] found that pre-competitive SA was associated with low SampEn. However, SampEn has
not yet been used as a measure of HRV in studies examining students’ SA.

The hallmark of physiological systems is their extraordinary complexity [56]. Experimental
and theoretical evidence suggests that under healthy conditions physiological signals may have
a fractal temporal structure [57]. Introduced by Peng and collaborators [58], DFA has become
a widely used technique for the determination of (mono-) fractal scaling properties and the
detection of long-range correlations in noisy, non-stationary time series. DFA is a scaling anal-
ysis method that involves the calculation of a simple quantitative parameter—the scaling expo-
nent α—to represent the correlation properties of a signal. The DFA method may be useful in
identifying and quantifying different states of the same system according to its different scaling
behaviors. For example, the scaling exponent α for heart interbeat intervals differs between
normal and pathological conditions [59]. DFA was originally used to analyze 24-hr Holter
recordings [58], but it is impractical for assessing HRV stress responses. Recent studies have
reported the susceptibility of short-term HRV to DFA [60]; this was the basis for computation
of DFA measures for a 5-min RR sequence. Unmedicated patients with major depressive disor-
der had a significantly increased DFA when compared with controls [35]. Pre-competitive anx-
iety is associated with an increased level of the short-term scaling exponent (α1) [54].
However, Mellilo et al. [43] found diminished α1 levels under academic stress.

In recent years, the interest in applying techniques that stem from the chaos theory in stud-
ies of electroencephalographic activity [61] and arterial pressure [62] has been increasing. The
largest Lyapunov exponent (LLE) is a simple non-linear measure of how fast two initially
nearby points on a trajectory will diverge or converge each other in a phase space; LLE quanti-
fies the sensitivity of the system to initial conditions and provides a predictability [63]. As of
yet, only a few studies have investigated the impact of acute stressors on HR measures of chaos
in healthy individuals. Hagerman et al. [64] demonstrated that in healthy individuals (33–51
years of age), the LLE of HRV significantly decreased during exercise stress. Both chronic and
acute stress experiences have been associated with a reduced LLE [43, 65].

In the presence of chaos, the complexity of HR dynamics can be quantified in terms of the
properties of the attractor in phase-space, that is, its correlation dimension (D2) [66]. This
measure is based on the presumption that dynamics is the output of a deterministic dynamical
system, whereas time-domain measures assume that the variability is around a stationary mean
and is noise [67]. D2 has been found to be greatly reduced by cholinergic blockade in both ani-
mal and human studies [68, 69]. Nahshoni et al. [67] found that patients with major depression
had significantly lower mean correlation dimension than healthy subjects. Schubert et al. [65]
showed that acute and chronic stresses are both associated with decreases in correlation dimen-
sion. The point D2 (PD2) estimate of the correlation dimension was developed by Skinner
et al. [70]. Like D2, PD2 describes the complexity of a system (i.e. number of independent vari-
ables needed to describe a system). The advantage of PD2 over D2 is its robustness to nonsta-
tionarity (i.e., change over the measurement period).

The fact that high HR is associated with lower variability in RR-intervals is well-known
[71]. Therefore, it is critical to correct HRV for the prevailing HR, as HR changes significantly
in response to academic stress during examination. Sacha and co-workers [72] previously dem-
onstrated that measures of HRV should be corrected by dividing or multiplying with the corre-
sponding mean RR interval.
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It is now generally accepted that nonlinear techniques are able to describe HRV in a more
effective manner. However, the ability of nonlinear measures of HRV to enhance our under-
standing of anxiety has only been partly investigated. This paper is focused on the hypothesis
that exam stress provokes changes in nonlinear parameters of HRV. Furthermore, we hypothe-
sized that a decrease in HRV is the consequence of a concurrent increase in HR.

Materials and Methods
The study group consisted of 96 (15 men and 81 women) healthy, nonsmoking volunteers (stu-
dents of Chuvash State Pedagogical University), whose ages ranged from 19 to 24 years
(mean ± SE: 20.53 ± 0.11 years). All the volunteers underwent physical and neurological exam-
inations, as well as routine laboratory tests, lung function test, a 12-channel electrocardiogra-
phy (ECG) recording, and chest radiographic examination, before the study. No evidence of
heart or pulmonary disease was found in any of the subjects. None of the subjects had been tak-
ing any medications for at least 2 weeks before the study. On the day of the study, the subjects
were instructed to avoid alcohol and caffeinated beverages for the 12 preceding hours and to
abstain from heavy physical activity since the day before. The study was approved by the local
Ethical Committee for biomedical research of Chuvash State University named I. N. Ulyanov.
Written informed consent was obtained from all the volunteers between 19 and 24 years of age
(in Russia, the legal age of consent is 18 years).

The mean height and weight of the subjects were 165.25 ± 0.86 cm (range, 145.50–189.50
cm) and 57.06 ± 0.93 kg (range: 41.00–85.00 kg); their body mass index was 20.99 ± 0.28
(range, 16.63–28.58 kg/m2). ECG was recorded in the supine position for 5 min in two differ-
ent days; the first recording was performed during the controlled resting condition (rest ses-
sion), while the second one was conducted just before the university verbal examination (exam
session). We chose the supine position for physiological and technical reasons. All time series
were checked manually by careful visual inspection of the RR intervals, as described previously
[73]. Two kinds of methods were used to avoid artifacts, such as false RR detection and ectopic
beats. For each record, we first detected artifact and ectopic intervals by using three standard
methods, namely percentage filter, standard deviation filter, and median filter [74, 75]. Next,
we replaced abnormal RR intervals with the mean value of the neighboring RR intervals that
were centered on the ectopic interval. Experiments were conducted at the same time of day
(08.00–12.00 h) and in the same room, maintained at 22°C. The Russian version of Spielber-
ger’s State-Trait Anxiety Inventory (STAI), was used to assess SA levels during the rest and
exam sessions [76]. The reliability and validity of this version has been evaluated by many
researchers [77]. The STAI State Anxiety Subscale evaluates the current state of anxiety by
using items that measure subjective feelings of apprehension, tension, nervousness, worry, and
associated with arousal of the autonomic nervous system [1]. The students’ STAI scores were
classified as low (0–30), moderate (31–45), and high (�46). Emotional reactivity refers to the
tendency to experience frequent and intense emotional arousal. In this study, we examined the
intensity of emotional experiences by using the STAI State Anxiety Subscale.

The following variables were used for the non-linear analysis: DFA (with the scaling compo-
nents α1 and α2), ApEn, SampEn, and the Poincaré plots (SD1, SD2, SD1/SD2, SS, Guzik’s
index of asymmetry (GI), and CCM). The Poincaré plots (return maps), correlating the obser-
vation n on the x-axis with observation n + 1 on the y-axis, were used to study HRV as a series
of discrete events. The primary method for quantifying the Poincaré plot is an ellipse-fitting
technique, although the ellipse serves only as a visual guide with no actual mathematical fit of
the data to the equation of an ellipse [31]. Brennan et al. [31] developed a method for quantita-
tive assessment of the ellipse, and we used this to estimate SD1, SD2, and SD1/SD2. The shapes
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of the Poincaré plots being categorized were, according to the value of SD1/SD2: a normal,
comet-shaped plot (SD1/SD2>0.15), and a torpedo-shaped plot (SD1/SD2<0.15) [32]. We
assessed the asymmetry of Poincaré plots by computing GI as follows [41], according to the
definitions of clouds proposed by Karmarkar et al. [78] Eq (1):

GI ¼
XM

i¼1
ðDiÞ2XN

i¼1
ðDiÞ2

� 100% ð1Þ

where Di is the distance of the plotted points from the line of identity, and M is the number of
points in the increasing cloud. The numerator corresponds to the increasing cloud, and the
denominator corresponds to the total number of points (N).

A novel extension of the Poincaré plot is the CCM, which measures beat-to-beat dynamics
[37]. The CCM was computed in the windowed manner, in which the temporal information of
the signal is embedded. The moving window of three consecutive points from the Poincaré
plot is considered and the area of the triangle formed by these three points are computed.
CCM is composed of all overlapping three-point windows and can be calculated as Eq (2):

CCMðmÞ ¼ 1

CnðN � 2Þ
XN�2

i¼1
jjAðiÞjj ð2Þ

where m represents the lag of the Poincaré plot (m = 1), A(i) represents the area of the triangle
(formed with ith, [i + 1]th and [i + 2]th points of the Poincaré plot) and Cn is the normalizing
constant, which is defined as: Cn = π × SD1 × SD2, representing the area of the fitted ellipse
over the Poincaré plot.

ApEn (m,r,N) is the negative natural logarithm of the conditional probability that a dataset
of length N, having repeated itself within a tolerance r for m points, will also repeat itself for m
+ 1 points Eq (3). The function is:

ApEn ¼ ln
AmðrÞ
BmðrÞ ð3Þ

where Am(r) is the probability that two sequences will match form points, and Bm(r) is the
probability that two sequences will match form + 1 points [79].

Computation of SampEn is similar to computation of ApEn, with only a small difference,
which is SampEn does not count self-matches [54].

Elimination of self-matches makes SampEn more reliable over short data sequences than
ApEn [54]. Previous works, in which measures of entropy were calculated for short sequences
of RR, have indicated that sample entropy can be accurately estimated from a set of 100 to
5000 data points when the length of the sequences to be compared (m) is set at 1 or 2 and the
tolerance level (r) for determining a difference between data points is set between 0.1 and 0.2 of
the standard deviation of the total data set [80]. Based on this and other works [81, 82] we
choose m = 2 and r = 0.2 × SD.

DFA quantifies the presence or absence of fractal correlation properties of the RR intervals
[58]. The DFA procedure [58] consists of four steps. First, the RR series obtained experimen-
tally is integrated by using the expression Eq (4):

YðkÞ ¼
XN

K¼1
½RRðiÞ � RRave� ð4Þ

where Y(k) is the kth term of the integrated series (k = 1, 2,. . ., N); RR(i) is the ith value of the
RR intervals, and RRave is the mean of the RR intervals of the original series, with N length.
Second, Y(k) is divided into N(t) non-overlapping segments of equal length (t). Next, we
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detrended the integrated time series, Y(k), by subtracting the local trend, Yn(k), in each box. In
step 4 we averaged overall all segments and calculated the square root to obtain the fluctuation
function Eq (5) as follows:

FðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
K¼1

jYðkÞ � YnðkÞj
2

vuut ð5Þ

This computation is repeated for all time scales, thereby obtaining a relationship between
the mean of the fluctuations [F(n)] and the size of the intervals (n). As F(n) measures the
average difference between two interbeat intervals separated by a time lag n, it quantifies the
magnitude of the fluctuations over different time scales n [58]. Typically, F(n) will increase
with box size n. A linear relationship on a log-log graph indicates a scale exponent law, that
is, F(n)� n×α. Under such conditions, the fluctuations can be characterized by a scaling
exponent α, which can be calculated by linear regression on a log—log graph [83]. Note that
α = 0.5 corresponds to a random walk (a Brownian motion), α = 1 represents 1/f noise and α
= 1.5 indicates Brown noise, the integration of white noise [58].

Tan et al. [84] showed that a single exponent is inadequate to describe HR dynamics. There-
fore, estimation of short- and long-term exponents, namely α1 and α2, has been proposed to
better describe HR dynamics [58]. We calculated α1 to a period of 4 to 11 beats and α2 to peri-
ods longer than 11 beats [60].

We estimated LLE by using the algorithm proposed by Rosenstein et al. [85, 86], which has
been shown to be particularly useful for small data series. It should be noted that before calcu-
lating the LLE, we estimated the number of embedded dimensions and time delay. Delay-time
(τ) was determined by using the first minimum of the auto mutual information function. The
Cao method was used to estimate the minimal embedded dimension (m) for the present study.
Finally, by using τ and m, the phase-space trajectory was reconstructed [87].

Chaotic dimensions were calculated with the pointwise correlation dimension (PD2) algo-
rithm [88] by using the Dataplore1 software. TPVA was calculated on a beat-to-beat basis
using a software package (http://engineering.case.edu/eecs/research).

In order to remove any mathematical bias from the HRV calculations, we used the HR cor-
rection methodology of Sacha et al. [72].

In the present investigation, we sought to address the following question: “Do nonlinear
indexes of HRV quantify the autonomic expressions of anxiety, in addition to time- and fre-
quency-domain indexes?” To address this question, we studied SDNN, the time-domain mea-
sure of HRV, and LF and HF, the spectral indexes of HRV.

Variables were not normally distributed; therefore, nonparametric statistical methods were
applied. TheWilcoxon Matched Pairs Test was first used to detect significant differences in val-
ues obtained at different time points (during the rest period and before the examination). The
Spearman's rank-order correlation coefficient was calculated to assess the monotonic relation-
ship between variables. Chi-square analysis was used to test proportions. The Mann-Whitney
U test was used to analyze differences between the subject groups. Statistical significance was
set at p< 0.05. All data were expressed as mean ± SE.

Results
At rest, all the students had moderate to low STAI scores (mean, 25.98 ± 0.99). Fifty-nine stu-
dents (61.5%) fell into the low STAI category while 37 (38.5%) had moderate scores. SA was
indeed higher in the exam session (41.78 ± 1.05, z = 8.56, p< 0.001). During the exam session,
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11 students (11.46%) had low SA scores, 53 (55.21%) had moderate SA scores, and 32 students
(33.33%) had high SA scores.

Individual SA results are summarized graphically in Fig 1.
Most participants (N = 90, 93.7%) showed an increase in SA during the exam session. The

transition from the rest session to the exam evoked qualitative increases in SA among the 61
students, from low to moderate in 32 students, from low to high in 18 students, and from mod-
erate to high in 11 students. We divided the participants into two groups based on their anxiety
patterns as follows: first, with qualitative increases in state anxiety (N = 61) and second, with
no increases (N = 35). The comparison between the two conditions, for the study of nonlinear
parameters of HRV, is shown in Table 1.

Analysis of HR changes during the exam session yielded an overall increase in HR. The
change in HR time from baseline did not differ between groups (first group, +11.95 ± 1.51
bpm; second group, +9.57 ± 1.9 bpm; p> 0.05). In our subjects, SDNN and HF were signifi-
cantly higher during the rest period than during the exam session. The low-frequency compo-
nent of RR variability decreased significantly during the exam session in the first group. SD1
was significantly lower during the exam session than the rest session in both groups. SD2
decreased significantly before the examination in the first group but not in the second group.
Increasing anxiety led to a significant decrease in SD1/SD2 value.

Fig 1. Individual data for examination-induced changes in state anxiety from rest session to the exam session. (A) Increasing from low to moderate
anxiety levels. (B) Increasing from low to high anxiety levels. (C) Increasing frommoderate to high anxiety levels. (D) Absence of qualitative changes in
anxiety.

doi:10.1371/journal.pone.0146131.g001
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The Poincaré plot at rest displayed a greater dispersion of points than the exam session. Fig
2 shows a significant reduction in area from low SA (rest session) to high SA (exam session),
with a contraction of length and a shortening of width in the plots. Compared with a student
with low anxiety, the center of the ellipse from a participant with high anxiety is shifted down
and to the left. Although the increase in SA induced a significant reduction in the width of the
Poincaré plots (Table 1), the correlation between the changes in SD1 and SA did not reach sta-
tistical significance (r = –0.08, p> 0.05). Our results did not show a relationship between SD2
dynamics and fluctuations of state anxiety (r = 0.05, p> 0.05). No significant (p> 0.05)

Table 1. Comparison between the two conditions of the study for heart rate variability analysis.

HRV indexes All participants 1-st group 2-nd group

Rest Exam Rest Exam Rest Exam

HR [bpm] (bpm) 72.22±0.93 83.39±1.16# 71.67±1.08 83.62±1.47# 73.36±1.78 82.92±1.87#

SDNN [ms] 53.55±1.80 44.78±1.56# 53.75±2.14 45.10±1.77# 53.14±3.32 44.12±3.13#

LF [ms2] 800.16±64.15 650.33±51.45* 809.86±76.34 640.96±55.74* 780.25±118.08 669.26±108.76

HF [ms2] 1221.42±109.40 673.73±71.60# 1178.45±116.33 607.92±78.66# 1309.62±235.45 808.82±145.58#

SD1 35.84±1.54 25.58±1.39# 36.38±1.78 24.57±1.62# 34.73±2.98 27.66±2.62#

SD2 65.74±2.12 59.18±1.96# 66.43±2.6 58.75±2.12* 64.32±3.7 60.05±4.16

SD1/SD2 0.55±0.02 0.42±0.01# 0.55±0.02 0.4±0.02# 0.54±0.03 0.45±0.02#

GI 0.51±0.01 0.48±0.01* 0.51±0.01 0.49±0.01* 0.50±0.02 0.46±0.02

CCM 0.26±0.01 0.19±0.01# 0.27±0.01 0.18±0.01# 0.25±0.02 0.21±0.01*

TPVA 54.89±1.7 56.44±1.65 54.98±2.1 56.29±1.63 54.71±2.84 56.75±3.83

ApEn 1.21±0.01 1.19±0.01 1.22±0.01 1.18±0.02* 1.19±0.02 1.20±0.02

SampEn 1.87±0.02 1.68±0.03# 1.89±0.02 1.65±0.04# 1.82±0.04 1.75±0.04

α1 0.90±0.02 1.10±0.02# 0.90±0.03 1.13±0.03# 0.89±0.04 1.04±0.04

α2 0.83±0.02 0.88±0.02* 0.85±0.02 0.89±0.02 0.80±0.03 0.87±0.03

LLE 0.30±0.01 0.25±0.01# 0.31±0.02 0.23±0.01# 0.27±0.02 0.29±0.02

PD2 3.75±0.09 3.57±0.07# 3.62±0.10 3.41±0.08# 4.02±0.18 3.90±0.15

Exam vs rest:

* p<0.05;
#p<0.01.

doi:10.1371/journal.pone.0146131.t001

Fig 2. Poincaré plots during the rest (A) and exam sessions (B).

doi:10.1371/journal.pone.0146131.g002
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differences in the changes in the quantitative measures of Poincaré plot shape were observed
between the groups.

Statistical analysis of the ratio between width and length of Poincaré plots (SD1/SD2)
revealed a significant decrease in this parameter in both groups. Increased SA was associated
with decreased SD1/SD2 (r = –0.20, p< 0.05).

In this study, we used the GI range 0.49 to 0.51 as symmetrical [37]. Fig 3 shows the GIs for
the rest and exam sessions.

During the rest and exam sessions, 93% and 85% of the subjects, respectively, were found to
be asymmetrical. The chi-square analysis demonstrated a non-significant difference between
the two sessions (p> 0.05). GIs, measured before examination, were slightly lower, but the dif-
ference did not reach statistical significance in either group. The results of the statistical analy-
sis of GI showed no significant difference in response magnitude between the groups (mean GI
change: –0.03 ± 0.01 in the first group vs. versus –0.04 ± 0.02 in the second group; p> 0.05). In
the assessment of whole range of SA from low to high levels measured at the rest and exam ses-
sions, changes in GI did not show a consistent correlation with the dynamics of SA (r = –0.04,
p> 0.05). CCM decreased significantly in both groups, but the changes were greater in the first
group (–0.09 ± 0.01 vs.–0.04 ± 0.02; p< 0.05). This decrease was correlated with an increase in
SA scores (r = –0.21, p< 0.05). The increment in TPVA between the rest and exam sessions
was insignificant, and increases in SA scores showed a weak positive association with increases
in TPVA (r = 0.12; p> 0.05).

Increases in SA scores were associated with significant changes in ApEn value in the group
of students with high emotional reactivity (Table 1), and the dynamics of ApEn significantly
correlated with changes in SA (r = –0.29, p< 0.05). The changes in ApEn score differed
between the students who differed in SA scores (mean ApEn change: –0.05 ± 0.02 in first
group, vs. 0.014 ± 0.03 in second group; p< 0.05). As shown in Table 1, the mean SampEn val-
ues tended to decrease before the exam session in the first group. By contrast, we found that
this decrease was significantly less prominent in the second group (–0.07 ± 0.05 vs. –
0.25 ± 0.04 in first group; p< 0.01). The SampEn changes correlated significantly with changes
in SA scores (r = –0.26, p< 0.05).

The effect of the quantitative increase in SA scores on short—term scaling exponent α1 was
significant. The difference in magnitude of the α1 change between the groups was also signifi-
cant (mean α1 change –0.05 ± 0.02 in first group, vs. 0.014 ± 0.03; p< 0.05).

Fig 3. Guzik’s indexes for the rest session (panel A) and exam session (panel B).

doi:10.1371/journal.pone.0146131.g003
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Our results show a positive correlation between increased SA scores and changes in α1
(r = 0.22, p< 0.05). No association was found between changes in SA scores and α2 (r = 0.1,
p> 0.05).

We found significantly lower levels of LLE during the exam session. The changes in LLE dif-
fered between the groups (p< 0.01), with negative values found in the first group (mean LLE
change –0.08 ± 0.02 in the first group, vs. 0.013 ± 0.02 in second group). By plotting the
dynamics of LLE as a function of the corresponding SA scores (Fig 4), we showed that LLE was
significantly negatively correlated with SA (r = –0.45; p< 0.05).

In the second group of students, who did not have a qualitative change in anxiety, PD2 did
not differ between the sessions (Table 1). However, PD2 was significantly decreased before the
examination in the first group. The Pearson analysis demonstrated weak negative correlations
between the changes in PD2 and the changes in SA (r = −0.14; p> 0.05).

We examined the correlations between measures of HRV and HR (Table 2).
HR was significantly negatively correlated with the width (SD1) and length (SD2) of the

long and short axes of the Poincaré plot images. The correlations for the exam session were
slightly higher than the correlations for the rest session. Correlations between the Poincaré plot
axes ratio (SD1/SD2) and HR indicated a strong, negative relationship between these two mea-
sures. The asymmetry index GI had a significant negative association with the ratio of HR. HR
was negatively correlated with temporal dynamics of the Poincaré plot, estimated by the

Fig 4. Correlation between the dynamics of state anxiety (DYN SA = SA at exam − SA at rest) and Largest Lyapunov exponent (LLE; DIN LLE = LLE
at exam − LLE at rest).

doi:10.1371/journal.pone.0146131.g004
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complex correlation measure (CCM). Although Pearson correlation analysis showed that HR
was significantly and negatively associated with all of the above-mentioned indicators of the
Poincaré plot, the measure of long-term temporal Poincaré variability TPVA was not signifi-
cantly correlated with HR. Approximate entropy showed a strong positive association with HR
measured during the rest session, but did not have a significant correlation with HR measured
before the exam session. Significant negative correlations were observed between HR and Sam-
pEn during both sessions, as shown in Table 2. We found that elevated HR was significantly
associated with increases in the short-term scaling exponent α1. The long-term scaling expo-
nent α2 showed a statistically significant positive correlation with HR during the exam session.
The correlation between PD2 and HR was significant at rest (p< 0.05), based on the Pearson
correlation statistical analysis. Baseline levels of LLE were significantly correlated with HR. The
results from the present study suggest that the effects of exam stress are partly mediated by
increased HR. All conventional linear measures of HRV (SDNN, LF and HF) correlated signifi-
cantly (P< 0.001) with HR. A statistically significant difference in ApEn was found between
the correlation coefficients.

The formulas for correcting HRV are given in S1 Table. Table 3 shows nonlinear HRV
indexes, adjusted for HR.

Table 3 presents the adjusted results of the SDNN, LF, HF and nonlinear HRV indexes for
the resting and examination conditions. The Wilcoxon test for HR-corrected convenient HRV
indexes showed no significant difference between the rest and exam sessions. After correction
for HR, the corrected SD1 and SD1/SD2 were still decreased (p< 0.01), while SD2 was slightly
increased (p> 0.05). The finding of decreased CCM in the second group (subjects with less
pronounced emotional response) during the transition from the rest session to the exam ses-
sion largely disappeared after adjustment for HR. The results of our analysis show that when
HR is taken into account, the difference between the average GI during the rest and exam ses-
sions was decreased to a non-significant level in the first group. HR correction did not influ-
ence the change in ApEn, SampEn, and LLE. The use of HR correction formulas led to a

Table 2. Pearson correlations between Poincaré plot dimensions, measures of entropy, short- and long-term exponents, Largest Lyapunov expo-
nent, pointwise correlation dimension, and heart rate.

HRV indexes Correlation with HR at
rest

Correlation with HRat
exam

Difference between correlation coefficients (p)

r p r p

SDNN -0.470 <0.001 -0.550 <0.001 0.416

LF -0.361 <0.001 -0.499 <0.001 0.203

HF -0.514 <0.001 -0.583 <0.001 0.458

SD1 -0.611 <0.001 -0.657 <0.001 0.563

SD2 -0.396 <0.001 -0.452 <0.001 0.608

SD1/SD2 -0.547 <0.001 -0.636 <0.001 0.303

GI -0.467 <0.001 -0.263 0.004 0.076

CCM -0.551 <0.001 -0.658 <0.001 0.204

TPVA -0.044 0.637 -0.017 0.295 0.839

ApEn 0.416 <0.001 -0.016 0.857 0.001

SampEn -0.524 <0.001 -0.599 <0.001 0.410

alpha1 0.487 <0.001 0.481 <0.001 0.953

alpha2 0.146 0.118 0.329 <0.001 0.151

LLE 0.202 0.029 -0.021 0.826 0.091

PD2 -0.001 0.993 -0.187 0.044 0.158

doi:10.1371/journal.pone.0146131.t002
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significant reduction in PD2 dynamics in both groups. After adjusting for HR, the dynamics of
LLE was still significantly negatively associated with the dynamics of anxiety (r = −0.43;
p< 0.05). Differences in the changes in the HRV nonlinear parameters (with the exception of
DFA) between the groups were not altered after correction for HR.

Discussion
This study investigated how SA in academic conditions is related to the nonlinear dynamics of
HRV. Nonlinear analysis methods are designed to assess the quality, scaling, and correlative
properties of signals [29]. We confirmed the effect of increased anxiety on the HR fluctuation
by comparing nonlinear HRV indexes between rest and exam sessions. The physiological
meaning of Poincaré plot shape and indexes has been examined in different functional states
[32, 89, 90]. The relationship between autonomic function and the shape of the Poincaré plot
has been established; that is, the narrower the observed pattern, the larger the shift in sym-
pathovagal balance toward an increase in sympathetic nervous system activity [91, 92]. Norepi-
nephrine infusion in healthy volunteers has been shown to cause a sudden change in fixed RR
interval dynamics, resulting in a torpedo-shaped Poincaré plot [32]. Meanwhile, atropine
administration results in a reduction in the width of the Poincaré cloud [78]. SA is associated
with a prominent change in sympathovagal balance [93]; nevertheless, normal comet-shaped
scatter plots (and no torpedo-shaped plots) were observed for all subjects in both conditions.

Infusion of atropine induced a reduction in SD1 [87, 94], indicating that the “width” of the
Poincaré plot is a measure of parasympathetic nervous system activity [95–97]. Our findings
suggest that SA has a predominantly inhibitory effect on parasympathetic activity in exam situ-
ations, as the SD1 parameter is significantly lower in exam situations than in the rest situations.
SD2 is a nonlinear index with uncertain physiological meaning and interpretation. It is thought
to reflect the continuous long-term variability of the RR intervals [89, 98]. Guzik et al. [99]

Table 3. Heart rate-corrected measures of heart rate variability.

HRV indexes All participants 1-st group 2-nd group

Rest Exam Rest Exam Rest Exam

SDNN 21.67±0.69 21.92±0.60 21.54±0.84 22.18±0.65 21.94±1.22 21.39±1.25

LF 1094.85±84.49 1108.66±75.70 1100.89±102.82 1092.98±77.79 1082.45±155.49 1140.85±168.74

HF 2243.60±220.78 1863.35±160.08 2214.95±268.06 1608.66±125.57 2302.39±394.17 2386.13±405.93

SD1 48.32±1.59 43.94±1.74# 48.74±2.02 42.11±1.92# 47.45±2.53 47.69±3.5

SD2 77.54±2.4 79.39±2.39 77.88±3.02 78.91±2.37 76.85±3.99 80.36±5.49

SD1/SD2 0.22±0.006 0.20±0.006# 0.22±0.006 0.20±0.008# 0.22±0.01 0.22±0.006

GI 17.48±0.23 17.76±0.28 17.54±0.27 18.14±0.29 17.37±0.44 16.96±0.62

CCM 0.10±0.003 0.09±0.002# 0.11±0.003 0.09±0.003# 0.10±0.005 0.10±0.003

ApEn 1.70±0.012 1.65±0.02 1.71±0.01 1.64±0.02# 1.66±0.03 1.67±0.03

SampEn 0.64±0.006 0.62±0.009* 0.65±0.007 0.61±0.011# 0.63±0.012 0.64±0.011

α1 0.74±0.017 0.80±0.016# 0.76±0.02 0.82±0.02* 0.73±0.03 0.76±0.03

α2 0.24±0.005 0.24±0.004 0.25±0.006 0.24±0.005 0.23±0.009 0.24±0.008

LLE 0.86±0.034 0.68±0.031# 0.90±0.04 0.64±0.04# 0.79±0.05 0.78±0.05

PD2 0.70±0.02 0.70±0.01 0.67±0.02 0.66±0.015 0.75±0.03 0.075±0.03

Exam vs. rest:

* p<0.05;
#p<0.01.

doi:10.1371/journal.pone.0146131.t003
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interpreted the SD1/SD2 ratio as a measure of the balance between short- and long-term HRV.
During the exam session, the SD1/SD2 ratio decreased significantly owing to the important
reduction in SD1 compared with SD2. This highlights the parasympathetic withdrawal and
sympathetic activation associated with the transition to a higher level of SA. Our results con-
firm the effect of anxiety and mental effort on the Poincaré plot [35, 44]. However, our research
lends additional insight into the study of SA by using quantitative measures of Poincaré plot
shape. In contrast to a previous work [43], we found a significant reduction in the SD2 mea-
sured before the examination.

Asymmetry of a Poincaré plot is associated with time irreversibility and nonlinear dynamics
[39, 42]. Temporal irreversibility and asymmetry are prominent features of HRV, and differ-
ences between HR accelerations and decelerations are related to the physiological or pathologi-
cal states of organisms [39, 42]. This property was confirmed by analysis of our scatterplots.
Our results exhibit prominent asymmetry of the Poincaré plot, indicating that the heart period
variability in most of the students was irreversible, regardless of SA levels. Considering that the
detection of time irreversibility implies the presence of nonlinear dynamics, we can conclude
that short-term heart period variability is nonlinear in a major portion of participants during
both sessions [42]. Asymmetry in the GI slightly and non-significantly decreased during the
exam session. According to Porta et al. [39], an important shift in sympathovagal balance
toward vagal withdrawal is associated with an increase in the asymmetry of Poincaré plot. Ton-
hajzerova et al. [100] found prominent reductions in the resting HR time irreversibility indexes
in adolescent female patients with major depressive disorder. The absence of the effect in our
study may have to do with the difference between SA and depression [101].

From the theoretical definition of CCM, it is obvious that this measure quantifies variability
in the temporal structure of Poincaré plots [37]. CCM quantifies underlying temporal dynam-
ics in a Poincaré plot; the decrease in CCM indicates increased regularity and decreased vari-
ability [37]. The value of CCM decreased with the decrease in parasympathetic activity during
atropine infusion and 70° head-up tilt phase test [78]. This suggests that the low CCM during
the exam session was caused by an increase in sympathovagal balance. The decrease in CCM
indicates a reduction in RR variability and increasing regularity, associated with potential risk
of cardiovascular events [102]. Our results can be compared with those from the work of Jelli-
nek et al. [103]. Their study demonstrated a significant reduction in CCM in patients with
depression, and they suggest that CCM is more sensitive to parasympathetic nervous system
activity, than SD1 and SD2. The increment in TPVA between the rest and exam sessions was
insignificant, and the increases in SA level showed a weak positive association with the
increases in TPVA (r = 0.12; p>0.05). The authors of the temporal Poincaré variability meth-
odology [45] theorized that this method assesses general patterns of temporal change in HR
associated with nonlinear dynamics and complements other time-dependent methods. How-
ever, our results do not promote the utility of TPVA as a marker of anxiety-induced changes in
HRV.

Entropy, as it relates to dynamical systems, is the rate of information production [46–48],
and approximate entropy can be used to classify complex systems, such as physiological sys-
tems [53]. Reduction in entropy means greater regularity; this condition is associated with sick-
ness and aging [47]. Previous studies reported discrepant results concerning the effect of
negative emotions and stress on complexity measures based on entropy. Valenza et al. [104]
found that the mean ApEn decreased significantly during arousal elicited by pictures. Mellilo
et al. [43] showed decreased ApEn due to university examination. Anishchenko et al. [105]
reported, in healthy young subjects, that short-term psychological stress was associated with
both decreases and increases in HR complexity (i.e., approximated entropy). The present data
show that ApEn and SampEn decrease significantly in the group of students with high
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emotional reactivity. The decreases in indexes of HR complexity during the exam session
reflects a shift of the sympathovagal balance toward sympathetic predominance [80] and a risk
of cardiovascular events [106]. These effects of SA on entropy measures are in line with studies
that examined the relationship between HR complexity and high-stress musical performance
[107] or arithmetic stress [108].

Physiological investigations have shown that the heart and other physiological networks
behave most chaotically when they are young and healthy [57, 59]. The chaotic behavior of
healthy physiological networks should not be interpreted as transient perturbations produced
by a fluctuating environment, but rather as a necessary component of normal functioning [57].
The output of healthy systems offers a type of complex variability associated with long-range,
fractal-like correlations [57]. DFA has been suggested to be the most appropriate method to
quantify the fractal properties of a time series of RR intervals. In the present study, the
increased values of α1 observed during the shift to higher levels of SA revealed a strong positive
association between STAI score and short-term correlations in the RR data. Norepinephrine
spillover does not induce prominent changes in short-term scaling exponent [81], but tilt is
associated with a significant increase in α1 [51]. Results on vagal blockade with atropine sug-
gest that the increase in the short-range exponent during the exam session was due to cardiac
parasympathetic withdrawal. The correlation between the dynamics of SA level and α1 was
also related to changes in cardiac vagal activity.

Our results confirm the finding from the study of Valenza et al. [104] in which healthy vol-
unteers were subjected to emotional visual elicitation, along with measurement of nonlinear
indexes of HRV during the neutral and arousal sessions. Their research demonstrated that LLE
decreased significantly during arousal elicitation. Using the PD2 algorithm of Skinner et al.
[88], we showed that statistically significant changes in heartbeat PD2 as SA level increases.

Although the association between traditional measures of HRV and HR is well recognized,
we have not found any studies concerning the correlation between HR and nonlinear measures
of HRV. We demonstrated that all nonlinear indexes of HRV, except TPVA, are associated
with HR. Monfredi et al. [109] proposed a biophysical model that explains this phenomenon.
They postulated that “HRV is primarily dependent on HR and cannot be used in any simple
way to assess autonomic nerve activity to the heart.”However, the decreases in SD1, SD1/SD2,
CCM, SampEn and LLE in response to the stress from academic examination was not altered
by correction for HR. By contrast, the association between anxiety and linear HRV measures
was greatly attenuated by adjustment for HR. These data strongly suggests that even after
adjusting for HR, anxiety induces reductions in the complexity of HRV.

Our findings resemble the Neurovisceral Integration Model [110]. Thayer and Friedman
proposed a model that relates anxiety to vagal tone, autonomic flexibility, and adaptability [93,
110]. The model postulates that emotions may be characterized as a reaction to an environ-
mental event that facilitates the rapid mobilization of cognitive, behavioral, and autonomic sys-
tems toward action. The efficient interaction between these systems allows for maximal
organism flexibility in adapting to a changing environment. According to the neurovisceral
integration model, flexibility is an important determinant of adaptation to threatening condi-
tions and anxiety is associated with a systemic inflexibility grounded in poor inhibition [93].
Strong emotions, such fear or phobia, can induce loss of complexity and adaptability [93]. The
observed decrease in sample entropy may suggest a shift toward simplification of cardiovascu-
lar regulation and reduction of flexibility [106]. Relatively low levels of SD1 and SD2 during
the exam session indicate a decrease in HRV associated with an increase in SA; reduced HRV
is common in a wide range of maladaptive conditions [93].

The present study is not without limitations. One limitation is that we did not complete the
descriptive picture of the nonlinear dynamics of heart rate in anxiety through the use of fuzzy
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measure entropy, the Hurst exponent, and multiscale entropy. Another limitation may be
related to the small number of participants who had decreased SA levels during the exam ses-
sion. However, these study limitations are balanced by strong points. The strength of this
research is that we examined cardiac autonomic functions in a younger cohort of healthy par-
ticipants without anxiety and depression disorders by using a battery of comprehensive Poin-
caré plot methods, including computation of complex correlation measures and Guzik’s index
of asymmetry.

Most of the studies that investigated academic stress, tended to neglect interindividual dif-
ferences in intraindividual changes in SA under exam stress. To our knowledge, only a handful
of studies considered individual differences in anxious arousal. Although we do not claim abso-
lute originality, the present study differs from previous studies in several ways. First, in keeping
with the literature that suggests the existence of distinct types of anxiety style [88, 111, 112,
113], we included two groups of students divided according their patterns of anxiety arousal.

Second, compared with previous studies on exam stress [43, 114, 115, 116], we assessed the
correlation between changes in HRV indexes and changes in SA scores. Finally, whereas previ-
ous studies only demonstrated the effects of stress on unadjusted nonlinear measures of HRV
[43, 65, 108], the present study also provides analyses of HR-corrected HRV indicators. In
sum, our approach thus signifies an important step toward understanding how stress influ-
ences nonlinear dynamics of HRV.

In conclusion, this study shows that SA is associated with alterations in the complexity of
HRV. Our results also suggest that the decrease in HRV and the increase in short-term fractal
exponent differed among subjects, and that the prominent loss in the complexity of heart rate
variability is associated with a qualitative change in state anxiety.
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