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Abstract
Giardia duodenalis infections are among the most common causes of waterborne diarrhoeal

disease worldwide. At the height of infection,G. duodenalis trophozoites induce multiple

pathophysiological processes within intestinal epithelial cells that contribute to the develop-

ment of diarrhoeal disease. To date, our understanding of pathophysiological processes in

giardiasis remains incompletely understood. The present study reveals a previously unap-

preciated role forG. duodenalis cathepsin cysteine proteases in intestinal epithelial patho-

physiological processes that occur during giardiasis. Experiments first established that

Giardia trophozoites indeed produce cathepsin B and L in strain-dependent fashion. Co-

incubation ofG. duodenalis with human enterocytes enhanced cathepsin production by

Assemblage A (NF and S2 isolates) trophozoites, but not when epithelial cells were

exposed to Assemblage B (GSM isolate) trophozoites. Direct contact betweenG. duodena-
lis parasites and human intestinal epithelial monolayers resulted in the degradation and

redistribution of the intestinal epithelial cytoskeletal protein villin; these effects were abol-

ished when parasite cathepsin cysteine proteases were inhibited. Interestingly, inhibition of

parasite proteases did not prevent degradation of the intestinal tight junction-associated

protein zonula occludens 1 (ZO-1), suggesting thatG. duodenalis induces multiple patho-

physiological processes within intestinal epithelial cells. Finally, this study demonstrates

thatG. duodenalis-mediated disruption of villin is, at least, in part dependent on activation of

myosin light chain kinase (MLCK). Taken together, this study indicates a novel role for para-

site cathepsin cysteine proteases in the pathophysiology ofG. duodenalis infections.
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Introduction
Giardia duodenalis (syn. G. intestinalis, G. lamblia) is a non-invasive protozoan parasite of the
upper small intestines of mammals, including humans. This parasite is a common cause of
waterborne diarrhoeal disease worldwide, and is estimated to infect over 280 million individu-
als annually with 20,000 cases reported per year in the US alone [1, 2]. Importantly, infection
has been shown to cause stunting and failure to thrive in young children and in food-producing
animals [3–6]. Furthermore, G. duodenalis infections can also result in the development of
extraintestinal or post-infectious complications [7, 8]. Due to the high burden of G. duodena-
lis-related illness in the developing world, its impairment on development and socioeconomic
improvements, and its close association with poverty, this parasite has been included on the
World Health Organization’s (WHO) Neglected Diseases Initiative since 2006 [9]. Therefore,
the impact that G. duodenalis has on society warrants a better understanding of the disease
pathophysiology. To date, it has been established that G. duodenalis causes increased rates of
enterocyte apoptosis, intestinal epithelial barrier dysfunction, shortening of small intestinal
brush border microvilli in a CD8+ lymphocyte dependent manner, anion hypersecretion, and
increased rates of intestinal transit (reviewed in [10]). Furthermore, G. duodenalis is divided
into eight distinct genetic Assemblages, designated A through H, whereby only Assemblages A
and B isolates are infective to humans [11, 12]. The idea that G. duodenalis Assemblages A and
B are distinct species is frequently debated [13, 14], and it remains to be determined whether
pathogenicity, or the parasite’s immuno-modulating capabilities [15], are assemblage- or iso-
late-dependent.

Only a small number of G. duodenalis virulence factors have been identified. Of these, the
best characterized are ventral adhesive disc proteins and surface lectins that ensure attachment,
the four pairs of flagella that confer re-colonization and movement, and variant surface pro-
teins (VSPs) that evade host IgA-directed clearance [1, 15, 16]. G. duodenalis also produces an
arginine deiminase that prevents intestinal epithelial cells (IECs) from utilizing arginine,
thereby impairing intestinal epithelial proliferation and nitric oxide production [17–20].
Although the above-mentioned factors may indirectly contribute to host disease, parasite prod-
ucts directly involved in G. duodenalis-mediated pathogenesis remain largely unknown.
Cathepsin cysteine proteases contain an active site cysteine and histidine residue, and are cate-
gorized as clan CA cysteine proteases; in addition, these proteases are further subdivided into
cathepsin B (catB) or cathepsin L (catL) superfamilies (reviewed in [21]). Cathepsin-like cyste-
ine proteases are critical to the pathogenesis and pathophysiology of several protozoan para-
sites (reviewed in ([22, 23]), including Leishmania donovani and Entamoeba histolytica [24,
25]. The G. duodenalis genome contains genes for numerous catB- and catL-like cysteine prote-
ases [26, 27] and cysteine protease activity has been reported in G. duodenalis cultures [28–31].
However, these proteases remain incompletely characterized and their role in giardiasis
remains obscure. Thus far, it has been established that cathepsin-like cysteine proteases are
required for trophozoite encystation and excystation [32, 33]. Moreover, recent reports dem-
onstrated that G. duodenalis catB-like cysteine proteases degrade interleukin-8 (CXCL8), lead-
ing to attenuated CXCL8-induced neutrophil chemotaxis [34]. However, the effect of these
cathepsin-like cysteine proteases on live enterocytes has yet to be evaluated. A better under-
standing of such proteases in the initiation of disease at the epithelial enterocyte level will fur-
ther clarify G. duodenalis pathogenesis, and help identify specific parasitic proteases that may
become therapeutic targets [35].

As G. duodenalis trophozoites are non-invasive, the intestinal epithelium represents a pri-
mary point of a contact between host and parasite. This layer is comprised of a single layer of
IECs that separate the external environment of the intestinal lumen from underlying host
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tissues (reviewed in [36]). As such, IECs and their constituent proteins represent an ideal target
for G. duodenalis parasite factors. Indeed, previous work has demonstrated that G. duodenalis
trophozoites induce various pathophysiological processes within IECs [37–40]; however, spe-
cific parasite factors have yet to be identified.

Villin is a unique cytoskeletal protein expressed in gastrointestinal, renal, and urogenital
epithelial cells. Within the gut, villin is primarily expressed in the microvilli of IEC where it
provides an essential function in regulating the organization of epithelial brush border
microfilaments during periods of physiological stress [41]. This protein is capable of poly-
merizing and depolymerizing actin, via its ability to cap, sever, nucleate and bundle actin fila-
ments [42]. Giardia is known to shorten epithelial brush border microvilli, thereby
contributing to malabsorptive diarrhea [38, 43, 44]. Research has also demonstrated that vil-
lin is a pro-survival factor, as its overexpression results in delayed epithelial apoptosis in
vitro, and its deletion in vivo enhances susceptibility to dextran sodium sulfate (DSS)-
induced colitis due to increased rates of IEC apoptosis [45]. In its pathogenic cascade, Giar-
dia has been found to cause epithelial apoptosis [38, 46]. In addition, villin has been shown
to participate in IEC migration and wound healing [42, 47–50]. Collectively, these results
demonstrate that villin is a critical homeostatic protein with multiple functions that extend
beyond the maintenance of IEC microvilli. The multifunctional purpose of this protein, in
addition to its close relationship with F-actin, warrants further research on its interaction
with G. duodenalis. Indeed, previous research has demonstrated that G. duodenalis trophozo-
ites disrupt intestinal epithelial F-actin [39]. Moreover, remodelling of intestinal epithelial
villin has been observed during late stages of G. duodenalis infection in vivo via CD4+ and
CD8+ immune responses [51]. However, it remains to be determined whether G. duodenalis
parasite products directly target villin. The objectives of this study were to characterize cyste-
ine protease activity in G. duodenalis trophozoites during co-incubations with IECs, and to
determine whether there is a role for these proteases in intestinal epithelial cytoskeletal villin
breakdown and disruption.

Materials and Methods

Reagents
Formononetin, the broad-spectrum clan CA cysteine protease inhibitor (2S,3S)-trans-Epoxy-
succinyl-L-leucylamido-3-methylbutane ethyl ester (E64d) [52], and the myosin light chain
kinase inhibitor 1-(5-Chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine hydrochlo-
ride (ML-9) were purchased from Sigma-Aldrich (Oakville, ON, Canada). The catB/L fluoro-
genic substrate Benzyloxycarbonyl-L-Phenylalanyl-L-Arginine 4-Methyl-Coumaryl-7-Amide
(ZFR-AMC) [53], the catB-selective fluorogenic substrate Benzyloxycarbonyl-L-Arginine-
L-Arginine 4-Methyl-Coumaryl-7-Amide (ZRR-AMC) [54], and the catB-selective inhibitor
L-3-trans-(Propylcarbamoyl)Oxirane-2-Carbonyl)-L-Isoleucyl-L-Proline Methyl Ester (Ca-
074Me) [55] were purchased from Peptides International (Louisville, KY, USA). The caspase-3
inhibitor Z-DEVD-FMK was purchased from EMDMillipore (Billerica, MA). Zonula occlu-
dens-1 (ZO-1) anti-mouse monoclonal antibody (1:500) was purchased from Invitrogen Life
Technologies. Villin anti-mouse monoclonal antibody (1:500), glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) anti-mouse monoclonal, and actin anti-mouse monoclonal antibody
(1:500) were purchased from Santa Cruz Biotechnologies (Dallas, TX). Secondary mouse and
rabbit antibodies (1:1000) conjugated with horseradish peroxidase (HRP) were purchased
from Cell Signaling Technologies (Beverly, MA). Mouse Alexa Fluor 555-conjugated was pur-
chased from Life Technologies (Carlsbad, CA).
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Cell Culture
Previous research has validated the human adenocarcinoma Caco-2 cell line (ATCC HTB-37)
as a reliable model for studying giardiasis in vitro [34, 39, 56, 57]. Caco-2 cells were grown in
Minimum Essential Medium Eagle (MEME) supplemented with 100 μg/ml streptomycin, 100
Units/ml penicillin, 200 mM L-glutamine, 5mM sodium pyruvate (all from Sigma-Aldrich),
and 20% heat-inactivated fetal bovine serum (FBS) (VWR, Radnor, PA). The cells were subcul-
tured using 2X Trypsin-EDTA into 6-well plates (Becton Dickinson, Sparks, MD) or Lab-Tek
chamber slides (Nalgene Nunc International, Naperville, IL) when flasks were at approximately
80% confluence. The media in the subcultures and flasks was replaced every 2–3 days. The cells
were incubated at 37°C, 5% CO2, and 96% humidity. Cells were used between passages 22
and 34.

Parasites
G. duodenalis NF trophozoites (Assemblage A) were originally obtained following an epidemic
of human giardiasis in Newfoundland, Canada [37, 39], G. duodenalis S2 isolate parasites
(Assemblage A) were obtained from a sheep [37, 58], and G. duodenalis GS/M isolate (Assem-
blage B) was obtained from the American Type Culture Collection (ATCC 50581) [59]. Tro-
phozoites were cultured axenically in Keister’s modified TY1-S-33 medium [60, 61]
supplemented with piperacillin (Sigma-Aldrich). Trophozoites were grown and passaged in 15
ml polystyrene conical tubes (Benton Dickinson Falcon) at 37°C under anaerobic conditions.
Experiments were performed when cultures were at peak density.

Giardia duodenalis trophozoite isolation
Confluent tubes of G. duodenalis trophozoites were collected by cold shock on ice for 30 min.
Following this, 15ml tubes were pooled into 50 ml polypropylene tubes, centrifuged at 500g for
10 min at 4°C, and resulting supernatants were aspirated. The pellets were resuspended in
10ml of chilled sterile 1X phosphate buffered saline (PBS) (Sigma-Aldrich) and centrifuged at
500g for 10 min at 4°C. The resulting pellet was resuspended in Caco-2 growth media, the tro-
phozoites enumerated using a hemocytometer, and their concentration was adjusted to a mul-
tiplicity of infection (MOI) of 10 parasites per 1 host cell (MOI of 10:1).

Giardia duodenalis trophozoite DNA extraction
In preparation for DNA extraction, trophozoites were harvested by placing culture tubes on ice
for 10 min. Tubes were then gently inverted to mix the contents, and 2 ml of each suspension
were pipetted into 15 ml centrifuge tubes (Falcon), and PBS pH 7.4 was added to a final volume
of 10 ml. Tubes were centrifuged at 1,000g for 5 min. The supernatants were decanted and the
pellets were washed twice more by repeating the centrifugation. Trophozoites were suspended
in a final volume of 1 ml PBS. Total DNA was extracted from the trophozoites using the
DNeasy Tissue Kit (Qiagen Inc., Mississauga, ON), using a modified protocol. Two hundred
microliters of the suspended trophozoites were transferred to 1.5 ml microcentrifuge tubes,
and lysed overnight at 56°C using 180 μl of lysis buffer and 20 μl of proteinase K (20 mg/ml)
supplied with the DNeasy Tissue Kit. The manufacturer’s instructions were then followed to
purify the DNA. Nucleic acid was eluted with 100 μl of elution buffer. Positive control, G. duo-
denalis cysts (Waterborne, Inc., New Orleans, LA), and negative control, DNase-free water
(Sigma-Aldrich Canada Co., Oakville, ON), were also extracted in parallel.
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PCR Protocols
A nested-PCR was performed to amplify fragments of the Giardia 16S rRNA gene as described
[62]. PCR amplification of fragments of the glutamate dehydrogenase (gdh) gene for Giardia,
and a restriction fragment length polymorphism (RFLP) assay for genotyping, was performed
as described [63].

DNA Sequencing
DNA sequencing of the products of both 16S rRNA and gdh PCR was performed at the McGill
University and Genome Quebec Innovation Centre in Montreal, QC, using a 3730xl DNA
Analyser (Applied Biosystems, Foster City, CA). PCR products were purified and bi-directional
sequencing was performed using the same primers as the original amplifications. DNA
sequences were assembled, edited and aligned using SeqScape v2.5 (ABI). Resulting consensus
sequences were then aligned with representative sequence data from G. duodenalis Assem-
blages and trimmed to identical lengths of 189 bp or 367 bp for 16S rRNA and gdh genes,
respectively, using Bioedit v7.1.3.0 [64]. Consensus sequences were compared to reference
sequences in GenBank using NCBI standard nucleotide BLAST (blastn). Phylogenetic trees
were generated using Molecular Evolutionary Genetics Analysis (MEGA v5.2.1) (http://www.
megasoftware.net/) with a Kimura two parameter model neighbour-joining analysis, with 100
bootstraps and pair-wise deletion.

Giardia duodenalis trophozoite viability
Motility of G. duodenalis trophozoites was used to assess parasite viability after 2- or 24-hour
co-incubation. Subsequently, Caco-2 cell supernatants were collected, vortexed, and 10 μL of
cell supernatant was analyzed on a hemocytometer. The ratio of motile, or swimming, tropho-
zoites to total trophozoite counts was assessed as a marker of viability [65].

Giardia duodenalismodulation of intestinal epithelial villin
G. duodenalis trophozoites (NF, S2, or GS/M) were co-incubated with confluent Caco-2 mono-
layers at an MOI of 10:1 for 2 or 24 hours. Identical experiments were performed, except tro-
phozoites were initially pre-treated with E-64d (10 μM), Ca-074Me (10 μM), or vehicle control
(dimethyl sulfoxide; DMSO) 3 hours prior (see below) to co-incubation with in vitro Caco-2
monolayers. Similarly, Caco-2 monolayers were pre-treated with one of E-64d (10 μM), Ca-
074Me (10 μM), ML-9 (40 μM), Z-DEVD-FMK (50 μM), or vehicle control (DMSO) prior to
co-incubation with G. duodenalis trophozoites for 2 or 24 hours. In complimentary experi-
ments, G. duodenalis NF trophozoites were co-incubated with Caco-2 monolayers grown to
confluence on the bottom of 12-well plates; in this instance, G. duodenalis trophozoites were
seeded into the top compartment of 0.4 μm transwells to prevent direct contact between in
vitromonolayers and parasites. Incubation conditions were maintained at 37°C, 5% CO2, and
96% humidity for experimental duration. At the end of the incubation period, cell supernatants
were collected and processed for cathepsin activity assays (see below), while monolayers were
washed once with PBS and subsequently processed for Western blotting analysis (see below).

In parallel experiments, Caco-2 monolayer cellular lysates were co-incubated with G. duode-
nalis NF trophozoite sonicates for 2 hours. Briefly, culture media from confluent Caco-2
monolayers was removed, and cells were washed once with PBS. Following this, the PBS was
aspirated, the Caco-2 monolayers were collected in 200μL protease inhibitor-free radioimmu-
noprecipitation assay (RIPA) buffer (1% Igepal, 0.1% SDS, and 0.5% sodium deoxycholate in
PBS) in microcentrifuge tubes, and sonicated at level 3 for 5 seconds (550 Versonic
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Dismembranator, Fisher Scientific). Caco-2 lysates protein concentrations were adjusted to
3mg/ml using the Bradford assay method (BioRad Laboratories, Hercules, CA). At the same
time, G. duodenalis NF trophozoites were adjusted to a concentration of 1x107 trophozoites/ml
and sonicated three times at level 4 for 30 seconds on ice (550 Versonic Dismembranator,
Fisher Scientific). The resulting Caco-2 lysates and G. duodenalis trophozoite sonicates were
co-incubated for 2 hours in the presence of 10 mM DTT and in the presence or absence of E-
64 (200 μM) or Ca-074Me (200 μM). After 2 hours, samples were processed for Western blot-
ting analysis (see below).

Whole cell protein extraction for Western blotting
At the end of the co-incubation for 2 or 24 hours, trophozoites were removed from the co-cul-
ture via three ice-cold PBS washes. Caco-2 monolayers were subsequently collected in RIPA
buffer supplemented with a protease inhibitor cocktail tablet (Complete-Mini, Roche Diagnos-
tics, Laval, QC). After a 30 min incubation at 4°C, cellular lysates were sonicated at level 3 for 5
seconds and centrifuged at 10,000g for 10 min at 4°C. The resulting supernatant was collected
and protein concentrations determined using the Bradford assay method [66]. Protein samples
were then normalized to 1.0 mg/ml and then combined at a 1:1 ratio with 2X electrophoresis
buffer (100 mM Tris-HCl, pH 6.8, 4% sodium dodecyl sulfate (SDS), 0.2% bromophenol blue,
20% glycerol, 200 mM β-mercaptoethanol) to further dilute the samples to a final concentra-
tion of 0.5 mg/ml. The samples were then denatured at 95°C for 3 min and stored at-20°C until
further analysis.

Western blotting
Protein samples were separated via SDS-PAGE (7–12%) and transferred to nitrocellulose
membranes (Whatman, Buckinghamshire, England) over 1 hour at 100V. The membranes
were blocked using 5% fat-free milk solution in 1X Tris-buffered saline + 0.1% Tween (TBS-T)
for 1 hour. Primary antibodies were diluted in the same 5% milk solution and incubated with
the membranes overnight at 4°C. After three 15-min washes with TBS-T, HRP-conjugated sec-
ondary antibodies, also diluted in 5% milk solution, were added to the membranes for 1 hour
at room temperature. The membranes were washed three times with TBS-T for 15 min each
and then visualized using ECL-plus chemifluorescence detection system (GE Healthcare, Pitts-
burgh, PA). ECL-plus was added the membranes for 5 min. The membranes were visualized
on ECL film (GE Healthcare). The films were scanned for densitometric analysis using the soft-
ware ImageJ (http://rsbweb.nih.gov/ij/). The membranes were stripped using 0.5M acetic acid
(45 min incubation) and 0.2 M sodium hydroxide (5 min incubation), and re-probed with a
GAPDH antibody to ensure equal loading of the gels. In all instances, GAPDH was used as the
loading control.

Inhibition ofG. duodenalis cysteine proteases
Previous research has demonstrated that concentrations of 10μM E-64d or Ca-074Me do not
affect G. duodenalis trophozoite viability, but significantly reduce cathepsin-like cysteine prote-
ase activity [34, 67]. Therefore, experiments involving G. duodenalis trophozoite and Caco-2
monolayer co-incubations were repeated with the administration of either 10μM E-64d, 10 μM
Ca-074Me, or vehicle control (DMSO) for 2 or 24 hours. Following this, samples were collected
and processed for cathepsin activity assays andWestern blotting analysis. In separate experi-
ments, confluent tubes of G. duodenalis trophozoites were treated with E64d (10μM), Ca-
074Me (10μM), or vehicle control (DMSO) for 3 hours. Following this, G. duodenalis tropho-
zoites were harvested by cold shock on ice for 30 min and then co-incubated with Caco-2
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monolayers for 2 or 24 hours. Samples were again collected for cathepsin activity assays and
Western blotting analysis.

Sample extraction for cathepsin activity assays
After co-incubation of G. duodenalis trophozoites with Caco-2 monolayers (as described
above), supernatants, parasites, and IECs were collected and processed for cathepsin activity
assays. Cell supernatants were collected, centrifuged at 500g, 4°C for 10 min and stored for fur-
ther use. The supernatant pellet, representing G. duodenalis trophozoites, was resuspended in
ice-cold PBS, centrifuged at 500g, 4°C for 10 min, and the trophozoite pellet re-suspended in
RIPA buffer; this fraction was then sonicated at level 4 for 30 seconds on ice and centrifuged at
10,000g, 4°C for 10 min. A Bradford assay was performed and samples normalized to 1.0 mg/
ml. Adherent G. duodenalis trophozoites were removed from Caco-2 monolayers by modifying
a previously described protocol [68]. In short, a sterile 10μM formononetin solution was made
in the Caco-2 growth medium, added to Caco-2 monolayers, and then allowed to incubate at
37°C, 5% CO2 for 60 min. Following this, the formononetin solution was aspirated, and mono-
layers were washed with ice-cold PBS three times. Monolayers were then collected and lysed in
RIPA buffer not containing a protease inhibitor table, sonicated on level 3 for 5 seconds, and
then centrifuged for 10 min at 10,000g at 4°C. A Bradford assay was performed on collected
Caco-2 lysates and samples were then normalized to 3.0 mg/ml. All samples were stored at-
70°C until further use.

Cathepsin activity assays
Assessment of cathepsin cysteine protease activity was performed via recording the liberation
of 7-aminomehtylcoumarin (AMC) from fluorogenic substrates, whereby cathepsin protease
activity correlates to an increase in detectable relative light units (RFUs) over time [53, 54]. To
assess supernatant cathepsin cysteine protease activity, samples were thawed and incubated at
a 1:2 ratio with cathepsin assay buffer (100 mM sodium acetate, 10 mM DTT, 0.1% Triton X-
100, 1 mM EDTA, 0.5% DMSO, 200 μMZFR-AMC or ZRR-AMC). Assessment of intra-tro-
phozoite or intracellular Caco-2 cathepsin cysteine protease activity involved incubating sam-
ples at a 1:3 ratio with cathepsin assay buffer. All samples were incubated in 96-well clear, flat-
bottom plates and at 37°C for 5 min and subsequently measured kinetically using a microplate
reader (SpectraMax M2e, Molecular Devices, Sunnyvale, CA) at 37°C with excitation and emis-
sion wavelengths of 354nm and 445nm, respectively. Measurements were recorded every 30
seconds for 5 min. For all experiments, cathepsin assay buffer was adjusted to a pH of 7.2 to
mimic the luminal pH of the upper small intestine.

Immunofluorescence
Caco-2 monolayers grown to confluence in Lab-Tek chamber slides (Nalgene Nunc Interna-
tional, Naperville, IL) (8–10 days) were co-incubated for 2 or 24 hours with 1.0x107 G. duode-
nalis NF trophozoites pretreated for 3 hours with E64d (10uM) or vehicle control (dimethyl
sulfoxide; DMSO) at 37°C, 5% CO2. In another set of experiments, Caco-2 monolayers were
pre-treated with ML-9 (40μM) for 30 min prior to co-incubation with G. duodenalisNF tro-
phozoites for 2 or 24 hours. At the end of the co-incubation, the infection medium was aspi-
rated off out of each chamber, followed by two ice-cold PBS washes. To fix/permeabilize the
cells, ice-cold methanol was then added to each well and the chamber slides were subsequently
incubated at 4°C for 30 min. After two more PBS washes, the cells were blocked with heat inac-
tivated-fetal bovine serum (HI-FBS; VWR) for 15 min at room temperature. Primary antibod-
ies were prepared in a solution of 2% FBS-PBS at appropriate concentrations that was
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subsequently administered to cells for 1 hour at 37°C. Following two PBS washes, the cells were
incubated with fluorescent secondary antibodies (also prepared in 2% FBS-PBS) for 1 hour at
37°C. The cells were subsequently washed twice with PBS. Nuclei were counterstained with
1μMHoechst fluorescent staining 33258 (Invitrogen Life Technologies) for 30 min at 37°C.
The cells were washed once with PBS and the slides were mounted with Aqua Poly/Mount
(Polyscience Inc.; Warrington, PA). Micrographs were obtained using a Leica DMRMicro-
scope, with a Retiga 2000R (Q Imaging, BC) at 400x. All images were collected with the same
gain and exposure time lengths. Micrographs presented in the Results section are representa-
tive images of 2 replicate monolayers from three separate experiments.

Statistical analysis
All data are representative of at least three separate experiments and expressed as
means ± SEM, where applicable. All statistical analyses were performed using the software,
Graphpad Prism 6, which ensures normality of data prior to analysis. Comparisons between
groups were made using a Student t-test or one-way ANOVA, followed by Tukey’s test for
multiple comparison analysis. Statistical significance was established at p<0.05.

Results

Giardia duodenalis NF and S2 trophozoites are Assemblage A isolates
PCR-RFLP of the glutamate dehydrogenase (gdh) gene revealed identical banding patterns for
both NF and S2 G. dudoenalis isolates, matching the expected banding pattern for G. duodena-
lis Assemblage A (Fig 1). DNA sequence data on both 16S rRNA and gdh PCR products

Fig 1. Restriction fragment length polymorphism (RFLP) profile of a fragment of the gdh gene
amplified by PCR from NF and S2 isolates ofGiardia duodenalis. The ladder is a 100 bp molecular weight
marker (Promega Corp., Madison, WI). NF and S2 isolates ofGiardia duodenalis trophozoites were each run
in replicate (i.e., NFa and b, S2a and b).

doi:10.1371/journal.pone.0136102.g001
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demonstrated that both the NF and S2 isolates were 100% homologous to reference sequences
of G. duodenalis Assemblage A. Phylogenetic trees for both loci are shown in Fig 2.

Giardia duodenalis trophozoites contain and release catB and L cysteine
proteases
Previous research has demonstrated that G. duodenalis trophozoites contain, as well as release,
cathepsin cysteine proteases into cell supernatants [28–31, 34]. However, the kinetics of
cathepsin cysteine protease activity within multiple G. duodenalis trophozoites, IECs, or cell
supernatants during co-incubation of parasites and IECs remain unknown. Therefore, cathep-
sin cysteine protease activity levels were assessed within parasites, IECs, and cell supernatants,
following co-incubation. Cathepsin cysteine protease activity was determined by calculating
the slope from the RFU versus time, as illustrated in Fig 3A. Figs 3B, 3C, 4B, 4C, 5B and 5C
illustrate these calculated slopes and are shown as histograms. As demonstrated by an increase

Fig 2. Phylogenetic trees of the NF and S2 isolates ofGiardia duodenalis. Phylogenetic trees are based
on the DNA sequences of amplified fragments of the 16s rRNA (A) and glutamate dehydrogenase (gdh)
genes (B).

doi:10.1371/journal.pone.0136102.g002
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in the number of detectable RFUs over time, hydrolysis of the catB and L fluorogenic substrate
ZFR-AMC occurred in G. duodenalis NF trophozoite sonicates alone (Fig 3A), or cell superna-
tants from co-incubation (Fig 4A) with Caco-2 monolayers; in contrast, hydrolysis was not

Fig 3. Giardia duodenalis trophozoite sonicates hydrolyze cathepsin cysteine protease substrates in
an isolate-independent manner. This figure illustrates cathepsin activity within trophozoite sonicates. G.
duodenalis trophozoites (isolates NF, S2, or GS/M) were incubated in the presence or absence of Caco-2
monolayers for 24 hours. Following this,G. duodenalis trophozoites were collected and sonicated to assess
for intra-trophozoite cathepsin activity (A to C). The slope value was calculated from the RFU vs time for each
experimental group. Line graphs are not shown for all to avoid redundancy, but a representative graph is
shown for isolate NF. As a representative figure,G. duodenalis NF trophozoite sonicates were incubated with
the catB/L substrate ZFR-AMC (200 μM: 5 min: 37°C: pH 7.2). Proteolytic activity is represented as the
change in RFUs over time (A).G. duodenalis trophozoite sonicates (isolates NF, S2, or GS/M) or culture
media alone (baseline) were incubated with the catB/L fluorogenic substrate ZFR-AMC (B) or the catB-
specific fluorogenic substrate (C) (ZRR-AMC) (200 μM: 5 min: 37°C: pH 7.2). Proteolytic activity was
calculated by determining the change or slope in RFUs over time. Data are mean+/-SEM, n = 3.

doi:10.1371/journal.pone.0136102.g003

GiardiaCysteine Proteases and Villin

PLOS ONE | DOI:10.1371/journal.pone.0136102 September 3, 2015 10 / 28



observed inside the Caco-2 cells incubated in the presence or absence of G. duodenalis NF tro-
phozoites (Fig 5A).

Fig 4. Giardia duodenalis trophozoites release catB and L cysteine proteases into cell supernatants.
This figure illustrates cathepsin activity in parasite supernatants (released activity from trophozoites).G.
duodenalis trophozoites (isolates NF, S2, or GS/M) were incubated in the presence or absence of Caco-2
monolayers for 24 hours. Supernatants were collected and analyzed for cathepsin cysteine protease activity
(A to C). As a representative figure, supernatants collected fromG. duodenalisNF incubations in the
presence or absence of Caco-2 monolayers were incubated with the catB/L fluorgenic substrate ZFR-AMC
(200 μM: 5 min: 37°C: pH 7.2). Proteolytic activity is represented as the change in RFUs over time (A).
Supernatants were collected and incubated with the catB/L fluorogenic substrate ZFR-AMC (B) or the catB-
specific fluorogenic substrate (C) (ZRR-AMC) (200 μM: 5 min: 37°C: pH 7.2). Proteolytic activity was
calculated by determining the change or slope in RFUs over time.). *p<0.05 vs Control monolayers #p<0.05
vs corresponding isolate incubated without Caco-2 monolayers. Data are mean+/-SEM, n = 3.

doi:10.1371/journal.pone.0136102.g004

GiardiaCysteine Proteases and Villin

PLOS ONE | DOI:10.1371/journal.pone.0136102 September 3, 2015 11 / 28



Fig 5. Giardia duodenalis trophozoites do not induce catB/L activity within Caco-2 monolayers. This
figure illustrates cathepsin activity within Caco-2 cells post co-incubation with trophozoites.G. duodenalis
trophozoites (isolates NF, S2, or GS/M) were co-incubated with Caco-2 monolayers for 24 hours. Caco-2 cell
lysates were collected and analyzed for cathepsin cysteine protease activity (A to C). As a representative
figure, Caco-2 lysates co-incubated withG. duodenalis NF trophozoites were incubated with the catB/L
fluorogenic substrate ZFR-AMC (200 μM: 5 min: 37°C: pH 7.2). Proteolytic activity is represented as the
change in RFUs over time (A). Caco-2 lysates were collected and incubated with the catB/L fluorogenic
substrate ZFR-AMC (B) or the catB-specific fluorogenic substrate (C) (ZRR-AMC) (200 μM: 5 min: 37°C: pH
7.2). Proteolytic activity was calculated by determining the change or slope in RFUs over time. Data are mean
+/-SEM, n = 3.

doi:10.1371/journal.pone.0136102.g005
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Slope values were determined when G. duodenalis trophozoites (NF, S2, or GS/M) were co-
incubated in Caco-2 growth media in the presence or absence of Caco-2 monolayers. Hydroly-
sis of the catB/L substrate ZFR-AMC (Fig 3B) and catB-selective substrate ZRR-AMC (Fig 3C)
was observed in sonicates from tested G. duodenalis isolates (NF, S2, or GS/M) and values were
not statistically significant from each other (Fig 3B and 3C). A significant increase in
ZFR-AMC (Fig 4B) and ZRR-AMC (Fig 4C) hydrolysis was detected in cell supernatants col-
lected from G. duodenalis trophozoites incubated Caco-2 growth media in the presence or
absence of Caco-2 monolayers, when compared against control groups. Interestingly, co-incu-
bation of G. duodenalis NF or S2 trophozoites with Caco-2 monolayers significantly increased
cell supernatant hydrolysis of ZFR-AMC, compared against the same isolate incubated in the
absence of Caco-2 cells (Fig 4B). This trend was not observed when hydrolysis of ZRR-AMC
was analyzed (Fig 4C). Hydrolysis of ZFR-AMC (Fig 5B) and ZRR-AMC (Fig 5C) was not sig-
nificantly increased in Caco-2 monolayers incubated in the presence or absence of G. duodena-
lis trophozoites. Therefore, G. duodenalis trophozoites do not appear to increase catB/L activity
inside Caco-2 monolayers. These results demonstrate that catB/L cysteine protease activities
are active at similar levels within G. duodenalis trophozoites, and that parasites release cysteine
proteases into cell supernatants. However, this activity was further increased in two Assem-
blage A isolates (NF and S2) following their exposure to Caco-2 monolayers, while this further
increase could not be detected when cells were co-incubated with the Assemblage B GS/M.

G. duodenalisNF trophozoites were used for the rest of the study to assess whether and how
parasite catB/L proteases may affect host IECs. Initial experiments sought to determine
whether catB/L activity could be inhibited within G. duodenalis trophozoites via the broad-
spectrum clan CA cysteine protease inhibitor E64d (10 μM) or the catB-specific inhibitor Ca-
074Me (10 μM). Parasite viability was not affected by 3-hour treatment with E-64d or Ca-
074Me; compared against control G. duodenalis trophozoites, no significant difference in the
proportion of motile to non-motile trophozoites in groups treated with E64d, Ca-074Me, or
vehicle control (DMSO) was observed (Fig 6A). Next, Caco-2 monolayers were co-incubated
with G. duodenalisNF trophozoites pretreated with E64d for 2 or 24 hours; this treatment sig-
nificantly reduced the hydrolysis of ZFR-AMC within G. duodenalis sonicates (Fig 6B) and cell
supernatants (Fig 6C), following their 2-hour co-incubation with Caco-2 monolayers. Simi-
larly, hydrolysis of ZFR-AMC was significantly reduced within G duodenalis sonicates (Fig 6D)
and cell supernatants (Fig 6E) when parasites were pre-treated with E-64d or Ca-074Me for
3-hours and subsequently co-incubated with Caco-2 monolayers for 24 hours. Collectively,
these results demonstrate that G. duodenalis catB and L proteases are sensitive to inhibition
using commercial protease inhibitors.

Giardia duodenalis cathepsin cysteine proteases promote villin
breakdown in a contact-dependent manner
Recent research has focused on the ability of G. duodenalis to disrupt tight junctional proteins
[37, 38, 40, 69]. Less research has focused on this parasite’s ability to affect intestinal epithelial
cytoskeletal proteins. G. duodenalis disrupts cytoskeletal actin filaments in a myosin light chain
kinase (MLCK)-dependent manner [39]. Moreover, host CD4+ and CD8+ T-lymphocytes are
responsible for villin cleavage during late-stage G. duodenalis infection in vivo [51]. It is not
known whether G. duodenalis parasite products are capable of directly targeting intestinal epi-
thelial cytoskeletal proteins such as villin. As previous findings have shown that Entamoeba
histolytica proteolytically degrades villin using cysteine proteases [70], we hypothesized that G.
duodenalis cathepsin-like cysteine proteases was able to degrade and disrupt villin.
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Co-incubation of G. duodenalisNF trophozoites with Caco-2 monolayers for 2 hours
yielded a ~ 45kDa cleavage product as determined by Western blotting (Fig 7A and 7B). Full-
length villin (90kDa) was not altered, as determined via densitometry (Fig 7B). Similar results

Fig 6. Pre-treatment ofGiardia duodenalis trophozoites with E-64d or Ca-074Me inhibits cathepsin cysteine protease activity. G. duodenalis NF
trophozoites were treated with E-64d (10uM), Ca074Me (10uM), or vehicle control (DMSO) for 3 hours and then co-incubated with Caco-2 monolayers for 2
(B and C) or 24 (D and E) hours.G. duodenalis trophozoites were collected and sonicated to assess for intra-trophozoite cathepsin cysteine protease activity.
Supernatants were collected and assessed for the viability ofG. duodenalis trophozoites by examining the ratio of motile: non-motile trophozoites (A).G.
duodenalis sonicates were incubated with catB/L fluorogenic substrate ZFR-AMC (B and D) or the catB fluorogenic substrate ZRR-AMC (C and E) (200 μM:
5 min: 37°C: pH 7.2). Proteolytic activity was calculated by determining the change in RFUs over time. *p<0.05 vs Control cells; #p<0.05 vs G. duodenalis NF
trophozoites. Data are mean +/- SEM, n = 3.

doi:10.1371/journal.pone.0136102.g006
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were observed when parasites and Caco-2 monolayers were co-incubated for 24 hours as illus-
trated fromWestern blotting and densitometric analyses (Fig 7C and 7D). Densitometry also
demonstrated that E-64d pre-treatment of G. duodenalis NF trophozoites prior to co-

Fig 7. Giardia duodenalis NF trophozoite proteases that are sensitive to inhibition with E-64d promote villin cleavage in Caco-2 monolayers.G.
duodenalis NF isolate trophozoites were pre-treated with E64d (10uM) or vehicle control (DMSO) prior to co-incubation with Caco-2 monolayers for 2 (A and
B) or 24 (C and D) hours. Caco-2 lysates were collected and processed for Western blotting to examine for villin protein at 2 (A) and 24 (C) hours. Western
blots are representative of three independent experiments performed in triplicate. Densitometry was performed to compare protein levels of cleaved villin vs
loading control GAPDH for the 2 (B) or 24 (D) hour co-incubation. *p<0.05 vs No Treatment. Data are mean +/- SEM, n = 3.

doi:10.1371/journal.pone.0136102.g007
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incubation with monolayers resulted in decreased detection of the villin cleavage product at
both 2 (Fig 7B) and 24 (Fig 7D) hours. Follow-up experiments were performed to determine
whether co-incubation of parasite sonicates with Caco-2 cellular lysates for 2 hours also
resulted in villin cleavage. As demonstrated via Western blotting and densitometry, co-incuba-
tion of G. duodenalis trophozoite sonicates with Caco-2 cellular lysates resulted in increased
detection of villin cleavage fragments (Fig 8A and 8B). Importantly, this was significantly
reversed when experiments were performed in the presence of E-64d (Fig 8A and 8B). These
results suggest that G. duodenalis parasite products are capable of cleaving villin within intesti-
nal epithelial cellular lysates. Similarly, immunofluorescent staining indicated that co-incuba-
tion of G. duodenalis trophozoites with Caco-2 monolayers resulted in redistribution of villin
protein at 2 (Fig 9A) and 24 (Fig 9B) hours. Importantly, pre-treatment of G. duodenalis tro-
phozoites with E-64d, at least partially, prevented redistribution of villin within IECs at 2 and
24 hours (Fig 9A and 9B).

To determine whether secreted products were sufficient to cause a villin break down, para-
sites and Caco-2 monolayers were separated by 0.4μm transwells and co-incubated for 24
hours; interestingly, Western blotting and subsequent densitometry indicated that villin break-
down was not seen in these groups (Fig 10A and 10B). Together, these results demonstrate that
G. duodenalis clan CA cysteine proteases are involved in the cleavage of cytoskeletal villin in
Caco-2 monolayers. Moreover, these data suggest that a parasite surface clan CA cysteine pro-
tease contributes to villin cleavage and redistribution within Caco-2 monolayers.

Fig 8. Co-incubation ofGiardia duodenalis NF trophozoite sonicates and Caco-2 lysates results in villin cleavage and is prevented by E64d.G.
duodenalis NF isolate trophozoite sonicates and Caco-2 monolayers were co-incubated for 2 hours in the presence of E-64d (10uM), Ca-74Me (10uM), or
vehicle control (DMSO). Samples were processedWestern blotting to examine for villin protein (A). Densitometry was performed to compare protein levels of
cleaved villin vs loading control GAPDH (B). *p<0.05 vs No Treatment. Data are mean +/- SEM, n = 3.

doi:10.1371/journal.pone.0136102.g008
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Fig 9. Giardia duodenalis trophozoites produce proteases that are sensitive to inhibition with E-64
that induce disruption of villin within Caco-2monolayers.G. duodenalis NF isolate trophozoites were
pre-treated with E64d (10uM) or vehicle control (DMSO) prior to co-incubation with Caco-2 monolayers for 2
(A) or 24 (B) hours. Caco-2 monolayers were processed for immunofluorescence to examine for villin
expression at 2 (A) or 24 (B) hours at 400X magnification. Micrographs are representative of three
independent experiments performed in duplicate. n = 3.

doi:10.1371/journal.pone.0136102.g009
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Giardia duodenalis clan CA cysteine proteases do not contribute to ZO-1
breakdown
Previous research has demonstrated that G. duodenalis trophozoites promote the breakdown
and redistribution of the tight junction-associated protein zonula occludens 1 (ZO-1) [37–39,
69]. Therefore, we decided to assess whether G. duodenalis clan CA cysteine proteases affect
ZO-1 in a manner similar to villin. As determined via Western blotting and corresponding
densitometry, co-incubation of G. duodenalis trophozoites with Caco-2 monolayers resulted in
loss of full-length ZO-1 protein at 2 (Fig 11A and 11B) and 24 (Fig 11C and 11D) hours. How-
ever, pre-treatment of G. duodenalis trophozoites with E-64d, and subsequent incubation with
Caco-2 monolayers, did not affect degradation of ZO-1 at 2 (Fig 11A and 11B) or 24 hours (Fig
11C and 11D). These observations suggest that degradation and redistribution of villin and
ZO-1 may occur via separate mechanisms.

Giardia duodenalis-induced villin breakdown is partially dependent on
myosin light chain kinase
As Giardia is known to disrupt tight junctional proteins by activating MLCK and caspase-3
[38, 39]), we decided to assess whether G. duodenalis clan CA cysteine proteases induce villin
disruption via activation of MLCK or caspase-3. Therefore, experiments were performed
whereby Caco-2 monolayers were pre-treated with the MLCK-selective inhibitor ML-9 or the
caspase-3-specific inhibitor Z-DEVD-FMK prior to co-incubation with G. duodenalis

Fig 10. Giardia duodenalis induces villin cleavage in Caco-2 monolayers in a contact-dependent manner.G. duodenalis NF isolate trophozoites were
co-incubated directly contacting Caco-2 monolayers or separated from Caco-2 monolayers via 0.4um Transwells for 24 hours. Caco-2 lysates were collected
and processed for Western blotting to examine for villin protein (A). Western blots are representative of three independent experiments performed in
triplicate. Densitometry was performed to compare protein levels of cleaved villin vs loading control GAPDH (B). *p<0.05 vs No Treatment. Data are mean +/-
SEM, n = 3.

doi:10.1371/journal.pone.0136102.g010
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trophozoites for 2 or 24 hours. Pre-treatment of Caco-2 monolayers with ML-9 prior to co-
incubation with G. duodenalis trophozoites for 2 hours did not affect villin cleavage, as deter-
mined via Western blotting analysis (Fig 12A and 12B). Interestingly, villin degradation was
significantly reduced in Caco-2 monolayers pre-treated with ML-9 prior to co-incubation with

Fig 11. Pre-treatment with E-64d does not inhibitGiardia duodenalis trophozoites from-inducing ZO-1 degradation in Caco-2 monolayers.G.
duodenalis NF isolate trophozoites were pre-treated with E64d (10uM) or vehicle control (DMSO) prior to co-incubation with Caco-2 monolayers for 2 (A and
B) or 24 (C and D) hours. Caco-2 cell lysates were collected and processed for Western blotting to examine for ZO-1 protein at 2 (A) and 24 (C) hours.
Western blots are representative of three independent experiments performed in triplicate. Densitometry was performed to compare full length ZO-1 levels vs
loading control GAPDH after 2 (B) or 24 (D) hours. *p<0.05 vs Control cells. Data are mean +/- SEM, n = 3.

doi:10.1371/journal.pone.0136102.g011
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G. duodenalis trophozoites for 24 hours (Fig 12C and 12D). No significant difference in villin
cleavage was observed when Caco-2 monolayers were pre-treated with Z-DEVD-FMK and co-
incubated with G. duodenalis trophozoites for 2 (Fig 13A and 13B) or 24 hours (Fig 13C and
13D). Collectively, these results demonstrate that G. duodenalis-mediated villin degradation
and redistribution is, at least partially, dependent on MLCK activation.

Fig 12. Giardia duodenalis trophozoites induce MLCK-dependent cleavage of villin in Caco-2 monolayers in a time-dependent manner.G.
duodenalis NF isolate trophozoites were co-incubated with Caco-2 monolayers for 2 (A and B) or 24 (C and D) hours in the presence or absence of the MLCK
inhibitor ML-9. Caco-2 cell lysates were processed for Western blotting to examine for villin protein at 2 (A) and 24 (C) hours. Western blots are
representative of three independent experiments performed in triplicate. Densitometry was performed to compare protein levels of cleaved villin vs loading
control GAPDH after a 2 (B) or 24 (D) hour co-incubation. *p<0.05 vs No Treatment. Data are mean +/- SEM, n = 3.

doi:10.1371/journal.pone.0136102.g012
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Fig 13. Giardia duodenalis trophozoites promote villin cleavage in Caco-2monolayers independent of caspase-3 activity.G. duodenalis NF isolate
trophozoites were co-incubated with Caco-2 monolayers for 2 (A and B) or 24 (C and D) hours in the presence or absence of Z-DEVD-FMK, a selective
caspase-3 inhibitor. Caco-2 cell lysates were collected and processed for Western blotting to examine for villin protein at 2 (A) and 24 (C) hours. Western
blots are representative of three independent experiments performed in triplicate. Densitometry was performed to compare protein levels of cleaved villin vs
loading control GAPDH at 2 (B) and 24 (D) hours. *p<0.05 vs No Treatment. Data are mean +/- SEM, n = 3.

doi:10.1371/journal.pone.0136102.g013
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Discussion
Results from this study reveal a previously unrecognized role for parasite surface clan CA cyste-
ine proteases in the pathophysiology of G. duodenalis infections, and implicate them as poten-
tial virulence factors. CatB/L activity was observed within G. duodenalis trophozoites and in
parasite supernatants following exposure to host IECs. This activity was inhibited when para-
sites were pre-treated with the broad-spectrum clan CA, cysteine protease inhibitor E-64d [52]
or the catB-specific inhibitor Ca-074Me [55]. Co-incubation of the parasite with IEC’s
increased the production of catB and L activity for Assemblage A, but not for the Assemblage B
isolate. However, no cathepsin activity was observed within the Caco-2 cells following exposure
to G. duodenalis trophozoites from any isolate, ruling out any translocation of the cysteine pro-
teases into the cells from the supernatant. G. duodenalis trophozoites degraded and redistrib-
uted the intestinal epithelial cytoskeletal protein villin; this required direct contact between the
parasite and IEC, and was prevented when parasites were pre-treated with E-64d prior to incu-
bation with intestinal monolayers. In addition, this study elucidated that degradation and
redistribution of the tight junction protein ZO-1 was not dependent on factors sensitive to
inhibition with E-64d, thereby suggesting that G. duodenalismay induce multiple pathophysio-
logical responses within host IECs, some mediated by parasite clan CA cysteine proteases,
some not. Finally, this study demonstrates that degradation and disruption of villin is partially
dependent upon MLCK activation. At early time points, MLCK inhibition in intestinal mono-
layers exposed to G. duodenalis trophozoites did not prevent villin degradation; however,
MLCK inhibition prevented G. duodenalis-induced villin degradation at later time points. Col-
lectively, these results suggest that G. duodenalis surface clan CA cysteine proteases induce vil-
lin degradation and redistribution within IECs and that this effect, at least in part, is mediated
by MLCK activation within IECs.

To elucidate the role of parasite cathepsin cysteine proteases in the pathophysiology of G.
duodenalis infections, we used a well-established in vitro cell culture model [18, 19, 34, 57, 71,
72]. Furthermore, our experiments used inhibitors, which have previously been shown to suc-
cessfully attenuate catB and L cysteine proteases in mammalian and protozoan parasites [24,
52, 55, 73], including G. duodenalis [34, 67]. Results from this study corroborate previous
observations that G. duodenalis trophozoites promote the disruption of intestinal epithelial
barrier proteins in vitro [37–40, 44, 69], and in vivo [46], and disrupt cytoskeletal protein villin
[51]. These studies implicated host lymphocytes in the disruption of the intestinal epithelial
cytoskeleton. In contrast, our study demonstrates that parasite clan CA cysteine proteases can
directly disrupt intestinal epithelial villin.

Within the gastrointestinal tract, the cytoskeletal protein villin is exclusively expressed by
IECs, and its primary function is to maintain microvillous brush border integrity during peri-
ods of stress via its ability to promote the assembly and disassembly of the actin cytoskeleton
(reviewed in [49]). Pathogen-mediated actin cytoskeleton disruptions can aid in the establish-
ment of infection [74–78]. Interestingly, inhibition of contact between parasites and IECs via
chemical disruption of G. duodenalis lipid rafts prevents actin cytoskeletal remodelling [71].
Consistent with these observations, results from the present study demonstrate that G. duode-
nalis trophozoites were unable to induce villin degradation and redistribution within IECs
when the two were separated by transwells. Collectively, these results suggest that intestinal
epithelial actin cytoskeletal remodelling during giardiasis is dependent at least in part on con-
tact between G. duodenalis trophozoites and host IECs. It remains to be elucidated whether
actin cytoskeletal remodelling via villin activation is necessary for establishment of G. duodena-
lis infection.
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Disruption of villin and the related protein ezrin occurs during the late stages of G. duode-
nalis infection in vivo, and is dependent on CD4+ and CD8+ lymphocytes [51]. Data from the
present study indicate that early disruption of villin within IECs is dependent on clan CA cyste-
ine proteases. Together, these results suggest that G. duodenalis uses more than one mechanism
to disrupt villin and the intestinal epithelial brush border. A variety of invasive gastrointestinal
pathogens are reliant on the intestinal epithelial expression of villin and its ability to remodel
the actin cytoskeleton to facilitate entry and dissemination through host tissues [79–81]. Fur-
thermore, although Salmonella sp. and enteropathogenic Escherichia coli induce villin redistri-
bution, this occurs in the absence of villin proteolysis [82, 83]. Therefore, G. duodenalis-
mediated disruption of villin may significantly affect the ability of other gastrointestinal patho-
gens to colonize and cause disease. Moreover, G. duodenalis infections have been reported to
occur simultaneously with other pro-inflammatory gastrointestinal pathogens [84–87]. A
recent report examining giardiasis in Tanzanian children found that individuals infected with
G. duodenalis had reduced incidence of diarrhoeal disease and fever, and lower serum inflam-
matory scores when compared to individuals not infected with G. duodenalis [88]. More
research is warranted to assess whether G. duodenalis infections may prevent other pathogens
from establishing and/or inducing disease within their host.

Several parasites contain and produce cathepsin cysteine proteases (reviewed in [22, 23]).
The G. duodenalis genome contains genes for multiple cathepsin B and L cysteine proteases,
but their functions have only begun to be described [26]. Results illustrated herein indicate that
G. duodenalis cathepsin cysteine proteases are involved in the degradation and redistribution
of the intestinal epithelial cytoskeletal protein villin, in keeping with the observation that Ent-
amoeba histolytica cysteine proteases promote villin breakdown [70]. The role of villin break-
down in the establishment of infection by enteric parasites requires further investigation. Prior
to this study, G. duodenalis cathepsin cysteine proteases had been known to play a role in tro-
phozoite encystation and excystation [33], and degrading the potent neutrophil chemoattrac-
tant interleukin-8 (CXCL8) [34]. Importantly, G. duodenalis-mediated attenuation of CXCL8
did not require direct contact between parasites and host IEC monolayers [34]. These results
suggest G. duodenalis trophozoites possess multiple types of cathepsin cysteine proteases, and
each may have a different role in disease pathogenesis. Indeed, single-celled parasites can pos-
sess both surface-associated and secreted cathepsin cysteine proteases which may have unique
roles in pathogenesis [89–92].

In conclusion, our data reveal a novel role for G. duodenalis cathepsin cysteine proteases in
the degradation and redistribution of the intestinal epithelial cytoskeletal protein villin. These
results support previous observations that disruption of the intestinal epithelial cytoskeleton
requires intimate contact between parasites and intestinal epithelial cells. The present findings
also suggest that Giardia cysteine proteases disrupt villin at least in part by engaging epithelial
MLCK. Our findings are the first to indicate that G. duodenalis cathepsin cysteine proteases
represent potential parasite virulence factors capable of inducing pathophysiological responses
within host intestinal epithelial cells.
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