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We propose a family of bipartite hierarchical lattice of order N governed by a pair of parameters ℓ and 𝛾. We study long-range
percolation on the bipartite hierarchical lattice where any edge (running between vertices of unlike bipartition sets) of length k is
present with probability 𝑝𝑘 = 1−exp(−𝛼𝛽

−𝑘
), independently of all other edges.The parameter 𝛼 is the percolation parameter, while

𝛽 describes the long-range nature of the model. The model exhibits a nontrivial phase transition in the sense that a critical value
𝛼
𝑐
∈ (0,∞) if and only if ℓ ≥ 1, 1 ≤ 𝛾 ≤ 𝑁 − 1, and 𝛽 ∈ (𝑁,𝑁2). Moreover, the infinite component is unique when 𝛼 > 𝛼

𝑐
.

1. Introduction

For an integer 𝑁 ≥ 2, the hierarchical lattice of order 𝑁 is
defined by

Ω𝑁

= {x= (𝑥1, 𝑥2, . . .) : 𝑥𝑖 ∈ {0, 1, . . . , 𝑁 − 1} ,∑

𝑖

𝑥𝑖 < ∞} .

(1)

The hierarchical distance 𝑑 onΩ𝑁 is defined by

𝑑 (x, y) = {0, if x = y,
max {𝑖 : 𝑥𝑖 ̸= 𝑦𝑖} , if x ̸= y,

(2)

which satisfies the strong (non-Archimedean) triangle
inequality:

𝑑 (x, y) ≤ max {𝑑 (x, z) , 𝑑 (z, y)} , (3)

for any x, y, z ∈ Ω𝑁.Thismeans that (Ω𝑁, 𝑑) is an ultrametric
space. Roughly speaking, this corresponds to the leaves of
an infinite 𝑁-ary tree, with metric distance half the graph
distance.

Some stochastic models based on hierarchical lattices
have been studied. The asymptotic long-range percolation

on Ω𝑁 is analyzed in [1] for 𝑁 → ∞. To the best of
our knowledge, this is the first paper devoted to (Ω𝑁, 𝑑).
For different purpose, the works [2–4] study the long-range
percolation on Ω𝑁 for fixed𝑁 by using different connection
probabilities. The contact process and perturbation analysis
on Ω𝑁 for finite 𝑁 have been studied in [5, 6], respectively.
Random walks on hierarchical lattices have been examined
in [7, 8].

In this paper, we study percolation on a class of bipartite
hierarchical lattices, where edges always run between vertices
of unlike type. Bipartite graphs have been studied intensively
in the literature (see e.g., [9, 10]) and bipartite structure is
popular in many social networks including sexual-contact
networks [11] and affiliation networks [12], but we have not
seen the setup that we consider here. For two integers ℓ ≥ 1
and 1 ≤ 𝛾 ≤ 𝑁 − 1, consider a partition of Ω𝑁 into two sets:

Ω
1

𝑁
= Ω
1

𝑁
(ℓ, 𝛾)

= {x = (𝑥1, 𝑥2, . . .) ∈ Ω𝑁 : 𝑥ℓ ∈ {0, 1, . . . , 𝛾 − 1}} ,

Ω
2

𝑁
= Ω
2

𝑁
(ℓ, 𝛾)

= {x = (𝑥1, 𝑥2, . . .) ∈ Ω𝑁 : 𝑥ℓ ∈ {𝛾, 𝛾 + 1, . . . , 𝑁 − 1}} .

(4)
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Figure 1: An illustration of bipartite hierarchical lattice
(Ω
1

𝑁
(ℓ, 𝛾), Ω

2

𝑁
(ℓ, 𝛾), 𝑑) of order𝑁 = 3, ℓ = 2, and 𝛾 = 2. Vertices of

type 1 are represented by solid points while those of type 2 hollow
points. The distances between three vertices 0 = (0, 0, 0, . . .) ∈ Ω1

𝑁
,

x = (1, 0, 0, . . .) ∈ Ω1
𝑁
, and y = (0, 2, 0, . . .) ∈ Ω2

𝑁
are 𝑑(0, x) = 1 and

𝑑(0, y) = 𝑑(x, y) = 2.

Vertices in Ω
1

𝑁
and Ω

2

𝑁
are said to have types 1 and 2,

respectively. For each 𝑘 ≥ 1, the probability of connection
between two vertices x and y of unlike type such that𝑑(x, y) =
𝑘 is given by

𝑝𝑘 = 1 − exp(− 𝛼
𝛽𝑘
) , (5)

where 0 ≤ 𝛼 < ∞ and 0 < 𝛽 < ∞, all connections being
independent. Vertices of the same type cannot be connected
with each other, and hence the resulting graph is a class of
random bipartite graph.

In the above bipartite hierarchical lattice, denoted by
(Ω
1

𝑁
, Ω
2

𝑁
, 𝑑), vertices of both types are countable and the

shortest distance between vertices in Ω1
𝑁
and Ω2

𝑁
is ℓ. The

vertices in (Ω1
𝑁
, Ω
2

𝑁
, 𝑑) can be represented by the leaves at the

bottom of an infinite regular tree, where𝑁 branches emerge
from each inner node, see Figure 1.The distance between two
vertices (leaves at level 0) is the number of levels from the
bottom to their most recent common ancestor. The partition
of types for vertices is determined by their ancestors at level ℓ;
in other words, we need to track back at least ℓ levels to find
the most recent common ancestor of two vertices of unlike
type.

Two vertices x, y ∈ (Ω
1

𝑁
, Ω
2

𝑁
, 𝑑) are in the same

component if there exists a finite sequence x = x0, x1, . . . , x𝑛 =
y such that each pair of vertices x𝑖−1 and x𝑖 has different
types and shares an edge for 𝑖 = 1, . . . , 𝑛. In our model, the
parameter 𝛽 > 0 describes the long-range nature, while we
think of 𝛼 ≥ 0 as a percolation parameter. We are interested
in studying when there is a nontrivial percolation threshold
in (Ω1

𝑁
, Ω
2

𝑁
, 𝑑), namely, the critical percolation value 𝛼𝑐 ∈

(0,∞). Our results for phase transition are analogous to those
in the monopartite counterpart (Ω𝑁, 𝑑) (see [3]). The similar
(comparable) behavior of phase transitions in bipartite and
correspondingmonopartite networks has also been observed
in other percolation contexts (see the discussion in Section 2).

The rest of the paper is organized as follows. The results
are stated and discussed in Section 2, and the proofs are given
in Section 3.

2. Results

Let |𝑆| be the size of a vertex set 𝑆. The connected component
containing the vertex x is denoted by 𝐶(x). By definition, the
origin 0 ∈ Ω

1

𝑁
(ℓ, 𝛾) for all ℓ ≥ 1 and 1 ≤ 𝛾 ≤ 𝑁 − 1.

Since, for all x ∈ Ω1
𝑁
(ℓ, 𝛾) and y ∈ Ω2

𝑁
(ℓ,𝑁 − 𝛾), |𝐶(x)| and

|𝐶(y)| have the same distribution, it suffices to consider only
|𝐶(0)| without loss of generality. The percolation probability
is defined as

𝜃 (ℓ, 𝛾, 𝛼, 𝛽) = 𝑃 (|𝐶 (0)| = ∞) , (6)

and the critical percolation value is defined as

𝛼𝑐 = 𝛼𝑐 (ℓ, 𝛾, 𝛽) = inf {𝛼 ≥ 0 : 𝜃 (ℓ, 𝛾, 𝛼, 𝛽) > 0} , (7)

which is nondecreasing in 𝛽 for any given ℓ and 𝛾.

Theorem 1. Assume that ℓ ≥ 1, 1 ≤ 𝛾 ≤ 𝑁 − 1 and that
0 < 𝛽 < ∞. One has the following:

(i) If 𝛽 ≤ 𝑁, then 𝛼𝑐 = 0.
(ii) If 𝛽 ≥ 𝑁2, then 𝛼𝑐 = ∞.
(iii) If𝑁 < 𝛽 < 𝑁

2, then 0 < 𝛼𝑐 < ∞.

Moreover, there is almost surely at most one infinite component
when 𝛼 > 𝛼𝑐.

Remark 2. The critical value 𝛼𝑐 = 𝛼𝑐(ℓ, 𝛾, 𝛽) turns out to be a
function of only 𝛽 irrespective of the values of ℓ and 𝛾. Koval
et al. [3] showed the same behavior of𝛼𝑐 for percolation in the
monopartite lattice Ω𝑁. This analogy of phase transition has
been recognized in other percolation problems in statistical
physics. An example is the 𝐴𝐵 percolation introduced by
Mai and Halley [13] for the study of gelation processes. In
this model, each vertex of an infinite connected graph 𝐺 is
assigned one of two states, say 𝐴 and 𝐵, with probability 𝑝
and 1 − 𝑝, respectively, independently of all other vertices.
Edges with two end-vertices having unlike states (called 𝐴𝐵
bonds) are occupied.Thus, the𝐴𝐵 percolation can be viewed
as a bond percolation with occupation probability 2𝑝(1 − 𝑝)
(although some dependence is involved, namely, no odd path
of𝐴𝐵 bonds exists). Appel andWierman [14] proved that𝐴𝐵
percolation does not occur for any value of 𝑝 ∈ [0, 1] on a
bipartite square lattice with bipartition 𝑉1 = {V = (V𝑥, V𝑦) ∈
Z2 : V𝑥 − V𝑦 is odd} and 𝑉2 = {V = (V𝑥, V𝑦) ∈ Z2 : V𝑥 −

V𝑦 is even} such that Z2 = 𝑉1 ∪ 𝑉2. In other words, the bond
percolation cannot occur on the above bipartite square lattice
for occupation probability 2𝑝(1 − 𝑝) ≤ 1/2. This is consistent
with the classical result which says that bond percolation on
Z2 does not occur when occupation probability ≤ 1/2 (see,
e.g., [15, 16]). Other comparable 𝐴𝐵 percolation thresholds
for monopartite and bipartite high-dimensional lattices can
be found in [17].

Another example is the biased percolation [18, 19] on infi-
nite scale-free networks with a power-law degree distribution
𝑃(𝑘) ∝ 𝑘

−𝛾. In this model, an edge between vertices with
degrees 𝑘1 and 𝑘2 is occupiedwith probability proportional to
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(𝑘1𝑘2)
−𝛼. By using generating function method, Hooyberghs

et al. [9] showed that biased percolation on a bipartite
scale-free network with two bipartition sets following degree
distributions 𝑃𝐴(𝑘) ∝ 𝑘

−𝛾𝐴 and 𝑃𝐵(𝑘) ∝ 𝑘
−𝛾𝐵 , respectively,

has the same critical behaviors with biased percolation on a
monopartite scale-free network when 𝛾𝐴 = 𝛾𝐵 = 𝛾.

Remark 3. The uniqueness of the infinite component holds
here for the same reason as the uniqueness result for the
percolation graph of Ω𝑁 (see [3, Theorem 2]). Note that our
graph resulting from (Ω

1

𝑁
, Ω
2

𝑁
, 𝑑) can be viewed as a spanning

subgraph of that from (Ω𝑁, 𝑑).

We consider Theorem 1 as an intermediate step towards
the study of percolation on bipartite hierarchical lattices. In
particular, one may explore the connectivity at the critical
regime 𝛽 = 𝑁

2 and the graph distance (chemical distance)
between 0 and a vertex x. It is also interesting to study the
mean field percolation (𝑁 → ∞) and compare it with that
on Ω𝑁 [1]. Directed percolation [20] and other meaningful
colorings onΩ𝑁 (other than the 2-coloring addressed in this
paper) are possible.

3. Proofs

We start with some notations. Then we proveTheorem 1.
For a vertex x ∈ (Ω1

𝑁
, Ω
2

𝑁
, 𝑑), define 𝐵𝑟(x) as the ball of

radius 𝑟 around x; that is, 𝐵𝑟(x) = {y : 𝑑(x, y) ≤ 𝑟}. We make
the following observations. Firstly, for any vertex x, 𝐵𝑟(x)
contains𝑁𝑟 vertices. In particular, if 𝑟 < ℓ, all vertices in the
ball have the same type. Secondly,𝐵𝑟(x) = 𝐵𝑟(y) if 𝑑(x, y) ≤ 𝑟.
Finally, for any x, y, and 𝑟, we have either 𝐵𝑟(x) = 𝐵𝑟(y) or
𝐵𝑟(x) ∩ 𝐵𝑟(y) = 0.

For a set 𝑆 of vertices, denote by 𝑆 = Ω𝑁 \ 𝑆 its com-
plement. Let 𝐶𝑛(x) be the component of vertices that are
connected to x by a path using only vertices within 𝐵𝑛(x). For
disjoint sets 𝑆1, 𝑆2 ⊆ Ω𝑁, we denote by 𝑆1 ↔ 𝑆2 the event
that at least one edge joins a vertex in 𝑆1 to a vertex in 𝑆2.
𝑆1  𝑆2 means the event that such an edge does not exist.
By definition, if 𝑆1, 𝑆2 ⊆ Ω

𝑖

𝑁
for 𝑖 = 1 or 2, then 𝑆1  𝑆2

occurs with probability 1. Let𝐶𝑚
𝑛
(x) be the largest component

in 𝐵𝑛(x). If there are more than one such components, just
take any one of them as 𝐶𝑚

𝑛
(x). It is clear that |𝐶𝑚

𝑛
(x)| =

maxy∈𝐵𝑛(x)|𝐶𝑛(y)| [3].

Proof of (i). Let 𝐴𝑘 be the event that the origin 0 ∈ Ω
1

𝑁

connects by an edge to at least one vertex at distance 𝑘 inΩ2
𝑁
.

By construction, for 𝑘 < ℓ, 𝑃(𝐴𝑘) = 0. For 𝑘 = ℓ, there are
((𝑁 − 𝛾)/(𝑁 − 1))(𝑁 − 1)𝑁

𝑘−1 vertices in Ω2
𝑁
at distance 𝑘

from 0. Hence,

𝑃 (𝐴ℓ) = 1 − (1 − 𝑝ℓ)
(𝑁−𝛾)𝑁

𝑘−1

= 1 − exp(− 𝛼
𝛽ℓ
(𝑁 − 𝛾)𝑁

ℓ−1
) ,

(8)

by using (5). For 𝑘 > ℓ, there are ((𝑁 − 𝛾)/𝑁)(𝑁 − 1)𝑁
𝑘−1

vertices in Ω2
𝑁
at distance 𝑘 from 0. Similarly, we obtain

𝑃 (𝐴𝑘) = 1 − exp(−
𝛼 (𝑁 − 𝛾) (𝑁 − 1)

𝛽𝑘𝑁
𝑁
𝑘−1
) , (9)

for 𝑘 > ℓ.
Since all the events {𝐴𝑘}𝑘≥1 are independent and

∞

∑

𝑘=1

𝑃 (𝐴𝑘) ≈ 1 − exp(− 𝛼
𝛽ℓ
(𝑁 − 𝛾)𝑁

ℓ−1
)

+
𝛼 (𝑁 − 𝛾)

𝑁

∞

∑

𝑘=ℓ+1

(
𝑁

𝛽
)

𝑘

(10)

diverges for any 0 < 𝛽 ≤ 𝑁, 1 ≤ 𝛾 ≤ 𝑁 − 1, and 𝛼 > 0,
infinitely many of 𝐴𝑘 occur with probability 1 by the second
Borel-Cantelli lemma. Thus, 𝜃(ℓ, 𝛾, 𝛼, 𝛽) = 1 for any ℓ > 1,
1 ≤ 𝛾 ≤ 𝑁 − 1, 𝛼 > 0, and 0 < 𝛽 ≤ 𝑁. The result then
follows.

Proof of (ii). Weonly need to show𝛼𝑐(ℓ, 𝛾,𝑁
2
) = ∞ by virtue

of the monotonicity. Note that, for 𝑗 ≥ ℓ, there are (𝛾/𝑁)𝑁𝑗

vertices in 𝐵𝑗(0) ∩ Ω1𝑁 and ((𝑁−𝛾)/𝑁)𝑁
𝑗 vertices in 𝐵𝑗(0) ∩

Ω
2

𝑁
. Hence, by the comments in the proof of (i) and taking

𝛽 = 𝑁
2, for any 𝑗 ≥ ℓ, we obtain

𝑃 (𝐵𝑗 (0) ←→ 𝐵𝑗 (0))

= 1 − (

∞

∏

𝑘=𝑗+1

(1 − 𝑝𝑘)
((𝑁−𝛾)/𝑁)(𝑁−1)𝑁

𝑘−1

)

(𝛾/𝑁)𝑁
𝑗

⋅ (

∞

∏

𝑘=𝑗+1

(1 − 𝑝𝑘)
(𝛾/𝑁)(𝑁−1)𝑁

𝑘−1

)

((𝑁−𝛾)/𝑁)𝑁
𝑗

= 1 − exp(−
2𝛼 (𝑁 − 𝛾) (𝑁 − 1) 𝛾𝑁

𝑗

𝑁4

×

∞

∑

𝑘=1

𝑁
𝑘+𝑗−1

𝑁2(𝑘+𝑗−1)
)

= 1 − exp(−
2𝛼 (𝑁 − 𝛾) 𝛾

𝑁3
) ,

(11)

which is strictly less than 1 for any finite 𝛼 ≥ 0.
Let 𝑛ℓ = 0 and 𝑛𝑖+1 = inf{𝑛 ≥ 𝑛𝑖 : 𝐵𝑛𝑖(0)  𝐵𝑛(0)}. We

have

{|𝐶 (0)| = ∞} ⊆

∞

⋂

𝑖=ℓ

{𝐵𝑛𝑖
(0) ←→ 𝐵𝑛𝑖

(0)} . (12)

Since the events {𝐵𝑛𝑖(0) ↔ 𝐵𝑛𝑖
(0)} are independent and all

have the same probability strictly less than 1,

𝑃 (𝐵𝑛𝑖
(0) ←→ 𝐵𝑛𝑖

(0), for any 𝑖 ≥ ℓ) = 0. (13)
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Consequently, there exists an 𝑖 such that𝐵𝑛𝑖(0)  𝐵𝑛𝑖(0)with
probability 1. It follows from (12) that 𝜃(ℓ, 𝛾, 𝛼,𝑁2) = 0 for all
𝛼 ≥ 0. This implies 𝛼𝑐(ℓ, 𝛾,𝑁

2
) = ∞.

Proof of (iii). The positivity of 𝛼𝑐 is a direct consequence of
the proof of Theorem 1(b) in [3]. Since the percolation graph
of (Ω1
𝑁
, Ω
2

𝑁
, 𝑑) can be viewed as a spanning subgraph of that

of (Ω𝑁, 𝑑), the percolation cluster𝐶(0) is almost surely finite;
namely, 𝜃(ℓ, 𝛾, 𝛼, 𝛽) = 0, for 𝛼 small enough.

Now we turn to the proof of finiteness of 𝛼𝑐. The
main technique to be used is an iteration involving the tail
probability of binomial distributions [3, 21]. Since 𝛽 < 𝑁

2,
we choose an integer 𝐾 and a real number 𝛿 such that

√𝛽 < 𝛿 ≤ (𝑁
𝐾
− 1)
1/𝐾

. (14)

Clearly, 1 < 𝛿 < 𝑁. For 𝑛 ≥ 1, let

𝑎𝑛 = 𝑃(

𝐶
𝑚

𝑛𝐾
(0) ∩ Ω1

𝑁


≥
𝛾

𝑁
𝛿
𝑛𝐾
,


𝐶
𝑚

𝑛𝐾
(0) ∩ Ω2

𝑁


≥
𝑁 − 𝛾

𝑁
𝛿
𝑛𝐾
) ,

(15)

and analogously,

𝑏𝑛 = 𝑃(

𝐶𝑛𝐾 (0) ∩ Ω

1

𝑁


≥
𝛾

𝑁
𝛿
𝑛𝐾
,


𝐶𝑛𝐾 (0) ∩ Ω

2

𝑁


≥
𝑁 − 𝛾

𝑁
𝛿
𝑛𝐾
) .

(16)

Here, 𝑎𝑛 is the probability that the largest component of a ball
of radius 𝑛𝐾 contains at least (𝛾/𝑁)𝛿𝑛𝐾 vertices inΩ1

𝑁
and at

least ((𝑁 − 𝛾)/𝑁)𝛿
𝑛𝐾 vertices in Ω2

𝑁
. Such a ball is said to be

good. We set 𝑎0 = 𝑏0 = 1 by convention. It is clear that, for
𝛼 > 0, all 𝑎𝑛 and 𝑏𝑛 are positive, since 𝑛𝐾 is a finite number
and the connection probability in (5) is positive.

In what follows, we will prove 𝛼𝑐 < ∞ in two steps.

Step 1. We show that there exists some 𝛼 > 0 such that 𝑎𝑛
converges to 1 exponentially fast; namely, 1 − 𝑎𝑛 ≤ exp(−𝑐𝑛)
for some 𝑐 > 0.

Step 2. We show that there exists some 𝛼 > 0 such that
lim inf𝑛→∞𝑏𝑛 > 0.

We start with Step 1. To this end, denote by N the
nonnegative integers. We can naturally label the vertices in
Ω𝑁 via the map 𝑓 : Ω𝑁 → N as

𝑓 : x = (𝑥1, 𝑥2, . . .) →
∞

∑

𝑖=1

𝑥𝑖𝑁
𝑖−1
. (17)

This order agrees with the depiction in Figure 1. A ball of
radius 𝑛𝐾 is said to be very good if it is good and its largest
component connects by an edge to the largest component of
the first (as per the aforementioned order) good subball in the
same ball of radius (𝑛 + 1)𝐾. Clearly, the first good subball of
radius 𝑛𝐾 in a ball of radius (𝑛 + 1)𝐾 is very good. Condition

(14) implies that (𝑁𝐾−1)𝛿𝑛𝐾 ≥ 𝛿(𝑛+1)𝐾.Thuswe assert that the
ball 𝐵(𝑛+1)𝐾(0) is good if (a) it contains𝑁𝐾 − 1 good subballs
of radius 𝑛𝐾, and (b) all these good subballs are very good.

The number of good subballs of radius 𝑛𝐾 in a ball of
radius (𝑛 + 1)𝐾 has a binomial distribution Bin(𝑁𝐾, 𝑎𝑛) with
parameters𝑁𝐾 and 𝑎𝑛. Given the collection of good subballs,
the probability that the first such good subball is very good
equals to 1. Fix any of the other good subballs, say 𝐵; the
probability that 𝐵 is not very good is upper bounded by

(1 − 𝑝(𝑛+1)𝐾)
𝑎𝑑+𝑏𝑐

≤ (1 − 𝑝(𝑛+1)𝐾)
(2𝛾(𝑁−𝛾)/𝑁

2
) 𝛿
2𝑛𝐾

= exp(−
2𝛼𝛾 (𝑁 − 𝛾)

𝛽𝐾𝑁2
(
𝛿
2

𝛽
)

𝑛𝐾

)

:= 𝜀𝑛,

(18)

where 𝑎 and 𝑏 are the number of vertices in the largest com-
ponent of the first good subball in Ω1

𝑁
and Ω2

𝑁
, respectively;

likewise, 𝑐 and 𝑑 are the number of vertices in the largest
component of the subball 𝐵 in Ω1

𝑁
and Ω2

𝑁
, respectively. By

definition, we have 𝑎, 𝑐 ≥ (𝛾/𝑁)𝛿𝑛𝐾, 𝑏, 𝑑 ≥ ((𝑁 − 𝛾)/𝑁)𝛿
𝑛𝐾,

and the distance between two vertices in a ball of radius
(𝑛 + 1)𝐾 is at most (𝑛 + 1)𝐾.

Therefore, the probability for any of the other good
subballs 𝐵 to be very good is at leat 1 − 𝜀𝑛. Thus, the number
of very good subballs is stochastically larger than a random
variable obeying a binomial distribution Bin(𝑁𝐾, 𝑎𝑛(1 − 𝜀𝑛)).
From the above comments (a) and (b) and the definition of
𝑎𝑛, it follows that

𝑎𝑛+1 ≥ 𝑃 (Bin (𝑁
𝐾
, 𝑎𝑛 (1 − 𝜀𝑛)) ≥ 𝑁

𝐾
− 1) . (19)

In general, we have the following inequality for the tail of
binomial random variable:

𝑃 (Bin (𝑛, 𝑝) ≥ 𝑛 − 1) ≥ 1 − (𝑛
2
) (1 − 𝑝)

2
. (20)

By (19), (20), and writing 𝜉𝑛 = 1 − 𝑎𝑛, we obtain

𝜉𝑛+1 = 1 − 𝑎𝑛+1 ≤ (
𝑁
𝐾

2
) (1 − 𝑎𝑛 + 𝑎𝑛𝜀𝑛)

2

≤ (
𝑁
𝐾

2
) (1 − 𝑎𝑛 + 𝜀𝑛)

2

= (
𝑁
𝐾

2
) (𝜉𝑛 + 𝜀𝑛)

2
.

(21)

We can choose 𝑐 > 0 large enough so that 4 (𝑁𝐾
2
) ≤ exp(𝑐),

and thenwe choose𝛼 large enough so that (c) 𝜀𝑛 ≤ exp(−𝑐(𝑛+
1)) and (d) 𝜉1 ≤ exp(−2𝑐) hold. To see (c), note that 𝛽 < 𝛿2
and then

𝜀𝑛 = exp(−
2𝛼𝛾 (𝑁 − 𝛾)

𝛽𝐾𝑁2
(
𝛿
2

𝛽
)

𝑛𝐾

)

≤ ((
𝛽

𝛿2
)

2𝐾𝛼𝛾(𝑁−𝛾)/𝛽
𝑘
𝑁
2

)

𝑛

.

(22)
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To see (d), note that lim𝛼→∞𝜀0 = 0, 𝜉0 = 0 and by (21) we
obtain

𝜉1 = 1 − 𝑎1 ≤ (
𝑁
𝐾

2
) (𝜉0 + 𝜀0)

2
, (23)

which also approaches 0.
According to our above choice of 𝑐 and 𝛼, we have

inductively, if 𝜉𝑛 ≤ exp(−𝑐(𝑛 + 1)), then

𝜉𝑛+1 ≤ (
𝑁
𝐾

2
) (𝜉𝑛 + 𝜀𝑛)

2
≤ 4(

𝑁
𝐾

2
) exp (−2𝑐 (𝑛 + 1))

≤ exp (−𝑐 (2𝑛 + 1)) ≤ exp (−𝑐 (𝑛 + 2)) ,
(24)

which implies that 𝜉𝑛 ≤ exp(−𝑐(𝑛 + 1)) ≤ exp(−𝑐𝑛) for all
𝑛 ∈ N. We then finish the proof of Step 1.

For Step 2, recalling the definition of 𝑏𝑛, we claim that

𝑏𝑛+1 ≥ 𝑏𝑛 ⋅ 𝑃 (Bin (𝑁
𝐾
− 1, 𝑎𝑛 (1 − 𝜀𝑛)) ≥ 𝑁

𝐾
− 2) . (25)

In deed, if |𝐶𝑛𝐾(0) ∩ Ω1𝑁| ≥ (𝛾/𝑁)𝛿
𝑛𝐾 and |𝐶𝑛𝐾(0) ∩ Ω2𝑁| ≥

((𝑁 − 𝛾)/𝑁)𝛿
𝑛𝐾, then 𝐵𝑛𝐾(0) is the first good subball in

the derivation above. If this component is connected to at
least 𝑁𝐾 − 2 other large components in 𝐵(𝑛+1)𝐾(0) as above,
then the component containing the origin in 𝐵(𝑛+1)𝐾(0) has
(𝛾/𝑁)𝛿

𝑛𝐾
(𝑁
𝐾
− 1) ≥ (𝛾/𝑁)𝛿

(𝑛+1)𝐾 vertices in Ω1
𝑁
and ((𝑁 −

𝛾)/𝑁)𝛿
𝑛𝐾
(𝑁
𝐾
−1) ≥ ((𝑁−𝛾)/𝑁)𝛿

(𝑛+1)𝐾 vertices inΩ2
𝑁
.Thus,

the inequality (25) follows.
A simple coupling gives

𝑃 (Bin (𝑁𝐾 − 1, 𝑎𝑛 (1 − 𝜀𝑛)) ≥ 𝑁
𝐾
− 2)

≥ 𝑃 (Bin (𝑁𝐾, 𝑎𝑛 (1 − 𝜀𝑛)) ≥ 𝑁
𝐾
− 1) .

(26)

Hence, we derive that the right-hand side of (26) converges to
1 exponentially fast by exploiting (20) and the fact that 𝑎𝑛(1 −
𝜀𝑛) converges to 1 exponentially fast. It then follows from (25)
that

𝑏𝑛+1 ≥ 𝑏𝑛 (1 − exp (−𝑐𝑛)) , (27)

for some 𝑐 > 0. Hence,

𝑏𝑛+1 ≥ 𝑏1

𝑛

∏

𝑘=1

(1 − exp (−𝑐𝑘)) . (28)

It is direct to check that

ln(
𝑛

∏

𝑘=1

(1 − exp (−𝑐𝑘))) ≥ ln(1 −
𝑛

∑

𝑘=1

exp (−𝑐𝑘))

≥ ln(1 − 2 exp (−𝑐)
1 − exp (−𝑐)

)

> −∞,

(29)

and hence ∏𝑛
𝑘=1
(1 − exp(−𝑐𝑘)) > 0 for all 𝑛. Since 𝑏1 > 0,

inequality (28) yields

lim inf
𝑛→∞

𝑏𝑛 > 0, (30)

as desired.
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