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It has been shown that specific immune resp6nse (Ir) genes within the I region of 
the major histocompatibility complex (MHC) 1 of mammals play a major role in 
thymus dependent immune responses (1, 2). However, the mechanism of the expression 
of Ir gene function remains an area of intense research and great speculation. Over 
the years, an attractive hypothesis has emerged that suggests that the antigenic 
determinants involved in stimulating primed helper, delayed-type hypersensitivity, or 
proliferative T cell clones are a complex of antigen fragments in association with the 
glycoprotein alloantigens--the immune response-associated (Ia) molecules (3). This 
functional complex of nomimal antigen and Ia is suitably displayed to T cells by 
antigen-presenting cells of variable origin, including those of mononuclear phagocyte 
(M~) lineage (4). To date, the information suggesting that Ia molecules are directly 
involved in Ir gene function has only been inferential; proof of such linkage would 
require experiments demonstrating the actual physicochemical association of antigen 
with Ia. 

Previous work with defined protein antigens such as insulin has contributed much 
to our present understanding of the nature and mechanism of Ir gene function in 
antigen recognition (5-8). For example, MHC-linked Ir genes control the murine T 
cell proliferative response of H-2 b mice to beef insulin (9). This control is dependent 
on a determinant selection process expressed by the Ia-positive antigen-presenting Mq~ 
and maps to the K b and/or  LA b subregion(s) of the H-2 gene complex. 

Recently, Ia.W39, a new private specificity of I-A b, has been described (10). It is 
selectively expressed on a functional subset of B cells, which is absent in newborn 
normal and adult mutant mice carrying the xid gene. Furthermore, the molecule 
bearing this Ia specificity is synthesized in the cytoplasm of B cells in xid-defective 
and neonatal normal mice, although it is not expressed on the B cell membrane. 
Biochemical studies have revealed that Ia.W39 has a similar two-chain structure and 
two-dimensional gel pattern as the conventional Ia molecule, suggesting that In.W39 
is a conformational specificity, expressed on a subset of molecules bearing the 
conventional Ia antigens. 2 This Ia molecule with its unique specificity and selective 
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expression represents a potentially powerful probe in the dissection of  the specific 
mechanism of  Ir  gene function for beef insulin in the H-2 b mouse. 

The  experiments described in this report examine the role of  Ia .W39 in the 
activation of  insulin-specific H-2 b T cells. They  suggest that  beef  insulin related Ir 
gene function is dependent  upon  the expression of  this Ia  molecule at the level of  the 
antigen-presenting Mq~. Furthermore,  it is demonstra ted for the first t ime that  a non- 
M H C  gene (xid) controls the opt imal  expression and execution o f  Ir  gene function, 
possibly by  regulating the membrane  expression of  an Ia molecule (Ia.W39) on 
antigen-presenting cells. 

M a t e r i a l s  a n d  M e t h o d s  
Animals. C57BL6/J (B6) and (C57BL6/J × DBA2/J)F1 (BDF 0 mice were purchased from 

The Jackson Laboratory, Bar Harbor, Maine. (CBA/N × C57BL6)FI [(N × B6)F1] and 
(C57BL6 × CBA/N)Ft [(B6 × N)FI] mice were bred in the animal facilities at Tufts University 
School of Medicine, Boston, Mass. from breeding stock originally obtained from the National 
Institutes of Health, Bethesda, Md. 

Antigens. Beef and pork insulin were obtained from Eli Lilly and Co., Indianapolis, Ind. 
and were the kind gifts of Dr. Alan S. Rosenthal of Merck, Sharp and Dohme, Rahway, N. J. 
Both beef and pork insulin contained <0.05% of proinsulin contamination. Ovalbumin five- 
times recrystallized (Sigma Chemical Co., St. Louis, Mo.), was coupled with 2,4,6-trinitroben- 
zene sulfonate (Pierce Chemical Co., Rockford, Ill.) as described elsewhere (11) to prepare 
trinitrophenylated ovalbumin (TNP-OVA). Purified protein derivative of tuberculin (PPD) 
was obtained from Connaught Medical Research Laboratory, Toronto, Ontario, Canada. 
Phytohemagglutinin (PHA) was obtained from Burroughs Wellcome Co., Research Triangle 
Park, N. C. 

Immunization. Mice were immunized by injections of 0.05 ml in each hind footpad of an 
emulsion of antigen and complete Freund's adjuvant (CFA) containing 0.5 mg/ml of killed 
Mycobacterium tuberculosis (Grand Island Biological Co., Grand Island, N. Y.). 50 #g of beef or 
pork insulin and 10 #g of TNP-OVA were present in 0.1 ml of emulsion. In some instances, 
mice were boosted with equivalent amounts of antigen in CFA 14 d after primary immunization. 

Cell Culture Techniques. The technique used for antigen-induced T cell proliferation repre- 
sents a modification of previously described and well-characterized assays (9, 12). All washing 
procedures were performed in Hanks' balanced salt solution (HBSS; Grand Island Biological 
Co.) and cells were cultured in RPMI-1640 (Grand Island Biological Co.), supplemented with 
fresh L-glutamine (0.3 mg/ml), penicillin (100 #/ml), and streptomycin (100 #g/ml), (all from 
Grand Island Biological Co.), 2-mercaptoethanol (5 × 10 -5 M) (Eastman Kodak Co., Rochester 
N. Y.), hepes buffer (10 mM) (Microbiological Associates, Walkersville, Md.), and 7.5% fetal 
calf serum (FCS; Hyclone Laboratories, Logan, Utah). 

Briefly, the technique for cell culture is as follows: 14 d after immunization and in some 
instances, 14 d after boost immunization, femoral and popliteal lymph nodes were removed 
aseptically, teased apart, and separated by grinding between the frosted ends of two sterile 
microscope slides, followed by passage over sterile Nitex (Tetko Co., Elmsford, N. Y.) to 
eliminate solid debris. After two washings, these lymph node cells were incubated on nylon 
wool adherence columns bathed in media supplemented with 20% F(2S for 60 min at 37°C. 
After this incubation, enriched, antigen-reactive lymph node T lymphocytes (LNL) were eluted 
from the nylon wool columns. Antigen-presenting adherent accessory cells (AA(2) were obtained 
from two sources: spleens were aseptically removed from the animal donors, single-cell suspen- 
sions were made, and the spleen cells were allowed to adhere to sterile glass petri dishes for 2 h. 
Simultaneously, the peritoneal cavities of splenic donor mice were lavaged with heparinized 
HBSS (10 U heparin/ml), and these peritoneal washout cells (PC) were also allowed to adhere 
for 2 h. Then, the spleen-adherent cells and adherent PC cells were collected as described 
previously and pooled and treated with 40 p.g/ml mitomycin (2 (Sigma Chemical Co.) for 60 
min at 37°(2. These cells were then washed vigorously five times to remove excess mitomycin 
(2 and then were used as accessory cells for T cell proliferation or as targets for antigen pulsing. 
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LNL T cells, and AAC, with or without antigen were then cultured for 96 h at densities of  
2 × 105 LNL T cells, and 5 × 104 AAC in 200 #1 complete medium/wel l  in round-bot tomed 
microtiter plates (Cooke Engineering Co., Alexandria, Va.) at 37°C with an atmosphere of  5% 
COu and 95% air. During the final 16-24 h of  culture, each well was pulsed with 1 #Ci of  
tritiated thymidine ([SH]TdR; 6.6 C i / m M ,  New England Nuclear, Boston Mass.). Cells were 
then harvested on glass fiber filter paper by the use of a microharvesting device (MASH II; 
Microbiological Associates). [aH]TdR incorporation was measured and all results reported as 
mean counts per minute SEM for triplicate determinations or as Acpm -- number  of  counts 
above control; e.g., experimental (with antigen) - control (no antigen). 

The  following method was used to pulse beef insulin, TNP-OVA,  or PPD onto antigen- 
presenting AA(2: Mitomycin C-treated AAC were incubated in complete medium with or 
without 100 #g /ml  beef  insulin, 100 #g /ml  TNP-OVA,  or 100 #g /ml  PPD at 37°(2 for 60 min 
at a concentration of 1 × 10s-5 × 10 ° AA(2/ml. After this, AA(2 were washed thoroughly five 
times to remove excess antigen and then readjusted to the appropriate cell concentration in 
complete medium. 5 × 104 antigen- or media-pulsed AA(2 were then added to 2 × 105 primed 
LNL T cells/well, cultured for 4 d as outlined above and proliferative activity measured by 
[SH]TdR uptake. The  data  are expressed as Acpm ~ antigen-pulsed AA(2 activation of  primed 
L N L  T cells - media-pulsed AAC activation of primed LNL T cells. 

Alloantisera. Anti I-A b alloantiserum, (A × B10.A)F1 anti-B10.A(5R) was obtained from the 
Research Resource Branch, National  Institute of Allergy and Infectious Diseases, and its anti- 
K b activity was absorbed with E l -4  tumor cells. Anti-Ia.W39 was prepared by immunizing (N 
× Bo)F1 male mice with B6 spleen cells, as previously described (10). Normal  mouse sera (NMS) 
from nonimmune male (N × B6)Fa mice was used as a control. 

Blocking Experiments. To assess the blocking effect of antisera, 1% NMS, conventional anti- 
I-A b, or anti-Ia.W39 were added at the start of culture and were present continuously in the 
cultures. 

R e s u l t s  

Effect of Anti-Is Sera on the Insulin-specific T Cell Proliferative Response. T o  asce r t a in  

t he  func t i ona l  role  o f  I a . W 3 9  on  a n t i g e n - p r e s e n t i n g  M,k, we  tes ted  the  ab i l i ty  o f  an t i -  

I a . W 3 9  s e r u m  to b lock  insul in-speci f ic  T cell  p ro l i f e r a t i on  in B6 mice .  As can  be  seen 

TABLE I 

Effect of Anti-Is Sera on Proliferative Responses of B6 T Cells* 

Beef insulin (100/zg/ml) PPD (10 #g/ml) 

[SH]TdR Percent [SH]TdR Percent 
incorporation~ inhibition§ incorporation inhibition 

Acpm Acpm 
Experiment 1 

I% NMS 11,901 - -  10,055 - -  
I% anti-Ia.W39 1,287 89 3,786 62 

Experiment 2 
1% NMS 22,509 - -  8,229 - -  
1% anti-LA b 2,580 89 0 100 

* 2 × 105 LNL T cells, 5 × 104 AAC/well cultured for 4 d in round-bottomed 
microtiter plates. 

:~ Acpam = experimental (with antigen) - control (without antigen); baseline control 
= [ H]TdR incorporation of LNL and AAC without antigen: experiment ! = 1,152 
+ 815 cpm, experiment 2 ~= 2,115 4- 234 cpm. 

Acpm anti-Ia~ 
§ Percent inhibition =~ 1 acpm NMS / × 100. 
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TABLE II 

Effect of Anti-Ia Sera on Proliferative Response of lmmune (N  × B6)Ft 
Female T Cells to Beef Insulin* 

[aH]TdR incorporation:]: Percent inhibition§ 

~cpm 

Experiment 1 
1% NMS 4,885 - -  
I% anti-Ia.W39 1,318 73 
1% anti-I-A b 504 90 

Experiment 2 
1% NMS 5,156 - -  
1% anti-Ia.W39 1,246 76 
1% anti-LA b 0 100 

The proliferative technique was the same as in Table I. 
* Beef insulin, 100 #g/ml for in vitro challenge. 
1: Acpm = ex~r imenta l  (with antigen) - control (without antigen); baseline 

control =~ [ H]TdR incorporation of LNL and AAC without antigen: exper- 
iment 1 -- 567 + 103 cpm, experiment 2 = 259 :t= 86 cpm. 

Acpm anti-la.~ 
§ Percent inhibition = 1 Acpm NMS ] × 100. 

TABLE III 

Effect of Anti-la Sera on Proliferative Responses of Pork Insulin-immune BDF1 T 
Cells 

[SH]TdR incorporation* 

Pork insulin Beef insulin TNP-OVA 
(100 #g/ml) (100 #g/ml) (200 #g/ml) 

Percent 
inhibition~: 

~cpm 

Experiment 1 
1% NMS 8,700 7,287 74,208 - -  
1% anti-Ia.W39 7,248 6,583 41,279 44 
1% anti-LA b 7,862 6,444 42,440 42 

Experiment 2 
1% NMS 5,679 6,694 34,667 - -  
1% anti-Ia.W39 6,435 5,979 23,066 33 
1% anti-LA b 5,972 5,336 18,769 45 

The proliferative technique was the same as in Table I. 
* Aepm ------ experimental (with antigen) - control (without antigen); baseline control 

-- [*H]TdR incorporation of LNL and AAC without antigen: experiment 1 ~ 1,821 
:t: 807 cpm, experiment 2 ~ 573 :k 84 cpm. 

~cpm anti-Ia~ 
:~ Percent inhibition - 1 - Acpm NMS ,/ × 100 for TNP-OVA. 

in  T a b l e  I, e x p e r i m e n t  1, 1% a n t i - I a . W 3 9  s e r u m  m a r k e d l y  i n h i b i t e d  b e e f  i n s u l i n -  

i n d u c e d  p r o l i f e r a t i o n  (89%) a n d ,  t o  a lesser ,  e x t e n t  P P D - i n d u c e d  cel l  d i v i s i o n  (62%).  

A n t i - I - A  b s e r u m  a l so  s i g n i f i c a n t l y  b l o c k e d  b o t h  b e e f  i n s u l i n -  (89%) a n d  P P D -  (100%) 

i n d u c e d  a c t i v a t i o n .  T h e  s a m e  r e su l t s  w e r e  o b t a i n e d  u s i n g  (N  × B6)F1 f e m a l e  T ce l l s  
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TAnLE IV 

Proliferative Response of lmmune F~ T Cells 

1117 

[aH]TdR incorporation* 

(N × B6)F~ <2 (N × B6)F~ d (B6 × N)F] d 

(Acpm ± SEM) × 10 -s 

Beef insulin (100 pg/ml) 12.28 ± 2.74 2.30 ± 0.69 17.45 ± 1.84:1: 
Pork insulin (100 pg/ml) 2.51 ± 0.91 1.33 ± 0.47 2.64 ± 1.32 
TNP-OVA (200 pg/ml) 49.68 ± 3.73 42.08:1:5.69 ND§ 
PPD (10 #g/ml) 6.98 ± 1.10 4.91 4- 1.29 7.58 4- 2.72 
PHA (1 #g/ml) 63.96 ± 16.39 48,05 ± 10.55 39.55 ± 4.03 

The proliferative technique was the same as in Table I. 
* Mean (Aepm ± SEM) × 10 -s for four experiments. Acpm ffi experimental (with 

antigen) - control (no antigen); control - spontaneous incorporation of [SH]TdR 
in cultures of AAC and LNL T cells without antigen: control baselines: (N × B6)F1 
<2:3.45 ± 1.16, (N × B6)F~ d: 3.37 ± 1.66, (B6 × N)F~ d: 2.12 4- 1.19. 

:it: Mean (Acpm ± SEM) × 10 -2 for three experiments. 
§ Not done. 

TABLE V 

Response of lmmune ( N  × B6)F1 Female T Cells to Antigen-pulsed 
Adherent Presenting Cells* 

Antigen-pulsed Mq~ (AAC) [~H]TdR incorporation§ 

(Acpm ± SEM) X 10 -a 
Fl <2 Beef insulin 11.09 ± 0.58 
Fa <2 PPD 15.10 ± 1.94 
F1 <2 TNP-OVA 24.28 ± 2.65 
F1 d Beef insulin 1.77 ± 0.62 
F1 d PPD 6.68 ± 0.23 
Fl C~ TNP-OVA 19.32 -1- 1.51 

* 5 × 104 M~b (AAC) ± antigen pulse mixed with 2 × 105 LNL T cells/well 
cultured for 4 d in round-bottomed microtiter plates. 

:~ Mck (AAC) -pulsed with 100 p,g/ml beef insulin or 100 p,g/ml PPD in some 
instances, as outlined in Materials and Methods. 

§ Acpm ffi antigen-pulsed M~b activation of LNL T cells - media-pulsed Mob 
activation of LNL T cells. Baseline: spontaneous incorporation of [ZH]TdR 
in culture of M~k (AAC) and LNL T cells without antigen pulse (Acpm). 
Control baseline: F] <2 AAC: 2.94 ± 0.15; Fl <5' AAC: 2.36 ± 0.55; mean 
(Acpm ± SEM) × 10 -a for three experiments. 

for p ro l i f e r a t i on  ( T a b l e  II,  e x p e r i m e n t s  1 a n d  2); n a m e l y ,  a n t i - I a . W 3 9  a n d  a n t i - I - A  b 

sera caused  a 75 a n d  95% i n h i b i t i o n  o f  b e e f  i n s u l i n - i n d u c e d  ac t i va t i on ,  respect ive ly .  

As a speci f ic i ty  con t ro l  for t he  ac t iv i ty  o f  a n t i - I s . W 3 9  a n d  an t i - I -A  u s e r a ,  BDF1 

mice  were  p r i m e d  w i t h  po rk  insu l in  a n d  T N P - O V A  ( T a b l e  III) .  O n l y  the  D B A / 2  (H-  

2 a) p a r e n t  o f  BDF1 m i c e  can  r e spond  to  t he  a n t i g e n i c  d e t e r m i n a n t s  in po rk  insu l in  

w h i c h  a re  on  t h e  B cha in .  Because  the  B cha ins  o f  b e e f  a n d  po rk  insu l in  a re  iden t ica l ,  

t he re  is a c o m p l e t e  c ross - reac t ion  b e t w e e n  b e e f  a n d  p o r k  insul in  in t h e  H - 2  a h a p l o t y p e .  

As c a n  be  seen in T a b l e  III ,  BDFx m i c e  m a d e  e q u a l  p ro l i f e ra t ive  responses  to b e e f  

a n d  p o r k  insul in ,  a n d  m o r e o v e r  these  responses  were  u n a f f e c t e d  by  the  a d d i t i o n  o f  

a n t i - I a . W 3 9  a n d  a n t i - I - A  b sera. H o w e v e r ,  b o t h  an t i se ra  r e d u c e d  the  response  o f  BDF~ 
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TABLE VI 
Response of Immune Adult (N × B6)F1 Female T Cells to Antigen-pulsed 

Adherent Presenting Cells* 

Antigen-pulsed Mq~ (AAC):~ [SH]TdR incorporation§ 

Acpm 
Adult F1 ~ beef insulin 9,064 
Adult Fl ~ TNP-OVA 20,339 
Neonatal Fx ~ beef insulin 0 
Neonatal F] ~ TNP-OVA 21,753 

* Usual proliferative technique as described in Table V. Results of one typical 
experiment out of three are shown here. 

:]: Acpm -- antigen-pulsed M~ activation of LNL T cells - media-pulsed Mq~ 
activation of LNL T cells, baseline control: spontaneous incorporation of 
[SH]TdR in cultures of M~k (AAC) and LNL T cells without antigen pulse 
(cpm). Control baseline: adult F] 9 Mck (AAC): 1,157 4- 398, neonatal F1 
M~ (AAC): 883 4- 243. 

§ M~ (AAC) -pulsed with 100 #g/ml beef insulin or 200 #g/mI. TNP-OVA in 
some instances, as outlined in Materials and Methods. 

[[ Neonatal Mq~ (AAC) prepared as described in Materials and Methods from 
mice that were 8-d old. 

mice to TNP-OVA, suggesting that at least some TNP-OVA response may be 
associated with Ia.W39. 

Immune Proliferative Response of Normal and xid-defective F1 Mice to Beef Insulin. A series 
of experiments is summarized in Table IV that depict the comparative ability of beef 
insulin-primed T cells from normal (N × B6)F1 female and (B6 × N)F1 male mice 
and from defective (N × B6)F1 male mice to respond to beef and pork insulin and 
other immunogens. Both normal female (N × B6)F1 and male (B6 × N)F] mice 
mounted good T cell responses to beef insulin with very little cross-reaction to pork 
insulin stimulation (indicative of H-2 b type recognition of the A chain loop determi- 
nant within beef insulin). The xid-defective male (N × B6)F1 mice, however, could 
not develop a significant primed T cell proliferative response to beef insulin. All three 
groups of mice made comparable responses to TNP-OVA, PPD, and PHA. Because 
the defective F1 male mice express all conventional Iab specificities but lack Ia.W39, 
the striking conclusion offered by these data is that beef insulin responsiveness in the 
H-2 b mouse is associated with the expression of Ia.W39. 

Response of Immune F1 Female T Cells to Antigen-pulsed Presenting Cells. To test potential 
cellular defects in the beef insulin response of (N × B6)Ft male mice, we compared 
the ability of antigen (beef insulin or PPD) -pulsed Mq) from xid defective F1 male 
and normal Ft female mice to activate syngeneic FI female T cells, which are immune 
to beef insulin and CFA. As is shown in Table V, the FI female Mq~ presented beef 
insulin to the immune T cells, whereas the F1 male M~, pulsed with beef insulin, were 
unable to induce proliferation in the same group of T cells. Although a T cell defect 
cannot be ruled out, these data imply that the xid-associated unresponsiveness to beef 
insulin is at the level of the antigen-presenting cell, which lacks Ia.W39 determinants. 
In controls included in Table V, both male and female F1 Mq~, pulsed with PPD and 
TNP-OVA, activated the primed T cells significantly, although the FI female Mq) 
were slightly more efficient than the F1 male. Although this difference may not be 
statistically significant, it may imply that some degree of PPD and TNP-OVA 
responsiveness in the H-2 b haplotype is also associated with Ia.W39. 
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Ontogeny of Presenting Cell Competence for Beef Insulin Is Ia. W39 Related. Expression of 
Ia.W39 on the B cell membrane is not evident until 21 d after birth, whereas 
conventional Ia is present on B cells from neonatal mice. With this in mind, we 
compared the ability of M¢~ from neonatal (8 d old) and adult (N × B6)F1 female 
mice to present beef insulin to adult primed syngeneic T cells. As can be seen in one 
typical experiment out of a total of three in Table VI, the neonatal M~ were 
specifically deficient in presenting beef insulin, although they presented TNP-OVA 
efficiently. The adult Mq~ were able to present both antigens. These results highlight 
once again the association of Ia.W39 with beef insulin responsiveness at the level of 
the antigen-presenting Mq~. 

Discussion 

Our understanding of the I region of the MH C has increased through the functional 
and genetic analysis of recombinant mice and by serological and structural definition 
of the Ia antigens (13-15). However, progress has been considerably slower in the 
study of the mechanism, cellular site of action, and regulation of expression of Ir gene 
function. 

The experiments in this report have unequivocally shown, using different ap- 
proaches, that the responsiveness to beef insulin in the H-2 b haplotype is dependent 
on the expression of Ia.W39 on antigen-presenting Mq~. Moreover, we have demon- 
strated for the first time a non-MHC gene (xid) -linked regulation of  an Ir gene 
function. 

Mutant  CBA/N mice possess on X-linked recessive defect, which has been recently 
mapped (xid) (16). This xid gene regulates the expression of the late-appearing B cell 
differentiation antigens Lyb-3 (17), Lyb-5 (18), Lyb-7 (19), and the newly defined 
Ia.W39 (10). As this latter alloantigen is encoded by the I-A b subregion of the H-2 
gene complex, it seemed reasonable to ask two questions about its function: First, is 
Ia.W39 expressed functionally by antigen-presenting M~? Second, what is the rela- 
tionship of Ia.W39 to I-Ab-linked Ir gene function? The response of H-2 b mice to beef 
insulin represented an ideal situation to analyze these two questions. 

We have shown that monospecific anti-Ia.W39 serum could block beef insulin- 
induced T cell proliferation in H-2 b mice. The conventional anti-I-A b serum also 
blocked beef insulin-induced T cell proliferation; however, it should be noted that the 
anti-I-A b antisera may contain anti-Ia.W39 antibodies. This is a likely possibility, 
because it was found in immunoprecipitation experiments that anti-I-A b serum could 
preclear Ia.W39, but not vice versa. 2 Over the years, on the basis of multiple studies 
in both mice and guinea pigs, it has been implied that alloantisera blockade is at the 
level of the antigen-presenting M~, although no data absolutely prove this point (20, 
21). More recent experiments utilizing monoclonal antibodies and parent --* F1 
chimeras as a source of lymphoid cells reconfirm the suspicion that inhibition of 
response by anti-Ia reagents occurs at the level of the antigen-presenting accessory cell 
(23). It therefore follows from these blocking experiments that Ia.W39, a B cell 
differentiation marker expressed an a subpopulation of B cells, is also functionally 
expressed by antigen-presenting Mq~. 

With a different approach, we have shown that beef insulin responsiveness is 
associated with the expression of Ia.W39, by demonstrating that normal (N × B6)F1 
female and (B6 × N)F1 male mice as opposed to defective (N × B6)F1 male mice 
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could mount a T cell proliferative response to beef insulin. The same pattern was seen 
in the secondary IgG plaque-forming cell (PFC) response to beef insulin, measured in 
these groups of mice (B. T. Huber and L. J. Rosenwasser, manuscript in preparation). 
Furthermore, we have shown that defective F1 male M~ cannot present beef insulin 
to responder F1 female beef insulin-primed T cells. 

In sum, we have found in (N × B6)F1 male mice a defect in insulin-related Ir gene 
function and expression of Ia.W39 on antigen presenting Mth. In the xid defective (N 
× B6)F1 male B cells, it is felt that lack of Ia.W39 represents a maturation arrest in 
the differentiation pathway, whereby certain subsets of B cells do not develop. By 
analogy, the mechanism ofxid-regulated defective Ir gene function may be a result of 
deletion or faulty maturation of a subpopulation of antigen-presenting Mth or 
alternatively, a selective defect in Ia.W39 expression on the Mth membrane may be 
evident on all Ia-bearing Mth. Experiments to assess those possibilities are in progress. 
Additionally, T cell proliferation experiments in (N × B6)F1 males and females with 
beef collagen and poly(L-Tyr, L-Glu)-poly(DL-Ala)-poly(L-Lys); both under the control 
of genes located in the I-A b subregion are in progress, to see if these responses are also 
dependent on expression of Ia.W39. The molecular mechanism of this xid-regulated 
Ir gene deficit is unknown and investigation in this area may provide a key to the 
precise workings of Ir genes. Another point of interest that is immediately apparent 
is whether this xid regulatory gene is operative in other haplotypes as a general 
regulatory phenomenon; and for that reason, experiments examining the insulin B 
chain determinant responses in (N X BALB)F1 males and females are in progress. (H- 
2 d mice recognize a determinant in the B chain of insulin, whereas H-2 b mice recognize 
a determinant in the A chain loop). 

Two further points should be made concerning the results reported here. First, the 
data in this paper highlight the strong assocation of the Ia.W39 specificity with Ir 
gene function for beef insulin in H-2 b mice. Other examples of the association of Ia 
antigens with Ir gene functions have been documented in previous studies in both 
guinea pigs and mice (23, 24). More recently, work with a monoclonal antibody 
directed against Ia antigens containing the combinatorial determinant A~b'k'~'~-E~ has 
shown a clear association of these hybrid Ia antigens with Ir gene function for pigeon 
cytochrome c in B10.A mice and for poly(Glu, Lys, Phe) 9 in B10.A(SR) mice (25). 
Second, the findings of this report document for the first time a potential Mth defect 
associated with mutant  CBA/N mice. These mice make defective responses to thymus- 
independent type 2 (TI-2) antigens such as TNP-FicolI; Boswell et al. (26) have shown 
that the in vitro response of B cells to thymus-independent type 2 (TI-2) antigens is 
M~ dependent, however, those same workers felt that the defect in CBA/N mice to 
TI-2 antigens rested with a lack of the Lyb-5 + subset of B cells and that CBA/N Mq~ 
could present TI-2 antigens to an appropriate B cell (27). 

Finally, we have shown that neonatal, antigen-presenting Mt~, which presumably 
do not acquire Ia.W39 until 21 d after birth but have conventional Ia antigens 
analogous to neonatal B cells, are deficient in presenting beef insulin to primed adult 
T cells, again suggesting the association of Ia.W39 with beef insulin responsiveness at 
the level of the Mdp. Recently Nadler et al. (28) showed that neonatal (<14 d old) 
antigen presenting M~ are incompetent at inducing in vitro primary T N P - K L H  PFC 
responses and Lu et al. (29) showed that neonatal M~ are deficient at presenting 
Listeria monocytogents antigen to immune T cells. Our findings on the incompetency of 
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normal neonatal Mck to present insulin to primed, adult T cells is in accord with those 
studies. However, wo do not find a generalized defect in Ia-dependent T cell activation 
in neonatal M~, because they can present T N P - O V A  to immune T cells. It is 
reasonable to infer from our studies that neonatal Mq~ acquire the ability to present 
insulin as they acquire Ia.W39; therefore, it may be likely that functional maturat ion 
and acquisition of Ia.W39 and perhaps all Ia  antigens by antigen-presenting Mqb may 
be under the influence of the X-linked regulatory gene(s). 

Thus we have shown that beef insulin responsiveness in the H-2 b mouse is dependent 
on the expression of Ia.W39 by antigen-presenting Mqb. The  defect in beef insulin 
reactivity in mutant  (N × B6)Fx male mice is a result of  lack of expression of  Ia.W39, 
regulated by the xid gene. The  discovery of an X-linked regulatory gene for Ir gene 
function is a new and provocative finding and should provide the basis for future 
studies on the regulation and mechanism of antigen responsiveness. 

S u m m a r y  

Immune  response (Ir) genes are encoded for by the I region of  the major histocom- 
patibility complex (MHC). A class of serologically defined specificities, Ia  antigens, is 
also encoded for by genes within this region. A new Ia specificity, Ia.W39, has recently 
been defined. It  is private for I-A b and its expression is controlled by a gene on the X- 
chromosome. Using different approaches, the role of  Ia.W39 in the immune response 
of H-2 b mice to beef insulin was examined in a macrophage-dependent T cell 
proliferation assay. It was found that beef insulin-related Ir  gene function was 
associated with the expression of Ia.W39 by antigen-presenting macrophages and that 
control of  this Ir gene function was X-linked (xid gene). 
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