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ABSTRACT
N6-methyladenosine (m6A) RNA methylation regulators play a regulatory role in tumor pathogen-
esis and development. However, the role of m6A regulator genes in ovarian cancer (OC) has not 
been fully elucidated. This study aims to investigate the mRNA expressions, clinicopathological 
features, and prognostic values of m6A regulators in OC. Here, we demonstrate that the 17 m6A 
RNA methylation regulators are differentially expressed in ovarian cancer and normal tissues. By 
using consensus clustering, all ovarian cancer patients can be divided into two subgroups (cluster 
1 and 2) based on the expression of 17 m6A RNA methylation regulators. Using Gene Set 
Enrichment Analysis, we identified that cluster 1 was most connected to oxidative phosphoryla-
tion pathways. Regression models identified that prognosis is associated with HNRNPA2B1, 
KIAA1429, and WTAP. qRT-PCR result show that the expression trends of HNRNPA2B1 and 
KIAA1429 are consistent with the predicted results. Multivariate Cox regression analysis results 
show that the risk score was an independent predictive factor in OV. The overall survival of high- 
risk patients was significantly shorter than that of low-risk patients. ROC curve analysis showed 
that the prognostic signature precisely predicted the 5-year survival of OV patients. A nomogram 
was developed to predict each patient’s survival probability and well calibrated and showed 
a satisfactory discrimination. Dendritic fraction, macrophage fraction, and neutrophil fraction 
showed higher fraction in high-risk patients. In conclusion, m6A RNA methylation regulators are 
vital participants in ovarian cancer pathology, and three-gene mRNA levels are valuable factors for 
prognosis predictions.
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Background

Epigenetic modification is a change in the expres-
sion of a nucleotide sequence. Previous studies 
have shed light on epigenetic pathways such as 

histone modification, chromosome remodeling, 
DNA methylation, and non-coding RNA regula-
tion. RNA-level modification can be accomplished 
by N7-methyladenosine, N1-methyladenosine, 
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pseudouridine, 5-methylcytosine, N6, 2ʹ- 
O-methylation, and 2ʹ-O-dimethyladenosine 
(m6A). Among them, m6A is a form of RNA 
methylation discovered in the 1970s.

RNA methylation is a dynamic and reversible 
process involving methyl-transferases ‘writers’, 
binding proteins (‘readers’), and demethylases 
(‘erasers’), just like DNA methylation. The promi-
nent m6A methylation regulators include ‘writers’ 
like METTL3, METTL14, WTAP, KIAA1429, 
RBM15, and ZC3H13; ‘readers’ like YTHDC1, 
YTHDC2, YTHDF1, YTHDF2, and HNRNPC 
and ‘erasers’ like FTO and ALKBH5. More and 
more studies have found that regulators in m6A 
RNA methylation are associated with tumorigen-
esis. For example, Chen M et al. found that 
METTL3 promoted liver cancer progression [1]. 
Li J et al. found that FTO promoted the growth of 
lung cancer cells by regulating the m6A level of 
USP7 mRNA [2]. Hua W et al. found that 
METTL3 promoted ovarian carcinoma growth 
and invasion [3]. Mei Chen et al. found that 
m6A RNA methylation regulators can promote 
malignant progression and affect the prognosis of 
bladder cancer [4]. Shuai Ma et al. found that there 
is a meaningful interaction between m6A RNA 
methylation and non-coding RNA in cancer [5]. 
The mechanism of action between m6A RNA 
methylation and specific tumors has increasingly 
become the focus of in-depth research.

Molecular technologies for the treatment of 
ovarian cancer are ongoing. Ovarian cancer poses 
a great threat to women’s life. Abnormal modifica-
tion of RNA may act in tumor development. The 
study by Zhao Ma et al. found that METTl3 inde-
pendently of METT114 and WTAP regulates m6A 
in endometrioid epithelial ovarian cancer [6]. Jie 
Li et al. found that YTHDF2 is a protein inhibited 
by miR-145, which can regulate the proliferation, 
apoptosis, and migration of ovarian cancer cells 
[7]. Takeshi Fukumoto et al. found that 
N 6-Methylation of Adenosine of FZD10 mRNA 
Contributes to PARP Inhibitor Resistance [8]. 
These research results all show that m6A RNA 
methylation plays a pivotal role in the develop-
ment and treatment of ovarian cancer.

The aim of our study is to find a direct and 
fixed algorithm for batch prediction of m6A RNA 
regulators that have an impact on ovarian cancer. 

Our goal is to provide a new molecular mechan-
ism for the development of ovarian cancer.

Materials and methods

Data Sources

RNA-seq data and corresponding clinicopatholo-
gical data were obtained from TCGA (http://can 
cergenome.nih.gov/http://cancergenome.nih.gov/) 
including 379 OC patients [9]. The expression 
dataset (N = 379 for ovarian cancer from TCGA 
and N = 88 for normal ovarian tissues from GTEx) 
[10] was downloaded from the UCSC Xena project 
(http://xena.ucsc.edu/http://xena.ucsc.edu/) [11]. 
Data were renormalized based on total reads for 
each sample to generate RPKM (Reads Per 
Kilobase of transcripts per Million mapped reads) 
[12] and then the expressions of between normal 
ovarian and OC tissues were compared. ‘limma’ 
package [13] was performed to solve the imbalance 
between the tumor and normal data and then 
analyzed different expressions among normal 
ovarian and OC.

Selection of m6A RNA methylation regulators
17 m6A RNA methylation regulators from pub-

lished papers have been identified for subsequent 
studies.

Bioinformatic analysis

We divided the samples into different groups 
using ‘ConsensusClusterPlus’ [14–16]. Enrich 
Database (https://amp.pharm.mssm.edu/Enrichr) 
was conducted for functional analysis. 
Interactions among m6A RNA methylation regu-
lators were analyzed by using the Search Tool for 
the Retrieval of Interacting Genes Database 
(STRING) database (http://www.string-db.org/). 
Gene Set Enrichment Analysis (GSEA) [17] was 
based on different subgroups of OC for identifying 
the functions. Univariate Cox regression analysis 
[18] was used to determine the prognostic value of 
m6A RNA methylation regulators. From this, it 
has been proved that three genes were significantly 
associated with survival through this study 
(P < 0.05), which are selected for further func-
tional analysis and development of a potential 
risk signature with the LASSO Cox regression 
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algorithm [19]. The minimum criteria [20] was set 
to determine the 3 genes and their coefficients. 
The risk score [21] for the signature was calculated 
by using the formula: Risk score = ΣCoefi*xini = 1, 
where Coefi is the coefficient, and xi is the z-score- 
transformed relative expression value of each 
selected gene. This formula was used to calculate 
a risk score for each patient in TCGA datasets. To 
reveal potential Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways [22] of the high- and 
low-risk groups and three prognosis-related genes, 
GSEA [23] was utilized to find enriched terms in 
C2 and in TCGA-OV database. And p < 0.05 were 
considered to be statistically significant.

Complex cancer genomic profiles are accessible 
from the cBioPortal tool (http://www.cbioportal. 
org/http://www.cbioportal.org/) [24,25,].

The abundant six subtypes of tumor-infiltrating 
immune cells including CD4 T cells, CD8 T cells, 
B cells, neutrophils, macrophages, and dendritic 
cells can be visualized by TIMER online data-
base [26].

Construction and validation of the nomogram

A nomogram and calibration curve were con-
structed by using the ‘rms’ package [27] on 
R. Harrel’s concordance index (C-index) [28] was 
measured. The nomogram was then subjected to 
bootstrapping validation (1,000 bootstrap resam-
ples) to calculate a relatively corrected C-index 
[29]. Finally, we used decision curve analysis 
(DCA) to determine the clinical usefulness [30].

Statistical analysis

Patients were divided into two clusters by consen-
sus expression of m6A RNA methylation regula-
tors. Chi-square tests were used to compare the 
distribution of grade, race, stage age, and tumor 
status between the two risk groups.

Patients were divided into two groups based on 
the median levels of risk score [31]. This prognos-
tic model and patient survival information were 
merged. Kaplan–Meier survival curves were used 
to compare the prognostic ability of the prediction 
models [32]. Area under the curve (AUC) [33] 
value for the Receiver operating characteristic 
(ROC) curves of each prognostic model was 

calculated by survival.ROC package in R. Besides, 
univariate and multivariate Cox regression ana-
lyses were conducted to compare the hazard ratio 
(HRs) [34] of prognostic models and important 
clinical features for OC. Differences among clinical 
parameters (age, grade, stage, and tumor status) 
were tested by using independent t-tests and 
P < 0.05 were considered to be statistically 
significant.

qRT-PCR to verify the expression of hub genes 
in clinical samples

16 ovarian cancer tissues and 8 normal ovarian 
tissues were obtained. The acquisition process and 
sample storage and processing are the same as 
before [35]. The extraction of RNA and the imple-
mentation of qRT-PCR were also operated strictly 
in accordance with the protocols. TABLE S1 
showed the primer sequences.

Results

The present study aims to identify m6A RNA 
modulators associated with prognosis in OC. We 
analyzed the association between each m6A RNA 
methylation regulator and the clinical features of 
OC. Survival analysis showed that ALKBH5, 
METTLE14, METTLE16, YTHDF1, YTHDF2, 
YTHDF3, and ZC3H13 were significantly asso-
ciated. The expression profiles of METTLE3, 
YTHDC2, and YTHDF3 were all related to the 
clinicopathological features in OC. By using con-
sensus clustering, all ovarian cancer patients can 
be divided into two subgroups (cluster 1 and 2) 
based on the expression of 17 m6A RNA methyla-
tion regulators. Using Gene Set Enrichment 
Analysis, we identified that cluster 1 was most 
connected to oxidative phosphorylation pathways. 
Regression models identified that prognosis is 
associated with HNRNPA2B1, KIAA1429, and 
WTAP. Combined with clinical characteristics, 
a nomogram for predicting prognosis was con-
structed and calibrated. The immune infiltration 
analysis was then performed to assess the impact 
of the three m6A RNA modulators on tumor 
behavior.

Expression of m6A RNA methylation regulators 
was correlated with OC clinicopathological 
features
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The correlation between each m6A RNA 
methylation regulator and OC clinical features 
was analyzed. These clinical features include age, 
grade, stage, and tumor-status. FMR1, METTL16, 
RBM15, and WTAP had significant correlations 
with age (Supporting Figure 1). FTO and 
YTHDC2 had significant correlation with OC 
grade (Supporting Figure 2). ALKBH5, METTL3, 
METTL14, METTL16, RBM15, and YTHDF1 had 
significant correlation with OC stage (Supporting 
Figure 3). HNRNPA2B1 and METTL16 had sig-
nificant correlation with OC status (Supporting 
Figure 4). For ovarian cancer, BRCA1 gene 

mutation is a common pathogenic factor and mar-
ker for ovarian cancer [36]. The expression of the 
m6A RNA methylation regulator in ovarian cancer 
patients with and without BRCA1 mutation was 
also analyzed, and it has been found that the 
expression of both FMR1 and YTHDF1 showed 
differences between BRCA1-mutation and non- 
BRCA1-mutation groups (Supporting Figure 5). 
Seventeen m6A RNA methylation regulators in 
OC tissue samples and normal tissue samples 
were analyzed later, and it has been shown that 
all the regulators are differentially expressed 
(Figure 1). In addition, survival analysis found 

Figure 1. Expression of m6A RNA methylation regulator in OC samples and normal samples. (a) Heatmap showed that the 17 m6A 
RNA methylation regulators expressed differently between OC samples and normal samples. (b) Expression level of 17 m6A RNA 
methylation regulators in OC samples and normal samples.
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that the overall survival (OS) and progression-free 
survival (PFS) of ALKBH5, METTLE14, 
METTLE16, YTHDF1, YTHDF2, YTHDF3, and 
ZC3H13 were meaningful (Supporting Figure 6 
and Supporting Figure 7). In order to assess the 
diagnostic value of 17 m6A RNA regulators, an 
ROC curve was generated by using expression data 
from ovarian cancer patients and healthy partici-
pants (Supporting Figure 8). The area under the 

ROC curve (AUC) indicates a modest diagnostic 
value.

Two clusters of m6A RNA methylation regula-
tors were associated with distinct OC clinical out-
comes and clinicopathological features

With clustering stability increasing from k = 2 
to 10, k = 2 seemed to be an adequate selection 
based on the expression similarity of m6A RNA 
methylation regulators (Figure 2a-c). Then, 379 

Figure 2. Differential clinicopathological features and overall survival of OC in the cluster ½ subgroups. (a) Consensus clustering 
matrix of 379 TGGA samples for k = 2. (b) Consensus clustering cumulative distribution function (CDF) for k = 2 to 10. (c) Relative 
change in area under CDF curve for k = 2 to 10. (d) Heatmap and clinicopathologic features of the two clusters defined by the m6A 
RNA methylation regulators consensus expression. (e) Kaplan–Meier overall survival (OS) curves for 315 out of 379 OC samples in the 
TCGA dataset.
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OC samples were clustered into two subgroups in 
the TCGA dataset (cluster 1:216; cluser2:163). The 
two subgroups were named as cluster 1 and cluster 
2 and clinicopathological features of the 2 two 
clusters were compared by k = 2 (Figure 2d). 
A significantly shorter OS was displayed in 
Cluster 1 than in Cluster 2 (Figure 2e).

Categories identified by consensus clustering 
are closely associated with the progression 
of OC

In order to understand the interactions among 
the 17 m6A RNA methylation regulators, the 
interaction (Figure 3a) and correlation 
(Figure 3b) among these regulators were 

Figure 3. Interaction among m6A RNA methylation regulators and functional annotation of OC in cluster ½ subgroups. (a) The m6A 
modification-related interactions among the 17 m6A RNA methylation regulators. (b) Spearman correlation analysis of the 17 m6A 
modification regulators. (c) GO analysis by GSEA of cluster 1 and cluster 2.
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analyzed. METTLE3 lies at the core of the net-
work of m6A RNA methylation regulators. Its 
interactions and co-expressions with KIAA1429, 
METTLE14, WTAP, YTHDF1, YTHDF3, 
YTHDF2, and YTHDC1 were constructed and 
displayed in the String database. METTLE3 was 
also significantly correlated with YTHDC2 and 
YTHDF3. Three genes might co-work to regulate 
the progression of OC. The functional analysis of 
the two clusters was further performed. GSEA 
was functioned to show that the most relative 
GO terms were chemokine activity, macrophage 
chemotaxis, macrophage migration, monocyte 
chemotaxis, and tumor necrosis factor biosyn-
thetic process in cluster 1 and cluster 2 
(Figure 3c). The most relative pathways were 
allograft rejection, asthma, graft-versus-host dis-
ease, oxidative phosphorylation, and ribosome 
(Figure 4). The above findings suggest that the 
two categories identified by consensus clustering 
are closely associated with the progression of OC.

m6A RNA methylation regulators had prognos-
tic significance

The prognostic ability of m6A RNA methylation 
regulators in OC was investigated. Univariate Cox 
regression analysis was conducted based on the 
expression levels of m6A RNA methylation regula-
tors (Figure 5a). The results indicated that the three 
genes were significantly correlated with OS 
(P < 0.05). WTAP and KIAA1429 were two risky 
genes with HR > 1, while HNRNPA2B1 was a risky 
gene with HR < 1. To evaluate the ability of m6A 
RNA methylation regulators in predicting the clin-
ical outcomes of OC, the LASSO Cox regression 
algorithm on three prognosis-associated genes was 
performed (Figure 5b-c), which were selected to 
construct the risk signature based on the minimum 
criteria. Coefficients obtained from LASSO algo-
rithm were used to calculate the risk score: 
HNRNPA2B1*-0.01+ KIAA1429*0.085 
+ WTAP*0.03. The OC samples (n = 374) into 
low- and high-risk groups were separated based on 
the median risk score. The distribution of risk score, 
survival status, and the expression of three genes 
from each patient were also displayed (Figure 5d- 
f). Significant difference was observed in OS 

Figure 4. Gene set enrichment show genes with higher expression in cluster 1 were enriched for KEGG of malignant tumors.

BIOENGINEERED 3165



between the two groups (Figure 6a). ROC curves for 
5-year survival were used to reveal the predictive 
performance of the three gene risk signatures. The 
5-year AUC of the signature was 0.649, which was 
obviously higher than that of stage (AUC = 0.512), 
grade (AUC = 0.525) and age (AUC = 0.539) 
(Figure 6b). The results showed the three gene risk 
signatures had a stronger ability to predict OC sur-
vival than clinical factors.

Prognostic value and clinical utility of three m6A 
regulators

the TGGA dataset, univariate and multivariate 
regression models were constructed to identify 
whether the risk signature was an independent 
prognostic factor. Univariate analysis showed 
that tumor status and risk score were both 
correlated with OS (Figure 6c). Having 
absorbed three genes into the multivariate 

Figure 5. Risk signature with 17 m6A RNA methylation regulators. (a) The process of building the signature containing 17 m6A RNA 
methylation regulators. The hazard ratios (HR), 95% confidence intervals (CI) calculated by univariate Cox regression. (b) LASSO 
regression analysis was used to calculate the coefficient of interferon gamma response genes. (c) Three genes were selected as active 
covariates to determine the prognostic value after 10-fold cross-validation for the LASSO model. (d-e) The risk scores for all patients 
in TCGA cohort are plotted in ascending order and marked as low risk (blue) or high risk (red), as divided by the threshold (vertical 
black line). (f) The distribution of risk score, survival status, and the expression of 3 genes of each patient in TCGA cohort by z-score, 
with red indicating higher expression and light blue indicating lower expression.
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regression analysis, tumor status and risk score 
remained significantly correlated with OS 
(Figure 6d). Furthermore, the clinical features 
were associated with the three genes and Risk 
score (Table 1). It has also been found that the 
WTAP expression level is significantly different 
in different age groups (Figure 6e). The expres-
sion levels of HNRNPA2B1 in the TUMOR 
FREE group and the TUMOR group were also 
significantly different (figure 6f). Risk scores of 
patients in different age groups were also sig-
nificantly different (Figure 6g). The 

stratification analysis was then performed 
based on grade, age, stage, and tumor status. 
Patients were stratified into Grade I/II and 
Grade III/IV subgroups and Stage I/II and 
Stage III/IV subgroups. As shown in 
Supporting Figure 9a, the prognosis of high- 
risk patients was significantly worse than that 
of low-risk patients in the Stage III/IV sub-
group, which was consistent with the results 
of Grade II/IV subgroup (Supporting 
Figure 9b). However, there is no statistical sig-
nificance in Stage I/II subgroup and Grade I/II 

Figure 6. Screening of Prognosis-related m6A RNA methylation regulators. (a) Kaplan–Meier overall survival (OS) curves for patients 
in the TCGA datasets assigned to the low- and high-risk groups. (b) ROC curve for 5-year survival prediction and clinical 
characteristics, including age, stage, grade, and risk score. (c) Univariate Cox regression analysis of the associated between 
clinicopathological factors (including risk score) and overall survival of patients. (d) Multivariate Cox regression analysis of the 
associated between clinicopathological factors (including risk score) and overall survival of patients. (e) WTAP expression levels in 
different age groups. (f) The expression levels of HNRNPA2B1 in the TUMOR FREE group and the TUMOR group. (g) RISK SCORE in 
different age groups.
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subgroup. The prognostic ability of the three- 
gene signature combined with age and tumor 
status was also assessed. The patients were also 
stratified into different subgroups, including 
subgroups which is above 60 years and below 
60 years. Interestingly, it has been revealed that 
high-risk patients in two subgroups were 
inclined to unfavorable OS (Supporting 
Figure 9c-e). Most of the immunity-related 
pathways were enriched in high-risk group, 
like T cell receptor signaling pathway, cytokine 
receptor interaction, and TOLL-like receptor 
signaling pathway. Most of the immunity- 

unrelated pathways were enriched in the low- 
risk group, like DNA replication and linoleic 
acid metabolism (Figure 7a). The three genes 
from the risk score model were co-enriched in 
cell adhesion molecule cams and chemokine 
signaling pathway (Figure 7b). The expression 
levels of three hub genes in 16 ovarian cancer 
clinical tissues and 8 normal ovarian tissues 
were also verified by the research (Figure 9). 
The results showed that the expression of 
HNRNPA2B1 was higher in normal ovarian 
tissues, and the expression of KIAA1429 was 
higher in ovarian cancer tissues, and both of 

Figure 7. GSEA results and KEGG enrichment. (a) Top enriched KEGG pathways in the high risk group are represented by the curves 
above the x-axis in the graph. Top enriched KEGG pathways in the low risk group are represented by the curves below the x-axis in 
the graph (p-value < 0.05) in TCGA dataset. The names of enriched KEGG pathways are listed on the right side. (b) GSEA plots of 
KEGG Pathways in which the WTAP, KIAA1429 and HNRNPA2B1 were co-enriched.
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them were consistent with our predicted trends. 
The expression level of WTAP was higher in 
ovarian cancer tissues, which was contrary to 
our prediction.

Association between three m6A regulators and 
immune infiltration

TCGA dataset was used to search the most 
significant tumor-infiltrating immune cells. Risk 
score was calculated to indicate the association 
between immune infiltration and three m6A reg-
ulators. Dendritic fraction, Macrophage fraction, 
and Neutrophil fraction have been discovered to 

Figure 8. The nomogram to predict 3- or 5-year OS in the entire set. (a) The nomogram for predicting proportion of patients with 3- 
or 5-year OS. (b-c) The calibration plots for predicting patient 3- or 5-year OS. Nomogram-predicted probability of survival is plotted 
on the x-axis; actual survival is plotted on the y-axis. (d) DCA for assessment of the clinical utility of the nomogram. The x-axis 
represents the percentage of threshold probability, and the y-axis represents the net benefit. DCA: decision curve analysis; OS: 
overall survival.

Table 1. Clinical significance of three prognosis-related genes.
Gene Age 

(≥60/<60)
Stage 

(I–II/III–IV)
Grade 
(1–2/3-4)

Tumor Status 
(with tumor/tumor free)

T P T P T P T P
HNRNPA2B1 −0.165 0.869 1.49 0.154 −0.571 0.570 2.844 0.005
KIAA1429 −0.615 0.539 1.909 0.072 −1.268 0.209 0.082 0.935
WTAP 3.641 3.264e-04 1.337 0.198 1.218 0.230 −0.146 0.884

Bold values indicate P < 0.05. 
Note: t: t value of student’s t test; P: P-value of student’s t test. 
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be mostly enriched in high-risk group 
(Supporting Figure 10A-C).

A nomogram based on three m6A regulators
Encompassing age, stage, grade, tumor status, and 

risk score, a nomogram was constructed to predict 
the three-year or five-year OS of OC (Figure 8a). 
The calibration curve form Figure 8b-c suggests that 
the nomogram exhibited a performance as good as 
that of the Kaplan–Meier estimates. The C-index for 
this nomogram was 0.789 and became 0.773 after 
bootstrapping validation, showing its good discrimi-
nating ability. Meanwhile, DCA was created to esti-
mate the clinical utility of the nomogram. The 
results of DCA showed that the nomogram contain-
ing three mRNAs’ signature had better prediction 
ability, with a threshold ranging from 2% to 83% 
(Figure 8d).

Genetic information of the seventeen genes

The genetic alteration harbored in the 17 genes 
was analyzed with cBioPortal software. The net-
work was exhibited, which is constructed by 

METTL3, HNRNPA2B1, HNRNPC, FMR1, and 
their 50 most associated neighbor genes (only 
four out of the 17 genes had a joint node, while 
the remaining three genes had no junctions and 
were not shown) (Supporting Figure 11A). 
Supporting Figure 11B-C illustrates that the 17 
genes were altered in 471 (79%) of the 594 patients 
(606 in total); YTHDF1, WTAP, and ZC3H13 
showed the most diverse alterations, including 
amplification, missense mutation etc.

Discussion

Ovarian cancer is the most common gynecological 
malignancy. Most of the women have developed 
advanced stage when diagnosed [37]. Early diag-
nosis is critical to improve OC prognosis because 
the 5-year relative survival rate at the local stage is 
93%. Specific biological diagnostic markers have 
been defined [38]. m6A modification has been 
implicated in mRNA turnover, localization, or 
translation [39–41]. As mainstream RNA regula-
tors, m6A modulators have been widely proven to 

Figure 9. Expression level of WTAP, KIAA1429 and HNRNPA2B1 in clinical group.
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coordinate proteins related to coding functions in 
mRNA, and ultimately affecting tumors such as 
colorectal cancer, melanoma, etc. [42–47]. We 
hope to find m6a regulators related to ovarian 
cancer in batches. Therefore, it was reasonably 
speculated that m6A RNA methylation regulators 
are associated with ovarian cancer. It was also 
identified that two OC subgroups (Cluster 1 and 
Cluster 2) based on the expression of m6A RNA 
methylation regulators during the research. Two 
clusters were not only related to OC prognosis and 
clinicopathological features, but also related to 
some functional pathways, including graft-versus- 
host disease and oxidative phosphorylation. 
Coincidentally, these functional pathways have 
been found to regulate the development of OC. 
For example, Bay JO et al. found that an OC 
patient developed acute graft-versus-host disease 
and from this time her tumor diminished progres-
sively [48]. Hänel M et al. also discovered a graft- 
versus-tumor effect in refractory ovarian cancer 
[49]. Pastò A et al. found oxidative phosphoryla-
tion in the stem cells from epithelial ovarian can-
cer patients [50]. Oxidative phosphorylation has 
also been validated as a therapeutic target for 
ovarian cancer [51].

METTL3 is the most widely studied writer. The 
experiments of Hua W et al. demonstrated that 
METTL3 promoted ovarian carcinoma growth 
and invasion through regulating AXL translation 
and epithelial to mesenchymal transition [3]. Cai 
X et al. demonstrated that HBXIP-elevated 
METTL3 expression and promoted the progres-
sion of breast cancer via inhibiting tumor suppres-
sor let-7 g [52]. Vu LP et al. found that METTL3 
curbed myeloid differentiation of normal hemato-
poietic and leukemia cells [53]. It has been identi-
fied that METTLE3 co-worked with others in OC 
development as the central gene in the network of 
m6A RNA methylation regulators. This conclusion 
has been proven in previous studies [54,55]. 
Studies have shown that N6-methyladenosine 
(m6A) is installed by the METTL3-METTL14- 
WTAP methyltransferase complex [56]. It has 
been identified that METTLE3 co-worked with 
others in OC development as the central gene in 
the network of m6A RNA methylation regulators. 
This conclusion has been proven in previous stu-
dies [57]. Wang Qiang and others found that the 

expression of METL3 promotes tumor angiogen-
esis and glycolysis in gastric cancer, and Mettl3 
may be a cancer-promoting factor for gastric can-
cer [58]. Mettl3 has also been proven to promote 
the progression of cervical cancer, which is also 
a gynecological tumor [59].

Another writer associated with ovarian cancer is 
WTAP [60]. Consistently, our results showed that 
WTAP had a mutation rate of 16% and was highly 
expressed in patients aged over 60. The older the 
age, the greater the cumulative mutational load. 
The prognosis of bladder cancer and malignant 
glioma is also affected by WTAP [61,62]. Jing 
Wang et al. found that WTAP functions as an 
oncogenic factor that promotes the progression 
of ovarian cancer in which WTAP-HBS1L 
/FAM76A axis may be involved [63].

METTL14 is the main factor involved in aber-
rant m6A modification. Ma JZ et al. found that 
METTL14 as a writer suppressed the metastatic 
potential of hepatocellular carcinoma by modulat-
ing N6-methyladenosine-dependent primary 
microRNA processing [64]. In the study, 
METTL14 was lowly expressed in ovarian cancer 
samples and highly expressed in patients of Stage 
1/2 subgroup and correlated with OC prognosis; 
thus, it is clear that the same M6A regulator also 
exerted different effects in different tumors. 
Mettl14 has also been shown to be related to breast 
cancer, colorectal cancer, and pancreatic cancer 
[65–67]

KIAA1429, METTL16, RBM15, and ZC3H13 
were less studied in tumors. Qian JY et al. found 
that KIAA1429 acted as an oncogenic factor in 
breast cancer by regulating CDK1 in an N6- 
methyladenosine-independent manner [68]. 
KIAA1429 also has been proven to regulate cell 
proliferation by targeting c-Jun messenger RNA 
directly in gastric cancer [69] and participate in 
the migration and invasion of hepatocellular car-
cinoma [70]. ZC3H13 was found to suppress col-
orectal cancer proliferation and invasion [71]. 
ZC3H13 was also found to be Tumor Suppressor 
Genes in Breast Cancer [72]. We found that 
ZC3H13 showed a mutation rate of 18% and 
highly expressed in OC samples, and its expres-
sion level was negatively correlated with OC prog-
nosis. It has been discovered that METTL16 was 
lowly expressed in OC tissues and was positively 
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correlated with the prognosis via this study. 
METTL16 was lowly expressed in the samples 
collected from patients younger than 60. The 
same trend was shown in patients of stage III– 
IV subgroup and with tumor subgroup. These 
results support our hypothesis that METTL16 
suppressed the development of OC. These find-
ings indicate that increasing the level of m6A 
enrichment which was conducted by the writer 
can indeed alter the development of the tumor. 
However, a specific mechanism still needs to be 
tapped.

As complementary factors of writers, erasers also 
exert effects on a variety of tumors. Obesity is 
a high-risk factor for many tumors [73], and fat 
mass and obesity (FTO) are associated with obesity 
[74]. Akbari ME et al. found that FTO gene affected 
obesity and breast cancer through similar mechan-
isms [75]. FTO is associated with the occurrence 
and prognosis of gastric cancer [76]. Alkylation 
repair homolog protein 5 (ALKBH5) is also asso-
ciated with pancreatic cancer [77], gastric cancer 
[78] and breast cancer [79]. Zhu H et al. found that 
ALKBH5 inhibited autophagy of epithelial ovarian 
cancer through regulating miR-7 and BCL-2 [80].

Three readers (YTHDF1, YTHDF2, and 
YTHDF3) were all highly expressed in OC samples 
and negatively related to prognosis. YTHDF1, 
YTHDF2, and HNRNPC have been intensely stu-
died. YTH domain family 1 (YTHDF1) has 
a mutation rate of 27% and high expression rate 
in OC samples, which is associated with the poor 
prognosis of OS and DFS. YTHDF1 has been 
shown to be involved in the regulation of color-
ectal and pancreatic cancer [81,82]. 
Overexpression of YTHDF1 is associated with the 
poor prognosis of hepatocellular carcinoma [83]. 
In pancreatic cancer cells, YTHDF2 orchestrates 
epithelial–mesenchymal transition/proliferation 
dichotomy [82]. Li J et al. found that downregula-
tion of N6-methyladenosine binding YTHDF2 
protein mediated by miR-493-3p suppressed pros-
tate cancer [84]. YTHDF2 also has a certain reg-
ulatory effect in lung cancer and gastric cancer 
[85,86]. HNRNPC can serve as a candidate bio-
marker for chemoresistance in gastric cancer [87]. 
Kleemann M et al. demonstrated that MiR-744-5p 
could induce cell death by directly targeting 
HNRNPC and NFIX in ovarian cancer [88]. The 

BRCA gene mutation is a feature of hereditary 
ovarian cancer. The samples were classified 
according to the presence of BRCA gene mutation 
[89], and it showed that the expression of FMR1 
was related to BRCA gene mutation. Gleicher 
N et al. also found that BRCA/FMR1 had 
a correlation with ovarian cancer [90]. The 
mechanism of BRCA/FMR1 mutation causing 
ovarian cancer deserves further study.

A prognostic regression analysis found that 
HNRNPA2B1, KIAA1429, and WTAP have the 
strongest correlation with OC. Subsequently, OC 
patients were stratified into two subgroups with 
statistically different survival outcomes. In addition, 
univariate and multivariate Cox analyses identified 
the prognostic signature as an independent factor. 
In this study, due to the lack of an external valida-
tion cohort, to validate the prognostic performance 
of the 3-mRNA signature cannot be achieved. Thus, 
bootstrapping with 1,000 resamples was applied to 
internally validate the performance of three mRNA 
signature. The C-index for the internal validation 
was 0.773, indicating its good performance in clin-
ical use. Moreover, a nomogram containing the 
3-mRNA signature and other clinical features of 
ovarian cancer was built. The nomogram showed 
a moderate performance in predicting the survival 
of OC patients. Meanwhile, the results of DCA 
suggested that the nomogram showed better pre-
diction ability, with a threshold ranging from 2% to 
83%. Except WTAP, the role of both HNRNPA2B1 
and KIAA1429 in ovarian cancer has not been 
thoroughly studied and can be used to direct 
further research. GSEA showed that the samples 
from the high-risk group were mainly enriched in 
immune-related pathways. Interestingly, the study 
showed that Dendritic fraction, Macrophage frac-
tion, and Neutrophil fraction were related to the 
three m6A regulators. Surprisingly, there are 
experiments demonstrating that dendritic cell 
(DC) immunotherapy can induce anti-tumor 
T cell immunity [91]. Macrophage can regulate 
the progress of OC through multiple mechanisms 
like CD47 [92] and NF-κB activation [93]. Meta- 
analysis by Chen S et al. showed neutrophil-to- 
lymphocyte ratio is a potential prognostic biomar-
ker in patients with ovarian cancer [94]. It can be 
seen that distorted immune microenvironment 
may induce tumors to some extent.
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This research has the following shortcomings: 1. 
The model is not validated with external data. 2. 
Lack of verification of in vitro and in vivo experi-
ments. Prospective clinical trials are necessary in 
the future to reconfirm the findings.

Conclusion

This study analyzed the association between m6A 
regulators and clinical features of OC. The three 
selected m6A RNA methylation regulators 
(HNRNPA2B1, KIAA1429, and WTAP) showed 
high prognostic value for OC and were also 
enriched in the biological processes and signaling 
pathways that drive the malignant progression of 
OC. High-risk patients who had a dendritic fraction, 
macrophage fraction, and neutrophil fraction were 
also found in this study. Future clinical and experi-
mental research is warranted to further verify the 
results of this study. In brief, this study provides 
novel markers for evaluating OC prognosis.
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