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ABSTRACT Females across many internally fertilizing taxa store sperm, often in specialized storage organs in their reproduc-
tive tracts. In birds, several hundred sperm storage tubules exist in the utero-vaginal junction of the oviduct, and there is growing
evidence that sperm storage in these tubules is selective. The mechanisms underlying female sperm storage in birds remain
unknown because of our limited ability to make three-dimensional, live observations inside the large, muscular avian oviduct.
Here, we describe a new application of fluorescence selective plane illumination microscopy to optically section oviduct tissue
from zebra finch Taeniopygia guttata females label free by harnessing tissue autofluorescence. Our data provide the first
description of the three-dimensional structure of sperm storage organs in any vertebrate to the best of our knowledge and reveal
the presence of gate-like constricted openings that may play a role in sperm selection.
SIGNIFICANCE Female birds can store sperm in microscopic tubular structures in their reproductive tract for up to
several months, depending on the species. Studying these sperm storage tubules has been a major challenge because of
the muscular and opaque nature of reproductive tracts in birds. We have developed a new method for imaging live
reproductive tract tissue using selective plane illumination microscopy, a fluorescence microscopy technique. From these
images, we could extract three-dimensional measurements of sperm storage tubules and found these structures to have a
gate-like constriction, suggesting that females can actively select sperm at storage and ultimately influence the paternity of
her offspring. Understanding these reproductive adaptations can help improve captive breeding programs and similar
conservation strategies.
INTRODUCTION

Across many internal fertilizers, females have evolved the
capacity to maintain viable sperm in specialized sperm
storage organs in their reproductive tract as a strategy to
maximize fertility. Sperm storage ensures the female has
sufficient sperm for fertilization when copulation and ovula-
tion are not synchronized (1). Because female promiscuity
is common across taxa (e.g., birds (2), mammals (3–5), rep-
tiles (6), fishes, (7) and insects (8–10)), storage also provides
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the opportunity for females to exert control over postcopu-
latory processes (11–13). Postcopulatory sexual selection
has driven the diversification of sperm storage organs, which
vary from single bean-shaped structures in damselflies
(14,15) or one or more sac-like spermathecae in certain
fly species (16,17) to multiple epithelial crypts in snakes
(18), lizards (19), turtles (20), and birds (21,22).

In birds, epithelial sperm storage crypts are called sperm
storage tubules (SSTs) and are located in the utero-vaginal
junction (UVJ) of the oviduct (23). The number of SSTs
possessed by a single female ranges from around 500 in
the budgerigar (Melopsittacus undulatus) to 20,000 in the
turkey (Meleagris gallopavo) (24). A growing body of evi-
dence suggests that avian SSTs are an important site of
sperm selection. Steele and Wishart (25) experimentally
demonstrated that chicken (Gallus domesticus) sperm
without surface membrane proteins could not enter the
SSTs after normal intravaginal artificial insemination,
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even though these sperm were capable of fertilizing the
ovum when inseminated beyond the vagina and UVJ.
Bobr et al. (23) also noted a lack of abnormal sperm in
chicken SSTs, suggesting that abnormal sperm are unable
to reach or enter sperm storage sites. The large number of
SSTs present in the avian oviduct may also allow the spatio-
temporal segregation of sperm from competing ejaculates
(26–28).

Despite evidence that SSTs may act as a filter for high
quality sperm, the mechanisms by which sperm are
selected at the time of storage remain poorly understood,
and how sperm enter and exit the SSTs is unknown. Fro-
man (29) proposed a model in which sperm motility,
rather than SST function, is pivotal in sperm retention
in SSTs. According to this model, sperm must maintain
an optimum swimming velocity to maintain their position
and counter a fluid current within the SST. This model
was supported by evidence that faster sperm emerged
out of SSTs later than slower sperm (30) and that the pas-
sive loss of sperm from storage might be sufficient to
explain last male precedence in the domestic fowl, tur-
keys, and zebra finches (Taeniopygia guttata) [(31,32);
but see (27)]. However, there have been no published ob-
servations of sperm swimming inside the SSTs, and our
own observations suggest sperm are not motile in storage
(see Supporting Materials and Methods). Several studies
have detected the presence of sperm motility suppressors
such as lactic acid in Japanese quail (Coturnix japonica)
SSTs (33), calcium and zinc in the SSTs of chicken, tur-
keys, and Japanese quail (34,35), and carbonic anhydrase
in the SSTs of turkeys, common quail (C. coturnix), and
ostriches (Struthio camelus) (36–38), and the neurotrans-
mitter acetylcholine, released by nerve endings detected
in the vicinity of SSTs (39), has been shown to enhance
sperm motility (40), implying a nervous control on sperm
mobilization at ejection from SSTs. Additionally, Hiyama
et al. (41) presented evidence for the potential role of heat
shock protein 70 (42) in enhancing sperm motility at the
point of sperm release. The presence of such sperm
motility suppressors and activators within or near the
SSTs suggests that release of sperm from storage may
not be as passive as Froman (29) suggested.

Rather than acting as passive refugia, SSTs may instead
be dynamic structures, capable of active constriction and
dilation to mediate the entrance and exit of sperm. Although
numerous studies have failed to find smooth muscle fibers or
myoepithelial cells (39,43,44) around SSTs, Freedman et al.
(39) detected fibroblast-like cells and an F-actin rich cyto-
skeletal mesh called the ‘‘terminal web’’ in turkey SST
epithelia. The terminal web is composed of contractile pro-
teins (actin and myosin) and has been shown to contribute to
contractility in other tissues, such as intestinal brush border
cells (45,46) and embryonic pigmented epithelia in chickens
(47). Freedman et al. (39) also found terminal innervations
in the turkey UVJ, suggesting there may be some degree
of nervous control over SST function. Recent evidence
also suggests the possibility of SST contraction, influenced
hormonally by the action of progesterone (48,49). It is there-
fore possible that the passage of sperm into and out of stor-
age is controlled, to some degree, by the physical structure
of SSTs themselves.

Our understanding of how SST structure influences
sperm storage is limited by our relatively basic knowledge
of SST morphology. The avian oviduct is convoluted, with
opaque, muscular walls, creating numerous practical limi-
tations for making observations of tubules in living epithe-
lial tissue using conventional microscopy techniques.
Empirical studies of SST morphology have so far used his-
tology (23,50,51) and electron microscopy (34,43,52) on
fixed tissue sections, but these approaches not only remove
functional information but typically provide two-dimen-
sional information only. Moreover, serial sectioning is
laborious, and the loss of material can be difficult to avoid.
Commonly used light microscopy techniques rely on thin
sections and squash preparations (26,53), which are inap-
propriate for large tissue samples because they distort
structures of interest and allow only limited imaging
depths.

In this study, we developed a novel method for live,
ex vivo three-dimensional (3D) imaging of SST structure
using selective plane illumination microscopy (SPIM).
SPIM is highly suitable for imaging large samples at cellular
resolution and has lower phototoxicity levels than with other
optical sectioning methods, which makes it a viable option
for imaging living tissue (54,55). Using SPIM, we were
able to optically section UVJ mucosal tissue up to depths
of 100 mm without distorting or damaging their structure.
We provide the first quantitative estimates of the 3D struc-
ture of SSTs in living tissue, including the relationship be-
tween SST length and diameter, and report the existence
of a previously undescribed gate-like constriction at the
entrance to tubules that may act to regulate sperm transport
into and out of storage.
MATERIALS AND METHODS

Animals

This study was approved by the University of Sheffield (Sheffield, UK). All

procedures performed conform to the legal requirements for animal

research in the UK and were conducted under a project license (PPL 40/

3481) issued by the Home Office.

Zebra finches were from a captive population kept at the University of

Sheffield (56,57). Females (all between 1 and 3 years old) were placed in

unisex housing for at least 2 weeks before being paired with males, in dou-

ble cages (dimensions of each individual cage: 0.6� 0.5� 0.4 m) separated

by a wire mesh with the male and female on either side. Each double cage

had a modified nest box, also with a wire mesh partition, to allow both birds

to enter the nest. This set up allowed the male and female to establish a

normal breeding pair bond and enter breeding condition while preventing

them from copulating and therefore ensuring the female had no sperm in

her SSTs (sperm can be stored for up to 12 days after mating in zebra
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finches (24)). Females were only included in the study once they had started

to lay eggs to ensure their oviduct was in full reproductive condition. After

they laid their second egg, females were euthanized (in accordance with

Schedule 1 (Animals (Scientific Procedures) Act 1986)) and dissected

immediately.
Sample preparation

The oviduct, including the cloaca, was immediately removed from the

female, and the connective tissue surrounding it was cleared to uncoil

and straighten the vagina and the UVJ. The lower end of the oviduct

was cut through the middle of the uterus to obtain a segment that

included the UVJ, vagina, and cloaca. This piece of the oviduct was

then cut open lengthwise and pinned flat on a petri dish filled with sili-

cone elastomer (SYLGARD 184; Dow Corning, Corning, NY). A suffi-

cient quantity of Ham’s F10 Nutrient Mix (Invitrogen, Carlsbad, CA)

was added to keep the tissue moist but not submerged. For SPIM imag-

ing, UVJ folds were cut individually with iris scissors and mounted one

at a time on a custom-made sample holder (see Supporting Materials and

Methods) using fine insect needles. The sample holder, with the UVJ

fold mounted, was immersed in phenol-free Dulbecco’s modified Eagle

media/F12 media at 37�C during imaging. These conditions kept tissue

viable for 1 h before it began to degrade, after which reliable data could

no longer be collected.
SPIM imaging

Live UVJ tissue samples, prepared as above, were imaged using a custom-

built SPIM microscope (at the University of Sheffield) with laser excitation

at 473 nm and a 520-nm long-pass fluorescence emission filter (Semrock,

Rochester, NY). The microscope hardware and optical components was

based on the OpenSPIM platform (58) but with modifications detailed in

Mendonca et al. ((59); Supporting Materials and Methods). The camera,

detection, and illumination objectives and magnification were fixed for

the system, ensuring that the imaging results were reproduceable. The auto-
2182 Biophysical Journal 117, 2180–2187, December 3, 2019
fluorescence image stacks were acquired using 500-ms exposure, starting at

the outer surface and moving up to 100 mm deep into the tissue fold.
Characterization of autofluorescence

SSTs were clearly identifiable in live UVJ tissue during fluorescence imag-

ing on the SPIM and had a punctate appearance on account of autofluores-

cent granules (Fig. 1), which appeared to be mostly confined to SST

epithelial cells and were present along the entire length of the SST from

orifice to blind end. No other cell structure or organelle was visible in these

autofluorescence images.

To determine the organization of the autofluorescent granules in the SST

epithelium, label-free images from live UVJ folds (n ¼ 10 birds) were

compared to those of fixed UVJ folds that had been stained for nucleic acids

(n ¼ 3 birds). Folds were also examined on a bright-field microscope after

histological sectioning and general histochemical staining (n ¼ 3 birds)

(Supporting Materials and Methods).
Image analysis

The image stacks acquired using the SPIM were used to reconstruct 480 �
480 � 100 mm tissue sections containing 3D information on SST structure.

Only SSTs captured entirely within the imaging volume were included.

Along with a data collection time limit of 1 h per female (because of tissue

degradation), this restricted our analyses to one SST per female (10 females

were analyzed). SST shape information was extracted by measuring the

diameter enclosed by the autofluorescence from images of live tissue at

10 equidistant points along the length of each SST.

UVJ tissue image stacks were first preprocessed in Fiji (60). Individual

unbranched SSTs were selected from each female such that the entire

SST structure was included in the 3D image stacks. The SSTs follow con-

voluted paths through the UVJ fold tissue, so to measure cross-sectional

diameter at multiple points, it was necessary to slice the image volume at

arbitrary angles to ensure the measurement planes were perpendicular to

the direction of the SST structure. This was accomplished by first tracing
FIGURE 1 (A) Schematic of SST transverse sec-

tion showing cellular polarization with nuclei (N)

toward the basement membrane (BM) and micro-

villi (MV) at the apical end of the epithelium.

The punctate autofluorescence (PA) detected by

the SPIM is present proximal to the nucleus but

not at the apical end of the epithelium near the

lumen (L). (B) Maximal intensity projection of a

UVJ fold with multiple detectable SSTs imaged

on the SPIM. Scale bars, 50 mm. Measurements

from (C) brightfield image of the cross section of

SST from histology, (D) autofluorescence from un-

fixed tissue imaged on the SPIM, and (E) SYTO-

13-labeled nuclei in fixed tissue imaged on the

SPIM, respectively, were used to determine the

localization of the autofluorescent granules. Scale

bars, 10 mm. To see this figure in color, go online.
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the direction of the SST structure using a dilated version of the SST image

(generated using the ‘‘MorphoLibJ’’ plugin (61), followed by the applica-

tion of Gaussian blur) to smooth the punctate autofluorescence. Two out-

lines for each SST were then semiautomatically traced in 3D from the

orifice to the blind end and along opposite sides of the SST lumen using

the ‘‘Simple Neurite Tracer’’ (62) plugin in Fiji.

The next stage of image analysis was performed using MATLAB (2015b,

version 8.6; The MathWorks, Natick, MA). An average trace that passed

through the SST lumen was computed from the two traces for each SST.

SST lengths were measured from these average traces. For each SST

(n ¼ 10), the average trace was interpolated at 10 equidistant points (the

first at the orifice and the 10th point before the blind end of the tubule),

and at each interpolated point, a vector describing the direction of the

SST at that point was computed using its nearest neighboring points on

the trace (Fig. 2). By using these vectors and the interpolated points, slicing

planes normal to the vectors were defined. The indices for these slicing

planes were used to extract two-dimensional image sections from the undi-

lated original image stacks using the ‘‘ExtractSlice.m’’ (63) function. For

every extracted slice, its distance from the orifice along the luminal trace

of the SST was computed using the ‘‘Arclength.m’’ (64) function, and the

major axis diameter (d1) and the minor axis diameter (d2) of the SST (en-

closed by autofluorescence) were measured.
Statistical analysis

Data analysis was performed using the statistical package R (version 3.2.3)

(65). We tested whether SST diameter varied with SST length using a mixed

effects model (‘‘lmer’’ function from the ‘‘lme4’’ package (66) along with

the ‘‘lmerTest’’ package (67)) with average SST diameter ((d1 þ d2)/2)

at the sampled point as the dependent variable, the distance of sampled

point from SST orifice and the SST total length as fixed effects, and the

bird identification as a random effect to account for repeated measures

from each female.

We also assessed if the SSTwas elliptical or circular in cross section (the

former providing greater epithelial apical surface area for increased contact
with sperm) and whether any such ellipticity changed in response to SST

length. A circularity index was first calculated by dividing the major axis

diameter (d1) by the minor axis diameter (d2), in which a circularity index

of one indicates a circular SST cross section. Data were then analyzed via a

mixed effectsmodel using the ‘‘lmer’’ function (66), with the circularity index

as the dependent variable and the total length of the SSTas a fixed effect. The

sum of themajor andminor axis diameters (d1þ d2) was also incorporated as

a fixed effect to account for the magnitude of change in diameter along each

axis as well as the distance of sampled point from SST orifice, with an inter-

action term between them. As before, bird identification was included as a

random effect to account for repeated measures from each female.
RESULTS

The diameter of SSTs was found to be notably constricted at
their orifice, suggestive of a structural ‘‘barrier’’ for entry
and exit (Fig. 3). Beyond this constricted entrance, SSTs
were largely tubular in shape, with the diameter increasing
marginally along the SST’s length until its midpoint, after
which the diameter decreased again toward the blind end
of the SST. This shape can be described by a significant
quadratic relationship between SST diameter and the dis-
tance from the SST orifice (estimated effect ¼ �16.761,
t ¼ �3.085, p ¼ 0.003, r2(m) ¼ 0.1584, r2(c) ¼ 0.4123;
Fig. 3 A). The relationship between SST diameter and dis-
tance from the SST orifice was also found using data from
labeled tissue (Fig. S4), confirming that the shape measured
from autofluorescence images was not an artifact resulting
from the distribution of the autofluorescence granules.
Long SSTs were neither wider nor thinner than short SSTs
(estimated effect ¼ 0.038, t ¼ 1.058, p ¼ 0.319).
FIGURE 2 Illustration of the image analysis

pipeline. (A) 3D rendering of an SST overlaid

with traces along the sides (dotted lines), the

computed trace through the center and slices

perpendicular to the direction of the SST at four

example positions (SSTs were sampled at 10 posi-

tions represented by gray dots). (B–E) Correspond-

ing slices through the SST. Measurements were

taken of the major axis and minor axis diameter

for each of the slices. Axis units in pixels (con-

verted to microns before data analysis). To see

this figure in color, go online.
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FIGURE 3 (A) SST diameter has a quadratic relationship with distance from the SSTopening, suggesting a constriction at the orifice and a slight increase

in diameter along its length up to the middle of the SST. Each plot represents measurements from an SST (n ¼ 10). (B) 3D rendering of an SST autofluor-

escence signal shows its constricted orifice (arrowhead). Scale on red bounding box is in microns. To see this figure in color, go online.

TABLE 1 SST Dimensions at Orifice and Widest Section—

SST Diameter Is the Smallest at Its Orifice and Widest Near the

Middle along Its Length

Diameter (mean 5 SD)

Mendonca et al.
SSTs were found to be slightly elliptical in the cross
section, with the major axis diameter being 1.6 5 0.2
times larger than the minor axis diameter. The circularity
of the SST in the cross section did not vary significantly
with SST diameter (estimated effect ¼ 0.014, t ¼ 0.979,
p ¼ 0.330), distance from orifice (estimated effect ¼
0.003, t ¼ 0.587, p ¼ 0.558), or the interaction between
these two variables (estimated effect ¼ �0.00009,
t ¼ �0.587, p ¼ 0.559). Circularity was also not
related to SST total length (estimated effect ¼ �0.004,
t ¼ �1.14, p ¼ 0.282).

Comparisons between the SST measurements from histol-
ogy and SPIM images indicate that the autofluorescent gran-
ules are present in the supranuclear region of the SST
epithelium (Fig. 1). The size of the lumen diameter scaled lin-
early with the width of the SST (Fig. S4), indicating that
epithelial cells remained the same thickness in the cross sec-
tion with increasing SST diameter. This allowed us to extrap-
olate shape information from the above analyses to the SST
lumen, and using this method, we estimated the diameter of
the SST orifice to be 3.35 1.1 mm (mean5 SD; Table 1).
At Orifice (mm) At Widest Section (mm)

Internuclear diametera 12.0 5 1.4 30.8 5 11.1

Autofluorescencea 10.1 5 4.3 16. 4 5 6.6

Lumen diameterb 3.3 5 1.1 9.1 5 1.4

aMeasurements acquired from SPIM image z-stacks.
bSST lumen diameter values were predicted from the model describing the

relationship between lumen and internuclear diameter.
DISCUSSION

Using novel 3D imaging methods, we have demonstrated
for the first time the existence of a constricted orifice at
the entrance/exit of avian SSTs. Such a structure is likely
to play an important role in sperm selection at storage. Za-
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ferani et al. (68) recently used in vitro techniques to
demonstrate how constrictions can act as gate-like selec-
tive barriers to sperm, allowing only sperm swimming
above a threshold velocity to overcome the shear rate at
the constriction and pass through. The narrow SST orifices
we have found have a mean diameter of �3 mm; this, with
the added obstruction of microvilli (1–2 mm in length
(52)), must act to restrict the rate of sperm (mean diameter
at midpiece is �0.6 mm (59)) entering and exiting the SST.
We therefore propose that the constricted opening we have
found in SST tubules provides a mechanism by which
sperm storage and release can be regulated. This supports
the idea that avian SSTs play an active and selective
role in sperm storage, regulating sperm uptake and
release (33–38). The constricted orifice, together with its
microvilli, may act as a valve, enforcing the unidirectional
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movement of sperm and preventing them from being
flushed back out. The small luminal diameter along the
SST (mean: 9 mm, Table 1) may also limit the ability of
sperm to turn around inside the SST and swim out.

In terms of overall structure, we found SSTs to be slightly
elliptical in the cross section, with the major axis diameter
being �1.6 times larger than the minor axis diameter. This
ellipticity was independent of SST radius, the distance along
the SST from orifice, or total SST length. Cross-sectional
ellipticity increases the surface area of the SST epithelial
apical surface, allowing for a greater number of microvilli
(as compared to a circular lumen with the same volume)
for increased contact with sperm and an optimum exchange
of nutrients and waste.

We found SST diameter to vary widely across zebra finch
SSTs; nevertheless, every SST measured had its smallest
diameter at its orifice. Birkhead et al. (69) suggested that
some SSTs might remain inactive in the zebra finch UVJ,
even in its fully developed state. It is possible that some of
the variation in SST shape that we observed can be explained
by the presence of functional and nonfunctional SSTs, but it is
unclear whether thinner, more uniform SSTs or more dis-
tended morphs would represent the active state. Mero and
Ogasawara (70) and Burke (71) described ‘‘swollen’’ tubules
in chickens and suggested that swelling is associated with
sperm release. Such swellings might help explain the outliers
in our data (Fig. 3 A). It is possible that conformational
changes in SST shape from functional to nonfunctional states
may be enabled by the F-actin rich terminal web as seen in
turkey SSTs (39) and caused by neural stimulation (39,72)
and/or hormonal effects (48,49). Variation in SST shapemight
also be explained by factors not tested in this study, including
age, hormone levels, and location of the SST in the UVJ.

About 4–27% of all the SSTs in the zebra finch UVJ are
branched (28,73). Branched tubules were not included in
our study, but individual branches are expected to show
similar shapes as unbranched tubules. Hemmings and Birk-
head (28) described sperm from different males differen-
tially stored in separate branches of an SST (albeit a
single observation because, in most cases, sperm from
different males were stored in different SSTs). Further study
of the 3D structure of branched SSTs could shed light on
mechanisms that prevent sperm mixing in branched tubules.

Our novel 3D data on SST structure were made possible by
the presence of punctate/granular autofluorescence, confined
to the SST epithelial cells and uniformly distributed
throughout the SST’s entire length. These granules were
found to have a supranuclear localization in the SST epithe-
lial cells (Fig. 1). Although identifying the exact source of the
autofluorescence was beyond the scope of this study, auto-
fluorescence in a similar range has been noted in the ewe
(Ovis aries) endometrium (lex/lem ¼ 488/525–575 nm)
(74) and in human colonic crypts (lex/lem ¼ 488/580 nm)
(75). Although such autofluorescence has been attributed to
NADH metabolism in mitochondria (74,76), another likely
source might be lipofuscin in lysosomes (75). Mitochondria
are not confined to the apical cytoplasm of SST epithelium
as observed in turkeys (77) and chickens (78), so it is unlikely
that these granules represent mitochondria. Lysosomes on the
other hand, are globular vesicles similar in size (<1 mm) to
the autofluorescent granules observed here (79) and have
been detected in the apical cytoplasm of turkey SST epithelia
(77) and less abundantly in chickens (78) and passerine
alpine accentor (Prunella collaris) (79). Multiple studies
have also detected the presence of acid phosphatase, an
enzyme found in lysosomes in the supranuclear cytoplasm
of SST epithelia in turkeys (21), quail (80), chickens (81),
and ducks (Anas sp.) (82), but not in the SST lumen, which
corresponds with the autofluorescence pattern we observed
here in the zebra finch. Acid phosphatase has been implicated
in autolysis associated with oviduct regression (83) as well as
with sperm release (82). If this is true, the label-free imaging
methods developed here may provide exciting new means for
investigating SST functional development throughout the
reproductive cycle. Identifying the chemical nature of the
autofluorescent substance present in SST granules therefore
represents an important avenue for future research.

In summary, we have demonstrated that sperm storage
structures in living vertebrate oviductal tissue can be imaged
label-free using SPIM microscopy, and this novel 3D imag-
ing technique has enabled us to produce the most detailed
account of avian SST structure to date, including the discov-
ery of a previously undescribed gate-like constriction at the
entrance/exit of tubules that is likely to act as a key selective
barrier. The imaging methods described here hold immense
potential for studying in vivo sperm storage and sperm-
female interactions.

Data supporting this study is available through figshare un-
der accession numbers 10.6084/m9.figshare.10295204 (data
tables and R data analysis code) and 10.6084/m9.figshare.
10295447 (MATLAB scripts for SST image analysis).
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Supporting Material can be found online at https://doi.org/10.1016/j.bpj.
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