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Immune responses in
diabetic nephropathy:
Pathogenic mechanisms and
therapeutic target

Jiahao Chen, Qinhui Liu, Jinhan He* and Yanping Li*

Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China
Hospital, Sichuan University, Chengdu, China
Diabetic nephropathy (DN) is a chronic, inflammatory disease affecting millions

of diabetic patients worldwide. DN is associated with proteinuria and

progressive slowing of glomerular filtration, which often leads to end-stage

kidney diseases. Due to the complexity of this metabolic disorder and lack of

clarity about its pathogenesis, it is often more difficult to diagnose and treat

than other kidney diseases. Recent studies have highlighted that the immune

system can inadvertently contribute to DN pathogenesis. Cells involved in

innate and adaptive immune responses can target the kidney due to increased

expression of immune-related localization factors. Immune cells then activate

a pro-inflammatory response involving the release of autocrine and paracrine

factors, which further amplify inflammation and damage the kidney.

Consequently, strategies to treat DN by targeting the immune responses are

currently under study. In light of the steady rise in DN incidence, this timely

review summarizes the latest findings about the role of the immune system in

the pathogenesis of DN and discusses promising preclinical and

clinical therapies.
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Introduction

Diabetic nephropathy (DN) occurs in 20-50% of patients with diabetes and is the

major risk for end-stage kidney disease (ESKD) (1). In 2019, 2.6 million new cases of DN

were reported worldwide, and this incidence is predicted to increase in the future (2).

Given the financial burden and lower quality of life associated with DN, understanding

its molecular causes is of important for effective intervention and prevention.

DN is a clinical syndrome characterized by persistent albuminuria and a progressive

decline in renal function, and it presents a typical pattern of glomerular disease (3). DN

involves both changes in renal structure and function (4). Structurally, DN
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pathological features consist of glomerular mesangial expansion,

basement membrane thickening, podocytes loss, nodular

glomerulosclerosis and endothelial cells destruction (5). In the

early stage of DN, there is tubular hypertrophy, but it is

eventually processes to interstitial fibrosis with tubular

atrophy. In the advanced stage, the injured kidney is infiltrated

by immune cells (6). Functionally, DN shows increased albumin

excretion and impaired glomerular filtration rate (7).

Historically, DN has not been considered an immune-

mediated disease, but rather a disorder mediated by metabolic

and hemodynamic factors (8). The progression of DN is highly

unpredictable and it often occurs slowly over many years. In

many countries, renal biopsy is rarely performed in patients with

diabetes. It is only investigated when there is a significant

increase in albuminuria or substantial decrease in renal

function, which allow physicians to determine whether there is

another kidney problem or comorbidities (1, 2, 9).

Consequently, renal biopsies are usually performed in

advanced stages of DN. This has severely hindered researchers

to elucidate the role of immune system in progression of DN.
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Nevertheless, studies have been able to uncover a central role for

immune-mediated inflammation in DN, involving both the

innate and adaptive branches (7, 8, 10–12). Macrophages, as

the predominant innate immune cells in DN, are commonly

observed in the glomeruli and interstitium in experimental DN

models and clinical trials at all stages of DN (13–15). The

adaptive immune system mainly comprises T cells and B cells.

The progression of DN correlates with activation of T cells in the

blood and elevated numbers of CD4+ T cells in the kidney (11,

16, 17).

The immune pathogenic mechanism of DN is complex and

involves the interaction of multiple pathways (Figure 1). In a

diabetic mellitus, hyperglycemia and high lipid levels, including

oxidative stress, reactive oxygen species (ROS), and oxidized

lipids, damage kidney cells, leading to the release of damage-

associated molecular patterns (DMAPs), and then trigger the

pro-inflammatory signaling pathways (18). Besides, glycated

proteins, such as advanced glycation end products (AGEs), can

directly activate the complement system and trigger pro-

inflammatory signaling (19). In response to continuous
FIGURE 1

Overview of the pathogenesis of DN. In the diabetic milieu, hyperglycemia, advanced glycation end-products (AGEs), angiotensin II, and
oxidative stress activate a variety of signaling cascades driving the recruitment and activation of immune cells to promote the development of
inflammation and ultimately leading to a series of pathological changes in DN. AGEs, advanced glycation end products; DAMPs, damage
associated molecular patterns; PRRs, pattern recognition receptors; GBM, glomerular basement membrane.
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activation of innate immune injury, renal mesangial cells,

endothelial cells and podocytes produce a variety of

inflammatory mediators, including cytokines, chemokines, and

adhesion molecules. These activate and recruit monocytes and

macrophages, leading to further inflammatory cascade responses

(7). The sustained chronic inflammation eventually drives the

remodeling of renal structure and tubulointerstitial fibrosis

(20–23).

Various subsets of kidney cells in DN overexpress cell

adhesion molecules, which are proteins on the cell surface to

bind or attach immune cells to ECM. These cell adhesion

molecules recruit immune cells to the kidney (24). The

immune cells express transcription factors as well as secrete

cytokines and chemokines that work together to induce a pro-

inflammatory response to exacerbate disease pathology (4).

These insights of the involvement of the immune system in

DN may lead to more effective treatments than the current

strategies of blood glucose control and inhibition of the renin-

angiotensin system. In this review, we provide an overview of the

contribution by the immune system to DN pathogenesis, and we

explore current efforts to treat the disease by targeting immune-

related factors.
Immune cells involved in DN
pathogenesis

Macrophages

Macrophages are the most important type of infiltrating

immune cells in renal biopsies from experimental animal

models and clinical patients with DN (25). The accumulation

of F4/80- or CD68-positive macrophages detected by

immunohistochemical staining or flow cytometry has been a

characteristic feature of DN (26, 27). In mice with type 1 or 2

diabetes, macrophages accumulate in kidneys and become

activated, which is associated with persistent hyperglycemia,

deposition of glomerular immune complex, and increased

production of chemokine, ultimately leading to renal injury

and fibrosis (14, 15). Although detailed molecular mechanisms

of macrophage migration and homing to the kidney have not

been fully elucidated, cell adhesion molecules and chemokines/

chemokine receptors are involved in this process. The vascular

endothelium overexpresses cell adhesion molecules in its

surface, such as intercellular adhesion molecule-1 (ICAM-1)

and vascular cell adhesion molecule-1 (VCAM-1), which

capture circulating macrophage precursors (28, 29). Mesangial

cells, podocytes, and tubular epithelial cells are stimulated to

secrete monocyte chemoattractant protein-1 (MCP-1) and

osteopontin to facilitate migration of macrophages across the

vascular endothelium and within the kidney (30–33). Renal

parenchymal cells in diabetic mice also produce macrophage
Frontiers in Immunology 03
colony stimulating factor 1 (CSF-1), which promotes

proliferation of kidney macrophages (Figure 2) (15, 25, 34).

Several factors promote the homing of macrophages to the

kidney in the diabetic environment. Hyperglycemia and AGEs

stimulate renal tubular cells expressing ICAM-1 and MCP-1 in

the diabetic milieu, which promotes the recruitment of

macrophages (32, 35). Once macrophages recruit to the

diabetic kidney, local high glucose levels, AGEs and oxidized

low-density lipoprotein (Ox-LDL) stimulate macrophages to

release inflammatory cytokines (24). Other factors by which

macrophages promote DN progression include production of

ROS and proteases (24). These processes will aggravate tissue

injury and ultimately lead to renal fibrosis.

Macrophages are plastic, pluripotent cells whose functions

can change dramatically according to the microenvironment.

Macrophages are classified as being “classically activated” (type

M1) or “alternatively activated” (type M2) (36, 37). M1

macrophages perform immune surveillance function by

secreting pro-inflammatory cytokines and chemokines and

presenting antigen on their surface in order to stimulate other

immune cells. M2 macrophages play an important role in

immune regulation by secreting inhibitory cytokines and

down-regulating immune response; they are inefficient at

presenting antigens (38). Macrophages at sites of diabetic

kidney injury are mainly of the M1 type (14, 15, 39).

Studies have shown that increased numbers of M1

macrophages are associated with severe DN lesions in mice

lacking cyclooxygenase-2 (COX-2), an enzyme involved in

metabolic processes preceding inflammation (40). The

“triggering receptor expressed on myeloid cells”-1 (TREM-1)

is an activating receptor of the immunoglobulin superfamily

present on human myeloid cells. It can polarize macrophages

toward the M2 type, thus reducing renal inflammation in vitro

and in vivo (41). Mesenchymal stem cells (MSCs) also polarize

macrophages towards the M2 phenotype and prevent renal

injury in mouse models of DN. Interestingly, these effects are

abolished in DN mouse models that have been treated with

clodronate liposomes to deplete macrophages, suggesting that

M2-type macrophages are necessary for renal protection. The

ability of MSCs to polarize macrophages towards M2 appears to

involve the activity of transcription factor EB (TFEB), which

restores intracellular lysosomal function and autophagy activity,

helping MSCs suppress the inflammatory response and alleviate

renal injuries (42).
T cells

T cells, which recruit to the diabetic kidney accompanying

by the recruitment of macrophages, also contributes to

the progression of DN. Although several previous studies

have shown that the number of CD4+ T cells in renal

interstitium correlates with the albuminuria level in DN
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animal models (17, 43, 44), the mechanism by which T cells

home to the kidney in diabetes is poorly understood. Adhesion

molecules and chemokines are reported to be involved in T cell

recruitment (24). Leukocyte function-associated antigen 1

(LFA-1), which is expressed on T cells, could combine with

ICAM-1 expressed on renal endothelial cells, tubular epithelial

cells, and mesangial cells to promote T cell migration to kidney

(45). CD4+ T cells were increased in the glomeruli of db/db

diabetic mice, but this increase was abolished in the kidneys of

ICAM-1 knockout db/db mice (35), suggesting that the

interaction of LFA-1 with ICAM-1 plays a significant role in

the recruitment of T cells to kidney. Activated T cells will

secrete inflammatory cytokines such as interferon gamma

(IFN-g) and TNF-a (17). These inflammatory cytokines

directly damage the kidney through cytotoxic effects and

indirect ly promote the homing and act ivat ion of

macrophages (16). In addition, AGEs can bind to the AGE

receptor expressed on T cells, which in turn stimulates T cells

to secrete IFN-g, leading to kidney inflammation (46).

T cells can be divided into many subsets according to

their function and specific markers. Flow cytometry,

immunohistochemistry, and immunofluorescence staining

techniques are generally used to distinguish different T cell

subtypes (11, 39). It is well-known that CD4+ T cells can

differentiate into T-helper (Th) 1 cells, Th2 cells, Th17 cells,

and Treg cells, which mainly produce IFN-g, interleukin (IL)-4,

IL-17 and Foxp3, respectively (47, 48). As the many subsets of T
Frontiers in Immunology frontiersin.or04
cells indicates, their roles are varied when the adaptive immune

response is activated in DN pathogenesis (49, 50). The Th1 cell

response precedes and accompanies type 1 diabetes (51).

Increased levels of ICAM-1, P-selectin, IFN-g and migration

inhibitory factor in the kidney of mice with diabetes mellitus are

associated with the homing of effector Th1 cells to the

glomerulus (16, 52). Similarly, T-helper 17 cells secret IL-17 to

elicit a strong pro-inflammatory response (53). Neutralization of

IL-17A blocks NF-kB activation and the subsequent

upregulation of proinflammatory genes, which in turn inhibits

infiltration of the kidney by inflammatory cells (54). In contrast,

Th2 cells produce IL-4 to promote humoral immunity, inhibit

Th1 activation, and inhibit inflammation and fibrosis, providing

an overall immunosuppressive effect (55). Furthermore, transfer

of CD4+-Foxp3+ Treg cells improves insulin resistance and

ameliorates DN pathogenesis in mice by tipping the balance

toward anti-inflammation and suppressing CD8+ T cells

infiltration in the kidneys and adipose tissue (47, 56, 57).

CD8+ T cells are predominantly cytotoxic and damage the

kidney by direct cell-cell signaling via surface molecules and

indirect signaling via cytokines (58).
B cells

There are limited literature about the role of B cells in the

pathogenesis of DN. IgG+ B cells shown modestly increased in
FIGURE 2

Macrophage recruitment and activation in DN. Hyperglycemia induces increased expression of cell adhesion molecules (ICAM-1/VCAM-1) and
chemokines (MCP-1/CSF-1), thereby enhancing the recruitment of monocytes to the kidney. Chemokines also promote transendothelial
migration. Monocytes mature into macrophages and subsequently release inflammatory cytokines, leading to the progression of DN.
g
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glomeruli of non-obese diabetic mice (59). After depletion B cells

in these mice, the re-emerging B cel ls exhibit an

immunosuppressive phenotype and inhibit the onset of

diabetes (60). Studies have shown that CD20+ B cells were

observed in the renal interstitium of patients with type 1 or 2

diabetes mellitus, suggesting the possibility of B cell participation

in DN progression (61).

In the diabetic milieu, hyperglycemia and AGEs stimulate

NF-kB signaling, which plays an important role in the

development and function of B cells. It has been reported that

the hyperglycemic environment might directly increase the

number of both antibody- and cytokine-producing B cells, and

contribute to the development of DN (59). Currently, the

mechanism of B cells regulating DN is poorly understood.

The role of B cells contributing to DN is most likely due to

the antibodies produced by B cells. These antibodies can direct

against antigens such as oxLDL and AGEs and lead to the

formation of immune complexes, triggering inflammation and

glomerulonephritis (59). Further studies are urgently needed to

uncover the function and regulatory mechanism of B cells in

DN pathogenesis.
Mast cells

Mast cells are multipotent bone marrow-derived cells rich in

growth factors and inflammatory mediators (62). Regarding the

production of tryptase and chymase, mast cells were divided into

MCT subtype and MCTC subtype in humans. MCT subtype only

produces tryptase, whereas MCTC subtype produces both

tryptase and chymase (63). In the experimental animal model

of DN, there is evidence that mast cells infiltrate the kidney (64).

In patients with DN, the number of mast cells increased with the

progression of DN (62). Increased mast cell numbers and

degranulation levels were significantly associated with
Frontiers in Immunology 05
tubulointerstitial injury, suggesting the mast cells are involved

in development of DN (65).

Mast cells can be activated in several ways, including the

well-known classical pathway, IgE-FcϵR cross-linking, and

alternative pathways, such as the complement pathway and

toll-like receptors pathway (65). C3a complement, the most

potent activator of mast cells, has been reported to increase in

DN (19). Thus, research suggests that the increased complement

activation in diabetic mellitus may contribute to the recruitment

and activation of mast cells. Once mass cells infiltrate into the

kidney, they contribute to the pathogenesis of DN by releasing

TGF-b, chymase, tryptase, renin, histamine, and inflammatory

cytokines (4, 64). Specifically, mast cells may aggravate tubular

interstitial fibrosis by synthesizing and releasing TGF-b and

reninto initiate and promote tubular inflammation through

releasing TGF-b and TNF-a (64). Further studies are needed

to confirm the possible involvement of mediators by which mast

cells affect the complex pathogenesis of DN.
Immunomodulators involved in
DN pathogenesis

Soluble pro-inflammatory factors

Cytokines are a group of low-molecular-weight peptides

with pharmacological activities. They have characteristic

functions in autocrine and paracrine signaling, and they are

important effectors of the immune system (Table 1).

ILs
IL-1 can be induced by almost all nucleated cell types, but it

is mainly produced by activated macrophages and is a potent

mediator of inflammation (67). In an experimental model of

DN, renal IL-1 expression was found to be elevated, which was
TABLE 1 Cytokines involved in DN pathogenesis.

Cytokines Cell Source Cell Target Functions References

IL-1 Monocytes, macrophages, fibroblasts epithelial cells,
endothelial cells, astrocytes

T cells, B cells, endothelial cells Costimulatory molecule activation, acute
phase reactants

(66–68)

IL-2 T cells, NK cells T cells, B cells, monocytes Growth and activation (69)

IL-6 T cells, macrophages, fibroblasts T cells, B cells Costimulatory molecule activation, acute
phase reactants

(70, 71)

IL-10 T cells Macrophages, T cells Inhibits APC activity and cytokine
production

(72)

IL-18 Monocytes, macrophages, T cells, proximal tubular cells T cells, NK cells Costimulatory molecule activation, acute
phase reactants

(73–75)

TNF-a Macrophages, monocytes, T cells T cells, B cells, endothelial cells Costimulatory molecule activation, acute
phase reactants

(68, 76–78)

TGF-b Macrophages, T cells Macrophages, T cells Inhibits activation and growth (79–81)

IFN-g T cells, NK cells Monocytes, macrophages,
endothelial cells

Activation increased class I and II MHC (82)
fr
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followed by expression of chemokines and adhesion molecules

(66, 67). IL-1 helps drive mesangial cell proliferation and matrix

synthesis, it increases vascular endothelial permeability, and it is

linked to hemodynamic abnormalities within the glomerulus

(83). It also upregulates ICAM-1 in certain subsets of kidney

cells, such as mesangial cells, endothelial cells, and renal tubular

epithelial cells (34).

Renal biopsies from DN patients show infiltration of the

mesangium, stroma, and tubules by cells expressing IL-6 (67). In

addition, a positive relationship was found between the severity

of diabetic glomerular lesions (mesangial dilatation) and IL-6

mRNA levels in glomerular mesangial cells and podocytes,

indicating that IL-6 may positively influence the dynamics of

the ECM accumulation in the kidney (70). Interestingly, one

study found that IL-6 regulates the differentiation of M1

macrophages into M2 macrophages through IL-4-STAT6

signaling. This finding identifies IL-6 signaling as an

important determinant of macrophage activation, conferring

on IL-6 an unexpected homeostatic role in limiting

inflammation (71).

Among those cytokines involved in DN, IL-18 seems to be

the most important one to DN pathogenesis. Elevated IL-18

levels in serum and urine have been reported in DN patients, and

urinary excretion of b-2 microglobulin, a marker of tubular

interstitial injury, positively correlates with serum levels of IL-18

(75, 76). Increased levels of IL-18 were found in the renal

biopsies of diabetic patients in proximal tubules and epithelial

cells. Serum IL-18 levels were also greater in DN patients than in

healthy subjects. IL-18 is closely related to many pathogenic

molecular mechanisms involved in DN. As a potent

inflammatory cytokine, IL-18 promotes the production of

other inflammatory cytokines, such as IL-1 and TNF-a (73).

IL‐18 can also upregulate the expression of ICAM‐1, VCAM‐1,

and IFN-g in endothelial cells (74). IL-18-dependent apoptosis

may play a critical role in apoptosis-induced injury in DN.

Besides, IL-18 activation may lead to increased free radical

production and oxidative damage (84, 85). Thus, IL-18-

induced oxidative stress may be an additional mechanism by

which IL-18 contributes to DN progression. Considering the

vital l role of IL-18 in DN, it may become a novel therapeutic

target for the prevention and therapy of DN.

Tumor necrosis factor alpha (TNF-a)
TNF-a, a pleiotropic inflammatory cytokine, is mainly

produced by monocytes, macrophages, and T cells (66). Renal

cells such as mesangial cells, glomerular cells, endothelial cells,

and renal tubular cells can also secrete TNF-a in response to

hyperglycemia and AGEs (86–88). The role of TNF-a in DN is

supported by the detection of increased levels of the cytokine in

urine from diabetic patients, and by the correlations between

those levels and clinical markers of DN and disease progression

(76, 77). TNF-a participates in DN progression through

multiple mechanisms. TNF-a is cytotoxic to kidney cells and
Frontiers in Immunology 06
can induce cell apoptosis and production of ROS, as well as alter

hemodynamic balance between vasoconstriction and

vasodilatation (68). TNF-a increases ROS production and vice

versa, which amplifies the inflammatory response (78). In rats

with streptozotocin-induced diabetes, elevated TNF-a increases

oxidative stress, leading to urinary albumin excretion, a marker

of kidney injury (83). Other studies have shown that TNF-a
significantly promotes the development of renal hypertrophy

and sodium retention, both of which are characteristic

alterations during early DN (34, 77, 89).

TGF-b
TGF-b is a major regulator of ECM production and

accumulation in the diabetic kidney (90). It forwards the two

milestones of DN progression, which are renal cell hypertrophy

and ECM accumulation (91). Many factors of diabetic mellitus

stimulate TGF-b production in the kidney. Hyperglycemia,

angiotensin II, mitogen-activated protein kinase, and PKC

have been shown to regulate TGF-b expression (92–95). A few

studies have proven that ROS in diabetic conditions can directly

or indirectly promote the production of TGF-b. Once TGF-b is

activated in kidneys, it induces the production of fibronectin and

collagen types I, III, and IV (79); it restrains matrix

metalloproteinases, such as plasminogen activator, collagenase,

elastase, and stromelysin; and it activates proteases inhibitors,

such as tissue inhibitors of metalloproteinases and plasminogen

activator inhibitor 1, which blocks ECM degradation (80). TGF-

b positively regulates its own expression while also stimulating

the deposition of ECM, thus amplifying the fibrosis response

(79–81). A high glucose environment induces TGF-b expression

and activation, thus pushing podocytes into the apoptosis

process, which impairs filtration barrier and renal function

(96). Therefore, studies targeting TGF-b signaling disruption,

such as knockout of the type 2 TGF-b receptor or the

downstream signaling molecular Smad3, and administration of

anti-TGF-b antibodies, suspend mesangial matrix expansion

and deterioration of renal function in mice (97, 98).
Adhesion molecules

ICAM-1
ICAM-1 is an adhesion molecule (Table 2) expressed in

endothelial, mesangial and epithelial cells and has been directly

associated with kidney injury and DN progression in a rat model

(99, 100). ICAM-1 can bind to integrins on the surface of

leukocytes to promote their adhesion to endothelial cells and

transmigration (68). ICAM-1 expression is upregulated in

response to pro-inflammatory factors, especially TNF-a (105).

Altered hemodynamic conditions resulting from TGF-b-induced
ECM accumulation are also one of the factors contributing to

ICAM-1 up-regulation. In addition, oxidative stress can also

promote ICAM-1 expression (106). In renal mesangial and
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endothelial cells, AGEs induce the production of ROS, which

activates NF-kB and promotes the release of pro-inflammatory

cytokines and adhesion molecules (107). ICAM-1 plays a critical

role in the leukocytes migration, especially T cells to the kidney

(101). Deleting ICAM-1 in diabetic mice ameliorated symptoms

of DN, such as glomerular hypertrophy, mesangial matrix

expansion, and proteinuria (101).

VCAM-1
Similar to ICAM-1, VCAM-1 also involved in the leukocyte-

endothelial adhesion that helps recruit leukocytes to the kidney

during inflammation. In kidney interstitium of diabetic KKAy

mice, VCAM-1 is upregulated on the endothelial cells of venules,

and it is expressed in infiltrating cells (103). In DN patients,

VCAM-1 is upregulated in kidney and as a soluble form in

plasma (29). VACM-1 levels correlate with the number of

infiltrating immune cells in kidney and are associated with

severity and progression of albuminuria (22, 24, 104).
Chemokines

MCP-1
Previous in vivo and in vitro studies have shown that

differential expression of chemokines and their receptors

precisely orchestrate molecular mechanisms that lead to

immune cell migration in DN progression. Among them,

MCP-1, also known as CC chemokine ligand 2 (CCL2), has

been proposed as marker of the degree of tubular injury and

renal inflammation in DN (108). In mice model of diabetes-

induced renal injury, MCP-1 levels progressively increase in the

kidney. Furthermore, in vitro studies indicate that MCP-1

expression increases in the presence of high amounts of

glucose (109), and animal models of type 1 and 2 diabetes

show reduced renal damage after knockout of MCP-1 (4, 15, 31).

In the clinic, urinary MCP-1 levels are obviously higher in

patients with microalbuminuria or albuminuria diabetes than

in patients with normoalbuminuria diabetes or in healthy

controls. Moreover, urinary MCP-1 levels increase as DN

progresses, and they are significantly associated with other risk

factors for DN (110).

Several factors were associated with the expression of MCP-

1, such as hyperglycemia, TGF-b, NF-kB, PKC, ROS, and AGEs

(34). There is evidence that angiotensin II also promotes MCP-1
Frontiers in Immunology 07
expression. Blocking renin-angiotensin system with angiotensin

converting enzyme inhibitors or angiotensin II receptor blockers

significantly down-regulated the MCP-1 level in kidney cells.

MCP-1 promotes the transmigration of macrophages across

endothelial cells to kidney, which is the main process in the

homing of macrophages in DN (111, 112). It also promotes the

migration of T cells and dendritic cells to the diabetic kidney

(113, 114).
Transcription factors

Previous studies have thoroughly reviewed transcription

factors involved in DN, including NF- kB, Janus kinase-signal

transducer and activator of transcription (JAK-STAT), upstream

stimulatory factors 1 and 2, activator protein 1, cAMP-response-

element-binding protein, nuclear factor of activated T cells, and

stimulating protein 1 (115). In this review, we will briefly discuss

the two most vital transcription factors, NF-kB and JAK/STAT,

and their roles in DN.

NF-kB
NF-kB is believed to be a master switch in the control of

inflammation and is involved in the transcription of numerous

genes involved in the pathogenesis of DN (Figure 3) (116), such

as those giving rise to angiotensinogen, cytokines, and adhesion

molecules (117–119). In diabetic rat models, NF-kB activation

upregulates the levels of pro-inflammatory cytokines TNF-a and

IL-1b (116). Upregulation of NF-kB has been indicated in

monocytes of peripheral blood from patients with diabetes,

and the extent of upregulation correlates with DN severity

(120). Activation of NF-kB and transcription of certain pro-

inflammatory chemokines in tubular epithelial cells are

markers of progressive DN. Albuminuria may be one of the

major pro-inflammatory phenotypes resulting from NF-kB
activation (121).

JAK-STAT
The JAK-STAT signaling pathway includes a family of

intracellular signaling molecules that initiate activation of

target genes encoding growth factors, hormones, and

cytokines (Figure 4) (122). Studies have shown that high

glucose can activate the JAK-STAT signaling in rat renal

mesangial cells and in mice renal cortex at early stages of DN
TABLE 2 The type and function of adhesion molecules.

Adhesion molecules Gene Family Functions References

ICAM-1 Immunoglobulin superfamily Adhesion, rolling and crawling of leukocyte (99–102)

ICAM-2 Immunoglobulin superfamily Crawling of leukocyte and initiation of diapedesis (24, 102)

VCAM-1 Immunoglobulin superfamily Adhesion, rolling and crawling of leukocyte (29, 103, 104)

ESAM Immunoglobulin superfamily Increased endothelial permeability and initiation of diapedesis (22, 24)
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(123, 124). Genome-wide transcriptome analysis of DN

patients showed upregulation of JAK1/2 and STAT1/3 (125).

In diabetic mice, the JAK-STAT signaling is over-expressed, as

is its downstream target gene encoding “suppressor of cytokine

signaling (SOCS) 3”, and its upstream regulatory gene

SIRT1 (126).

Hyperglycemia-induced JAK-STAT activation is a vital

mechanism of renal injury in DN (127). Hyperglycemia can

increase the production of angiotensin II, which in turn induces

JAK2 through enhanced oxidative stress. ROS has been

suggested as a mediator of hyperglycemia to regulate JAK

protein activation (127). In diabetic environment, AEGs and

MAPK activation can promote the acetylation and

phosphorylation of STAT3 in mice and human diabetic

kidneys, leading to enhanced STAT3 transcriptional activity

(128–130). Transgenic mice with reduced STAT3 activation

ability are protected from inflammation and injury in the

diabetic kidney (131). Overexpression of SOCS-1 and SOCS-3,

which are negative regulators of JAK-STAT signaling, reduce

macrophage infiltrations, levels of pro-inflammatory cytokines,

renal injury in rodents with DN (126). The current researches

mainly focus on JAK1/2 and STAT3. Therefore, future studies
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on the role of other JAKs and STATs may aid in revealing novel

regulatory mechanisms of DN.
Other immune processes

Complement system
The complement system is an essential part of the innate

immune systems, which can enhance the ability of antibodies

and phagocytes to clear microbes and damaged cells (8). The

complement system also promotes inflammation (23). Growing

evidence has shown that complement system is involved in the

progression of DN (19). According to transcriptome and

immunohistochemical analysis of renal biopsies, 50-60% of

DN patients have glomerular deposition of complement

component C3, and such deposition is associated with severity

of glomerulosclerosis (125). The glomerular deposition of

complement C3 is also a characteristic of DN animal models

associated with type 1 or 2 diabetes, and such deposition has

been linked to glomerular deposition of immunoglobulin G

(IgG), which induces inflammation and damages the kidney

tissue by producing chemokines (4, 132, 133).
FIGURE 3

NF-kB signaling pathway in DN. NF-kB is a transcriptional regulator expressed in the cytoplasm of almost all cell types, and its activity is
controlled by the IkB regulatory protein family. Activation of NF-kB involves the inhibitory protein IkB kinase being phosphorylated by specific
IkB and subsequently degraded by proteolysis. Free NF-kB translocates to the nucleus, binds to promoter and enhancer sites, and activates
transcription. NF-kB signaling pathway leads to increased transcription of target genes encoding inflammatory cytokines and other target genes
associated with this complication, resulting in renal inflammation.
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Nucleotide-binding oligomerization domain-
like receptor pyrin domain containing 3
(NLRP3) inflammasome

The inflammasome assembles during DN immune

responses in a way that drives the pathology of kidney

diseases. NLRP3 is by far the best characterized inflammasome

in the kidney (21, 134). The activation of NLRP3 inflammasome

in immune cells generally requires two steps: priming and

activation. The priming step is stimulated by the binding of

pathogen-associated molecular patterns (PAMPs) and/or

DAMPs to toll-like receptors and/or cytokine receptors. This

step often involves the activation of NF-kB signaling and

regulation of downstream genes that increase the expression of

inflammasome-associated genes and substrates (10, 21).

Following priming, the activation step involves NLRP3

oligomerization and the assembly of inflammasome

components into a complex. By cleaving pro-caspase-1 into

caspase-1, the resulting complex promotes the maturation and

secretion of IL-1b and IL-18, further leading to the accumulation

of mesangial cells, podocyte damage, and albuminuria (10, 134).

The expression of NLRP3 is elevated in the glomerulus of

mouse DN models. Thus, NLRP3-knockout animal models are

necessary to reveal the vital role of NLRP3 inflammasome in
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DN. Indeed, one study demonstrated that level of IL-1b in

podocytes was significantly upregulated in STZ-induced

diabetic mice, which was reversed in NLRP3 knockout mice

(135). Deleting NLRP3 significantly prevented the accumulation

of glomerular neutral lipid and cholesterol in diabetic

mice (136).

These studies make clear that the immune system plays an

essential role in the progression of DN. Below, we review

promising therapeutic targets in DN as well as therapeutic

agents already under development.
Clinical and pre-clinical therapies
targeting the immune system for
treatment of DN

Inhibition of soluble pro-inflammatory
mediators

TNF-a
Among the inflammatory mediators associated with DN,

TNF-a has perhaps been best studied for its therapeutic

potential: several studies have examined how its inhibition can
frontiersin.org
FIGURE 4

Activation and inhibition of JAK-STAT signaling pathways. Black arrows indicate the activation process and the red dotted arrows indicated
inhibition process.
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slow DN progression (137). Infliximab is a chimeric

immunoglobulin G1k murine/human monoclonal antibody

developed as a therapeutic agent against rheumatoid arthritis

and Crohn’s disease (138, 139). Infliximab reduced the

expression of TNF-a and improved DN symptoms in diabetic

mice (140). The TNF-a inhibitor SKF86002 markedly decreased

glomerulus TNF-a level and improved kidney function in

patients with DN (141). Pentoxifylline (PTX), originally

created to treat intermittent claudication caused by peripheral

vascular diseases (142–144), has shown potential for mitigating

proteinuria and restoring glomerular filtration in the context of

diabetic kidney disease. PTX inhibits TNF-a expression as well

as the activity of other inflammatory mediators, such as IL-1, IL-

6, IFN-g, VCAM-1 and ICAM-1 (145–147). Future studies are

needed to clarify whether PTX can improve renal outcomes

in DN.

TGF-b
Direct inhibitors of TGF-b can efficiently block the

progression of DN (148). But indirect inhibition has also

shown benefit (149, 150). Melatonin, a hormone secreted by

the pineal gland, may improve kidney inflammation and

interstitial fibrosis in DN by inhibiting the TLR4 and TGF-b/
Smad3 signaling pathways (150). Given that melatonin is also

capable of reducing urinary excretion and protecting podocytes

(151), it may prove a promising therapeutic in DN. Sitagliptin is

a dipeptidyl peptidase-4 (DPP-4) inhibitor best known for its

hypoglycemic properties (152). In diabetic mice, sitagliptin

improved renal function by inhibiting the TGF-b/Smad

signaling pathway (153). Dencichine is a non-protein amino

acid, originally extracted from Panax notoginseng (154), that

may treat DN by reducing hyperglycemia, restoring metabolic

disorder, reducing ECM deposition, increasing the activity of

enzymes that degrade the ECM, and down-regulating TGF-b/
Smad signalling in DN glomeruli (155).

MCP-1
Breviscapine and triptolide act as MCP-1 receptor

antagonists in animal models of DN, reducing downstream

signaling pathways that induce ROS production and

inflammation (156). Breviscapine, extracted from the Chinese

herb Erigeron breviscapus, may indirectly mitigate DN by

reducing albuminuria (156). In contrast, triptolide regulates

the proportion of Th1/Th2 cells, reduces MCP-1 expression,

and inhibits macrophage infiltration as well as expression of

related inflammatory factors in the kidney (157–160). Other

inhibitors, such as the CCR2 inhibitor CCX140-B and the MCP-

1/CCL2 inhibitor NOX-E36, are currently in pre-clinical studies

or clinical trials (161–164). In a murine model of DN, NOX-E36

significantly reduced glomerulosclerosis and improved

glomerular filtration rate (163), while CCX140-B significantly

reduced proteinuria in DN patients (161).
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Inhibition of transcription factors

NF-kB signaling inhibitors
Inhibitors of NF-kB have been used to mitigate DN and

inflammatory injury of the kidney, as well as improve kidney

function (165). Thiazolidinediones, agonists of peroxisome

proliferator-activated receptor (PPAR)-g, are widely used as

insulin sensitizer in diabetes therapy (166, 167). These ligands

repress renal injury in an experimental rat DN model by

inhibiting NF-kB activity (168). Cultured renal tubular

epithelial cells pretreatment with15a, a derivative of

salviadione, prevented high glucose induced NF-kB activation

and expression of inflammatory cytokines (169). In mice with

streptozotocin-induced diabetes, the antioxidant tocotrienol

suppressed NF-kB activation, reduced TNF-a and TGF-b
levels and reversed renal dysfunction (4, 170). Treating these

animal model with BAY-110782, an inhibitor of IkB, or

pyrrolidine dithiocarbamate, an inhibitor of NF-kB, reduced
NF-kB activation, renal macrophage infiltration and production

of the inflammatory cytokines MCP-1, TNF-a, IL-1b and IL-6

(171, 172).

JAK-STAT signaling inhibitors
Various drugs and compounds may show anti-inflammatory

effects in DN by inhibiting JAK-STAT signaling (131).

Paeoniflorin, a monoterpene glycoside extracted from the

dr ied root of P. lact iflora Pal l , downregulates the

phosphorylation of JAK2 and STAT3 in diabetic kidney (173).

Baricitinib, a selective inhibitor of JAK1 and JAK2, reduced

albuminuria in patients with DN associated with type 2 diabetes

in phase 2 randomized clinical trials (174, 175). Others

inhibitors of various JAK proteins, such as ruxolitinib and

tofacitinib, have already been approved for clinical use by the

US Food and Drug Administration (175, 176).
Inhibition of other immune processes

Inhibitors of the complement system
To date, only a few studies have reported the efficacy of

blocking complement system in DN (19, 23). The lectin-like

domain of thrombomodulin constrained glucose-induced

complement activation on podocytes an endothelial cells and

ameliorated albuminuria and glomerular damage in mice (177).

Treatment with receptors of the complement fragments C3a/

C5a may ameliorate DN by partially blocking the endothelial-

myofibroblast transition and fibrosis through inhibition of the

Wnt/b-catenin signaling pathway (178). Similarly, in a diabetic

rat model, administration of C3a receptor improved DN

pathogenesis by inhibiting IkBa phosphorylation and TGF-b/
Smad3 signaling, which reduced the cytokine release and ECM

accumulation (179).
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Abnormal regulation of the complement cascade leads to

immune and non-immune types of kidney damage (19). This

insight into the pathological mechanisms related to complement

and regulators will aid the development of new therapies.

Monoclonal humanized antibody eculizumab, that binds C5

and prevents assembly of the membrane attack complex (C5b-

9), is already in clinical use (180). Complement-targeting

therapy is expected to exert a more important role in the

treatment of DN in the future.

NLRP3 inflammasome inhibitors
MCC950, a small molecule inhibitor of NLRP3, can

specifically and potently inhibits NLRP3 inflammasome

activation (181). MCC950 is reported to improve podocyte

injury in DN by inhibiting lipid accumulation, ROS

production and p65 activation (135). CY-09 is another

NLRP3-specific inhibitor, and it blocks oligomerization of the

NLRP3 inflammasome (182). Furthermore, it downregulates

blood glucose and insulin level, improves glucose tolerance

and decreases hepatic steatosis in diabetic mice, suggesting

that it may exert therapeutic effects against type 2 diabetes. In

fact, CY-09 reduces the levels of IL-1b in the serum, liver and

adipose tissue of diabetic mice, without affecting metabolic

parameters in control mice (183). Oridonin is a the main

ingredient of the traditional Chinese herb R.rubescens that

significantly attenuates diabetes-induced renal injury by

dampening inflammatory responses, based on studies in vitro

and in vivo (183). Oridonin appears to prevent NF-kB from

binding DNA and turning genes on (184). Tranilast is a cell

membrane stabilizer that has been widely used in the treatment

of inflammatory diseases because it inhibits the release of

histamine and other chemical mediators (185). Tranilast

prevents NLRP3 assembly by inhibiting interactions of NLRP3

with other NLRP3 molecules or with apoptosis-associated speck-

like protein containing a C-terminal caspase activation and

recruitment domain. Tranilast blocks the ability of a high fat

diet to upregulate IL-1b in the serum, liver, or adipose tissues of

diabetic mice. Tranilast also suppresses caspase-1 cleavage in

diabetic mice, suggesting that the drug can inhibit metabolic

stress-induced inflammasome activation (186).
Hyperglycemia therapies that dampen
immune responses

Sodium‐glucose cotransporter‐2 (SGLT2)
inhibitors

SGLT2 inhibitors, which alleviate hyperglycemia by

stimulating the excretion of glucose into urine, have been

approved for the treatment of type 2 diabetes (187). Since

persistent hyperglycemia is a central cause of DN progression,

SGLT2 may also be effective against that renal complication

(188). SGLT2 blocks glucose reabsorption at the proximal
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tubule, leading to glucosuria and lowering of blood glucose

levels, which is independent of insulin (189). Treating diabetic

animals with empagliflozin or ipragliflozin reduces their

hyperglycemia and reduces levels of pro-inflammatory

cytokines and chemokines, NF-kB and C-reactive protein in

kidney or plasma (190–192). Dagagliazine mitigates

hyperglycemia and diabetic tubulointerstitial injury by

suppressing inflammatory markers and oxidative stress in the

renal tissues of diabetic mice (193). Similarly, dapagliflozin

blocks oxidative stress, inflammation and apoptosis induced by

high glucose, and it promotes renal function and angiogenesis by

upregulating vascular endothelial growth factor (194).

Canagliflozin decreases plasma levels of IL-6, matrix

metalloproteinase-7, TNF receptor 1, and fibronectin 1 in

human, suggesting that it may mitigate inflammation, ECM

deposition and fibrosis in DN (195).
Promising novel therapy directions

MicroRNAs
MicroRNAs are important mediators of the post-

transcriptional feedback control mechanism and participate in

metabolism and inflammation regulation. Pioneering work with

microRNAs has provided a new outlook on molecules and

signaling pathways involved in DN pathogenesis (Table 3).

MicroRNAs are non-coding RNAs that regulate gene

expression through epigenetic mechanisms and may therefore

allow design of drugs that could prevent DN before it appears

(222–224). Both miR-192 and miR-21 have been implicated in

renal fibrosis, albeit through different mechanisms (196, 225). Of

note, miR-192 is involved in a negative feedback loop with TGF-

b signaling (226). Thus, these miRNAs deserve further

investigation as targets in the treatment of DN. Indeed,

knockdown of miR-21 in the kidneys of diabetic db/db mice

improved renal function and inhibited renal fibrosis and

inflammation during DN associated with type 2 diabetes (197).

Induction of renal protective miRNAs and silencing of injury-

induced miRNAs in patients with DN have been shown to

restore renal function (222). Currently, several miRNAs-based

preparations have entered clinical trials, such as Miravirsen, an

inhibitor of miR-122 for hepatitis C treatment (227), and

MRX24, a liposome-based miR-34 mimic for the treatment of

cancer (228). We believe that microRNAs-based preparations

may also apply to the treatment of DN in the future.

Stem cells and stem cells-derived exosomes
Stem cells are a class of cells that have the ability to renew

themselves indefinitely and differentiate into multiple cell

lineages (229). Stem cells can be classified according to their

differentiation capability: (1) pluripotent stem cells; (2)

multipotent stem cells; (3) unipotent stem cells (230).

Mesenchymal stem cells (MSCs) are one of the most widely
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studied pluripotent stem cells in DN (231). Among these stem

cells, MSCs have several advantages to apply in DN therapy,

such as easy harvesting, multi-lineage differentiation potential,

strong immunosuppression, and no immune rejection (232).

MSCs come from a wide range of sources, including bone

marrow, adipose tissue, umbilical cord blood, peripheral blood,

and amniotic fluid, among which bone marrow is the most

abundant source (233–237). MSCs can differentiate into

glomerular mesangial cells, tubular epithelial cells, endothelial

cells, and podocytes (238–240). In STZ-induced rat DN model,

MSCs injection can upregulate anti-inflammatory factors such

as IL-10 and EGF, downregulate pro-inflammatory factors, and

inhibit macrophage activation (241). In addition, administration

of MSCs reduced pathological damage, collagen deposition, and

fibrosis in the kidney (242). Although the safety and efficacy of

MSCs therapy have been evaluated in clinical trials for kidney

transplantation, liver fibrosis, and Crohn’s disease, the clinical

trials of MSCs in DN are still ongoing (229, 243–245).
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Recently, microvesicles secreted by MSCs, known as

exosomes, have been widely studied in animal experiments

and have demonstrated their roles in DN therapy (246–248).

Exosomes containing functional proteins and RNA (microRNA

and mRNA) can be detected in the MSCs medium supernatant,

which contributes to cell-to-cell communication in paracrine

manners (248). Therefore, many studies have focused on the role

of exosomes as a key factor in the paracrine action of MSCs in

DN (246, 247, 249, 250). Exosomes isolated from MSCs

conditioned medium by ultrafiltration-combined purification

method were administrated to STZ-induced DN rat model.

The result showed significantly reduced mTOR pathway

expression and fibrosis markers in renal tissue (249).

Intravenously administration of MSC-conditioned medium to

high-fat diet (HFD) and STZ-induced diabetic mice showed

decreased proteinuria and proinflammatory cytokines

expression, and significantly ameliorated tubulointerstitial

fibrosis (247). Research in the coming years will focus on this
TABLE 3 The miRNAs involved in regulating the immune mechanism of DN.

MicroRNAs Expression
in DN

Targets Functions References

miR-21 Up-regulated MMP9/TIMP1, Smad7, PPAR-a Increasing fibrosis and inflammation (196–198)

miR-23a Up-regulated Ubiquitin editor A20 Macrophage activation and renal tubulointerstitial
inflammation

(199)

miR-20b Down-regulated Kruppel-like family gene, TXNIP,
IL-8

Increasing renal inflammatory
response

(200)

miR-19b-3p Up-regulated SOCS-1 gene M1 macrophage activation and renal tubulointerstitial
inflammation

(201)

miR-29b Down-regulated Sp1 gene and T-bet gene Increasing microalbuminuria, renal fibrosis, and inflammation (202)

miR-29c Up-regulated Sprouty homolog 1 inducing apoptosis and increasing fibronectin synthesis in
podocytes

(203)

miR-27a Up-regulated Nrf2/Keap1 pathway Increasing Inflammation and oxidative stress (204)

miR-31 Down-regulated E-selectin Increasing inflammation and interaction between leukocytes and
endothelial cells

(205)

miR-124 Up-regulated Integrin a3 Damaging podocytic adhesive
capacity

(206)

miR-93 Down-regulated Vascular endothelial growth factor A Increasing microalbuminuria and leading to thrombotic glomerular injury (207)

miR-192 Up-regulated E-box repressors(dEF1 and SIP1) Increaseing renal fibrosis and proteinuria (208, 209)

miR-195 Up-regulated SIRT1 Reducing the apoptosis of renal mesangial cells (210, 211)

miR-200a Down-regulated TGF-b2 Reducing Renal Fibrogenesis (212)

miR-802 Up-regulated NF‐kB‐repressing factor NF‐kB activation and renal inflammatory
response

(213)

miR-455-3p Down-regulated Rho-associated coiled coil-containing
protein kinase 2

Reducing glomerular hypertrophy, mesangial amplification, and renal
fibrosis

(214)

miR-374a Down-regulated MCP-1 Reducing renal inflammatory
response

(215)

miR-544 Down-regulated Fatty acid synthase Reducing glomerulosclerosis and renal inflammation (216)

miR-346 Down-regulated Smad3/4 Reducing renal fibrosis (217)

miR-451 Down-regulated LMP7, PSMD11, NF‐kB Promoting the expression of pro-inflammatory molecules and proliferation
of mesangial cells, resulting in glomerular injury

(218, 219)

miR-199a-3p Down-regulated Inhibitor kappa B kinase b Reducing high glucose−induced apoptosis
and inflammation

(220)

miR-377 Up-regulated PAK1, SOD1/2 Increasing fibronectin production and inflammation (221)
fr
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secretion as a possible treatment option without significant side

effects. Future studies are needed to clarify the molecular

mechanism of mesenchymal-der ived exosomes in

improving DN.

Nanomedicines
Due to impaired glomerular filtration and tubular secretion

function in DN, drugs can hardly reach the injured kidneys

efficiently. Therefore, the treatment of kidney diseases requires

high doses of the drug, which are usually associated with serious

adverse effects. In recent years, the application of nanomedicines

is gradually emerging in the treatment of renal diseases. Owing

to the superior targetability and improved pharmacokinetic

properties of nanomedicine, kidney-targeted nanomedicine

carrying drug candidates can help to address the challenges

associated with DN pharmacotherapy (251).

Numerous nanomedicine-based drug delivery systems have

been developed to deliver therapeutic agents specifically to the

kidney (252). For example, drug nanocomplexes containing low-

molecular-weight chitosan bind the megalin-cubilin receptor in

proximal tubules (251). Albumin nanoparticles with specific size

target mesangial cells. Wu et al. reported that albumin-

methylprednisolone nanoconjugates with a size of about 10

nm can specifically target the podocytes (253). These

nanoconjugates avoid the side effects of glucocorticoids in

patients with DN. Another investigation developed a

nanoconjugate of baicalin and lysozyme with good renal

targetability. This conjugate successfully ameliorated renal

fibrosis and inflammation via NF-kB, TGF-b1/Smad3, and

IGF-1/p38 MAPK signaling pathways. Manna et al. developed

and studied the effect of pomegranate peel extract-stabilized gold

nanoparticles (PPE-AuNPs) on the STZ-induced DN mice

model (254). In DN mice, PPE-AuNPs significantly improved

renal fibrosis and glomerular sclerosis. Specifically, it alleviated

renal inflammation by modulating the MAPK/NF-kB/STAT3/

cytokine axis.

As evidenced by the large number of nanoparticle

formulations already on the market and many more in clinical

trials, nanomedicines will surely take a large market share soon.

Novel strategies to develop nanomedicine-based platforms with

superior efficacy and safety for DN-targeted drug delivery hold

great promising for the treatment of DN in the future.
Conclusion

The global burden of diabetes seems certain to increase

dramatically in the future, coinciding with the rise in obesity.

This implies a corresponding increase in the incidence of DN.

Despite the efficacy of hypoglycemic drugs, they will be
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insufficient to halt disease onset and progression as the

number of new cases. Therefore, new strategies and targets

against DN are urgently needed. Emerging knowledge about

immune responses and inflammation as bridges in the

pathogenesis between abnormal metabolism and DN offers

new promising for targeted therapies. Already under

investigation are therapies focusing on the regulation of

inflammatory pathways and, involving targets such as

immune cells, pro-inflammatory cytokines, adhesion

molecules, chemokines, JAK-STAT signaling, or NF-kB
signaling. Additional promising targets may be the

complement system, microRNAs and downstream targets of

specific inflammatory signaling pathways. It is clear that the role

of the immune response in DN pathogenesis is quite complex

and multi-faceted, which highlights the need to explore

combination therapies.
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