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Abstract

Background: The MAPK/ERK1/2 serine kinases are primary mediators of the Ras mitogenic signaling pathway.
Phosphorylation by MEK activates MAPK/ERK in the cytoplasm, and phospho-ERK is thought to enter the nucleus readily
to modulate transcription.

Principal Findings: Here, however, we observe that in primary cultures of breast and ovarian epithelial cells,
phosphorylation and activation of ERK1/2 are disassociated from nuclear translocalization and transcription of downstream
targets, such as c-Fos, suggesting that nuclear translocation is limited in primary cells. Accordingly, in import assays in vitro,
primary cells showed a lower import activity for ERK1/2 than cancer cells, in which activated MAPK readily translocated into
the nucleus and activated c-Fos expression. Primary cells express lower levels of nuclear pore complex proteins and the
nuclear transport factors, importin B1 and importin 7, which may explain the limiting ERK1/2 import found in primary cells.
Additionally, reduction in expression of nucleoporin 153 by siRNA targeting reduced ERK1/2 nuclear activity in cancer cells.

Conclusion: ERK1/2 activation is dissociated from nuclear entry, which is a rate limiting step in primary cells and in vivo, and
the restriction of nuclear entry is disrupted in transformed cells by the increased expression of nuclear pores and/or nuclear
transport factors.
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Introduction

In established cell lines in culture, activation of the Ras/MAPK

pathway by extracellular mitogens causes immediate, nearly

complete, though transient accumulation of activated MAPK, or

ERK (extracellular regulated kinase 1 and 2, or p44 and p42

ERK, respectively) in the nucleus, where it regulates transcription

required for the proliferative response. One well recognized target

is the transcription factor Elk-1 responsible for inducing expression

of immediate early genes, including c-Fos [1], through binding to

the Ets/SRE element in the c-Fos promoter [2–4]. The nuclear

transactivating function of MAPK/ERK is absolutely required for

the mitogen-stimulated growth response [1].

In vivo, however, in various organisms and model systems, the

nuclear entry of activated MAPK is not unconditional but rather

more stringently controlled. In the developing mouse embryo,

phospho-MAPK is solely cytoplasmic in sustained, contiguous

domains of MAPK signaling found in discrete areas of the embryo,

yet nuclear phospho-MAPK predominates in isolated mitotic cells

and in regions of the embryo that have been mechanically injured,

where the cells are prompted to enter mitosis [5]. In Drosophila,

cytoplasmic sequestration of active ERK is found in the

developing eye and vein and marginal cells of the wing [6–9].

Phospho-MAPK remains in the cytoplasm for 2–8 hours in the R8

cells of the morphogenic furrow of the future ommotidia. A strong

nuclear localization signal added to MAPK disrupts this

cytoplasmic retention, and effectively upsets the differentiation

pattern of the eye [7]. We have also shown that in response to

retinoic acid, mouse embryonic carcinoma and stem cells undergo

differentiation to embryonic primitive endoderm cells, and

differentiation is accompanied by a reduction in both cell

proliferation and nuclear entry of activated MAPK [10].

Cytoplasmic retention of active MAPK also occurs in senescence

of human fibroblasts [11], and during cytoskeleton changes related

to motility in cultured cells [12–14]. This evidence from multiple

systems demonstrates that cytoplasmic activity of ERK/MAPK

can clearly occur independently of its nuclear transcriptional

function [9,15–17], and nuclear restriction of phospho-ERK after

cell stimulation with growth factors may be the physiologically

normal circumstance in either differentiating or normal differen-

tiated tissues.

To examine this idea, we investigated mitogen-induced

translocation of activated/phospho-MAPK in primary mammary

and ovarian epithelial cells and in their transformed counterparts,
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mammary and ovarian carcinoma cells. The newly isolated

primary cells model a differentiated phenotype, whereas the

transformed cells have a less differentiated, proliferative pheno-

type. Understanding mechanisms that distinguish normal, primary

epithelial cells and/or promote the proliferation of transformed

carcinoma cells may provide a site-specific target for possible

prevention or therapy.

Results

Nuclear Entry of Activated ERK Is Limited in Primary
Epithelial Cells

We isolated primary human ovarian surface epithelial (HOSE)

cells and human breast epithelial (HBE) cells from normal tissues

obtained from non-disease related surgeries. The primary cells

have at least a 2-3-fold slower cell cycle than their transformed

counterparts (e.g., 2-3-day versus 1-day doubling time). For all the

experiments, cells were growth arrested in the G1/G0 stage of the

cell cycle by incubation in serum-free medium overnight (,24 h),

then stimulated with serum for the indicated times. Serum

stimulation activated MAPK equally well in primary and

carcinoma cell lines, which is most apparent in the robust amount

of phosphorylated ERK (p-ERK) detected in both breast

(Figure 1A) and ovarian (Figure 1B) epithelial cells. In the primary

HOSE cells, phospho-ERK levels equaled or surpassed those

detected in SKOV3 cells in both non-synchronized, or cells grown

continuously in the presence of serum, and cells stimulated with

serum for 90 min (Figure S1). The downstream product of nuclear

phospho-ERK activity, monitored as expression of the immediate

early gene c-Fos, was weak in the primary breast and ovarian cells

despite the elevated phospho-ERK levels (Figure 1A,B), and nearly

undetectable in some preparations of primary cells at early passage

numbers. Thus in primary epithelial cells, mitogenic stimulation

does not efficiently initiate nuclear MAPK activity.

In the SKOV3 and ES2 ovarian carcinoma cells and the MCF7

breast carcinoma cell line (Figure 1C), after serum stimulation for

15 min, phospho-ERK localized predominantly to the nuclei of

cells, and the intensity of immunofluorescence was fairly consistent

Figure 1. Nuclear localization of phospho-ERK is repressed in primary epithelial cells. (A) Time course of ERK activation in HBE and MCF7
cells. Primary human breast epithelial (HBE) cells and MCF7 breast carcinoma cells were serum starved for 24 h to become quiescent (time 0), then
stimulated with 15% FBS for 0–90 min, and phospho-ERK (p-ERK) and c-Fos expression, a downstream marker for nuclear phospho-ERK activity, were
determined in cell lysates normalized for protein. (B) Time course of ERK and cFos activation in HOSE and SKOV3 cells. Primary human ovarian surface
epithelial (HOSE) cells and SKOV3 ovarian carcinoma cells were grown as described for HBE and MCF7 cells, above. Expression of c-Fos and p-ERK was
determined by immunoblotting. (C-E) Primary human breast and ovarian epithelial cells at passage 1 after isolation and breast and ovarian carcinoma
cells were growth arrested in serum-free medium for 24 h, then stimulated with 15% serum, and analyzed for activated ERK (phospho-ERK). Cells for
immunofluorescence were fixed and probed with an anti-phosphoERK1/2 monoclonal antibody (Sigma) followed by detection using a fluorescent
secondary antibody. The nuclei were counterstained with DAPI and the two images merged using Adobe Photoshop, shown in the far right column.
(C) Ovarian carcinoma SKOV3 and ES2 cells and MCF7 breast carcinoma cells show robust nuclear phospho-ERK localization after serum stimulation
for 15 min. (D) In cultures of primary HOSE and HBE, phospho-ERK is localized primarily to the cytoplasm after serum stimulation for 15 min. (E)
Primary cultures of early passage HOSE cells and SKOV3 were stimulated with FBS for the indicated times, then processed for immunofluorescence
staining and confocal imaging. The results are representative of at least 3 experiments for each cell type.
doi:10.1371/journal.pone.0009295.g001
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throughout a cell population. Yet in primary HOSE and HBE

cells, phospho-ERK remained principally cytoplasmic (Figure 1D).

This was true at all times after serum stimulation of cells, as shown

for ovarian cells (Figure 1E). Phospho-ERK could be rapidly

transported into the nucleus (within 5–15 min) in both primary

and transformed cells, though the magnitude and kinetics of

localization differed. Fewer primary epithelial cells contained

activated ERK in the nucleus compared to carcinoma cells at any

time after serum addition. Nearly 90% of SKOV3 cells contained

nuclear phospho-ERK compared to approximately 50% HOSE

cells after 5 min serum stimulation, and the SKOV3 cells also

retained nuclear phospho-ERK longer. By 30 min, approximately

65% of SKOV3 cells still retained nuclear phospho-ERK

compared to only a small percentage (,10%) of HOSE cells.

Similar results were found for HBE cells (not shown). Since

dephosphorylation of phospho-ERK and termination of the signal

presumably occurs in the nucleus [18], the primary cells appear to

limit the uptake and signaling into the nucleus, and nuclear

activity (e.g., c-Fos expression) correlates directly with nuclear

localization of phospho-ERK in the carcinoma cells.

MAPK Import Is Lower in Isolated Nuclei of Primary Cells
To understand the mechanism of nuclear restriction in primary

cells, we assayed transport of His-tagged GFP-ERK2 into nuclei of

primary HOSE and SKOV3 carcinoma cells using standard

digitonin-permeabilized import assays [19]. The molecular mass of

GFP-ERK2 (,68 kD) is above the diffusion limit of the nuclear

pore (,40 kD), and any ERK2 tagged with GFP that enters the

nucleus occurs via a non-diffusion mechanism [20]. Though GFP-

ERK2 was imported into the nucleus of both SKOV3 and HOSE

cells, the kinetics of accumulation differed significantly

(Figure 2A,B). The intensity of nuclear GFP-ERK2 reached

maximum within 5 min in SKOV3 cells, whereas it peaked after

15 min in the primary HOSE cells and did not diminish within the

time course of the assay. At each time point, the difference in

import between HOSE and SKOV3 was significant (p,0.005)

determined by Student’s t-test). Import was not energy dependent

in either cell type, and in SKOV3 cells energy (in the form of an

ATP/GTP regenerating system) even caused GFP-ERK2 fluores-

cence to fall more than 50% at longer incubations (not shown).

Since both import and export of ERK occur simultaneously, this

decrease or loss most likely represents GFP-ERK2 that is exported

and washed out during the assay, and energy is known to be

required and accelerate this export [21].

As shown in Figure 2C for HOSE cells, import does depend on

the concentration of the substrate GFP-ERK2 in the assay system.

At low concentrations, ERK was principally localized to the rim of

the nucleus. At higher concentrations (50 and 100 mg/ml), ERK

was found predominately in the nucleus. The rim staining at low

concentrations indicates that ERK must interact with the nuclear

Figure 2. The kinetics of GFP-ERK2 nuclear import differs between primary ovarian epithelial and carcinoma cells. (A) Time course of
nuclear import. Digitonin-permeabilized primary HOSE or SKOV3 carcinoma cells were incubated with GFP-ERK2 (50 mg/ml or 0.8 mM) for the
indicated times, then washed in ice cold buffer and fixed in 4% paraformaldehyde. (B) Fluorescence intensity of GFP-ERK2 was measured under
identical settings for the experiments shown in A. The mean relative intensity is plotted +/2 s.d. of more than 50 nuclei in duplicate, and significant
differences were determined by Student’s t-test, with the p-values denoted above the time point. (C) The uptake of GFP-ERK2 at concentrations
ranging from 5 mg/ml (0.08 mM) to 100 mg/ml (1.6 mM) was measured after 15 min incubations with digitonin-permeabilized cells, as indicated above
and in ‘‘Materials and Methods.’’
doi:10.1371/journal.pone.0009295.g002
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pore for entry [20]. Energy did not affect the concentration-

dependent import, nor were cytosolic factors absolutely required,

since import occurred in assay buffer alone, without supplemen-

tation with isolated cytosol.

Association of ERK with the Cytoskeleton Does Not
Restrict Nuclear Import

Previous studies in mouse F9 embryonic carcinoma and

embryonic stem cells suggested that nuclear restriction of activated

ERK requires an organized, dynamic cytoskeleton [10]. We

speculated the arrangement of the cytoskeleton and/or vesicles

along the cytoskeleton might influence the import of ERK into the

nucleus. ERK was originally identified by its ability to phosphor-

ylate MAP2 [22], and named microtubule-associated protein-2

kinase (MAPK). Although it has been associated with the cellular

cytoskeleton in a number of studies and cell systems [23], and

shown to phosphorylate and regulate cytoskeletal components in

vitro [13,14], ERK is not generally or widely considered a

cytoskeleton-localized protein kinase. We observed that total ERK

localized in distinct filaments that extended the length of HOSE

and MCF10 cells and/or outlined the perinuclear region, yet

phospho-ERK was much more randomly distributed in all cells

examined. Moreover, cytoskeletal-disrupting agents had negligible

impact on c-Fos expression in serum-stimulated primary HBE and

HOSE cells (not shown). Thus, unlike embryonic carcinoma and

stem cells [10], primary epithelial cells may not require an intact

cytoskeleton to limit nuclear import of activated MAPK.

Transformation Increases Expression of Import Machinery
That MAPK is less efficiently imported into the nuclei isolated

from primary ovarian epithelial cells suggested that the cells

express reduced levels of nuclear import machinery compared to

carcinoma cells. The major mediator of transport is the nuclear

pore complex (NPC), a large pore structure through which

proteins, RNAs, and other cargos move bidirectionally across the

nuclear membrane. The NPC is composed of more than 50

proteins that make up the ,125 MDa structure [24], and the

central pore is lined by FG-repeat containing binding sites

contributed by multiple proteins, collectively known as nucleopor-

ins (Nup), which are believed to be responsible for mediating and

specifying transport [25]. Specific cytoplasmic transport factors,

known as karyopherins or importins, may also be involved in

delivering proteins to the nuclear pore [26,27].

Nano-String gene expression profiling [28] confirmed that

nucleoporins and import transport factors were elevated in ovarian

and breast cancer cells at the transcript level (Figure 3). Seven

different HOSE cell preparations (for Nano-String profiling)

showed similar mRNA levels, whereas the transformed cells

consistently had elevated message levels of NPC proteins

(Figure 3A, middle and lower panels). ERK has been shown to

interact with nucleoporin-214 (Nup214) and nucleoporin-153

(Nup153) through FG-repeat sequences [20,29]. Moreover, the

ovarian cancer cells typically had higher transcript levels of

importin 7 (Imp7) and importin B1 (ImpB1, also known as

KPNB1), members of the karyopherin/importin-beta family of

nuclear transport factors that have been shown in Drosophila to

modulate MAPK/ERK nuclear localization [8,9,30,31]. The

transcript levels of importin-alpha (KPNA6) and RanBP5 cytosolic

transport factors changed minimally. The distinction was apparent

even between human immortalized ovarian (HIO) epithelial cells

and the primary HOSE cells (Figure 3A, lower panel). Originally

generated by transfecting HOSE cells with the SV40 large T

antigen, the HIO cells are non-tumorigenic but can be cultured up

to 30 passages [32,33]. We also examined mRNA levels in three

HBE, the immortalized MCF10 cell line, and four breast

carcinoma cell lines, and observed that gene expression for

nucleoporins was significantly elevated (p,0.01) in all breast

cancer cells relative to the primary cells (Figure 3B), which

followed a trend similar to ovarian cancer and ovarian primary

cells. Importin levels were reduced significantly in two of the three

primary HBE lines (Figure 3B, top panel), though the average

mRNA expression level of the three HBE lines did not appear

significantly different from that found in the breast carcinoma

cells. Northern blots for importin B1 and Nup153 confirmed that

ovarian carcinoma and HIO cells contained increased message

levels for these genes compared to normal HOSE cells (not

shown). Moreover, immunoblotting confirmed that nucleoporins

and import transport factors were elevated at the protein level in

the carcinoma cells (Figure 3C). The increased expression of

nucleoporins Nup153 and Nup214 and importin-beta factors

strongly predicts elevated MAPK nuclear import in tumor tissues.

Nevertheless, assembly of the nuclear pore does not require

expression of all nucleoporins, or an uncompromising stoichiom-

etry of individual nucleoporins [34,35]. To verify that the

expression level of nucleoporins correlated with the number of

intact pores, we evaluated the density of pores per nuclei

compared to carcinoma cells by immunofluorescence microscopy.

Nuclear pores stained with NPC appear as distinct punctate spots

over the nuclear surface and staining is more dense and/or intense

in the carcinoma cells (Figure 3D). For example, the density of

NPC in SKOV3 cells is consistently greater than HOSE cell,

although the actual intensity of the individual pores appears to be

more prominent than the density in MCF7 cells compared to

normal breast epithelial cells. Counting of the individual pores

present in confocal images taken at the greatest cross-sectional

diameter of the nuclei suggested that the carcinoma cells contained

approximately 20–30% more pores than the normal primary cells,

yet the difference in the number of pores is less than would be

predicted based on the difference in transcript and expression

level. Thus, the stoichiometry of nucleoporins in the nuclear pore,

as well as the pore number, may contribute to the differences

observed in message and protein content in cancer cells.

We used siRNAs targeted against Nup153 and as a control

Nup62, another FG repeat-containing central pore protein that

has not been reported to interact with phospho-ERK, to analyze

the downstream effect on nuclear ERK activity. Consistently,

down-regulation of Nup153 decreased c-Fos expression in

transfected cells without lowering phospho-ERK levels (Figure 4),

showing that uncoupling of MAPK activation and c-Fos

expression occurs at the level of nuclear import machinery. As

predicted, changes in Nup62 levels did not affect c-Fos expression.

Expression of NPC Is Increased in Carcinomas
Since we observed that the level of NPC is elevated in

transformed cells in culture, we next examined whether NPC

levels were increased in tumor tissues. Staining of ovarian and

breast tumor specimens on several tissue microarrays (TMA)

indicated expression of NPC was elevated in most transformed

tissues (Figure 5) (see Tables S1, S2, and S3 for information and

pathology of ovarian and breast cancers on the TMAs). The

majority of breast tumor tissues stained positive for NPC

(Figure 5A). In the informative tissue cores, the intensity of NPC

staining was typically pervasive (70% of the epithelial component

was positive) and strong (intensity was 2–3) in the DCIS (ductal

carcinoma in situ) specimens. Normal breast epithelial tissue had

weak (0–1) staining in an average 50% (range 40–70%) of the

epithelial cells. The more malignant type carcinomas, IDC

(infiltrating ductal carcinoma) and ILC (infiltrating lobular

MAPK Nuclear Import
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carcinoma), had more variable NPC staining (Figure 5A), though

in general, the intensity was low to medium (Tables S1, S3). Thus,

over-expression of NPC may correlate more closely with DCIS

than the other tumor types; however, the sample size is small and

would need to be increased substantially to reach a conclusion.

In the ovarian cancer microarrays examined, NPC staining

reflected the heterogeneous nature of ovarian carcinoma, with a

range of epithelial components scoring positive (20–90%), and no

clear correlation could be found between tumor type, stage, or

grade. However, out of the panel of informative specimens (those

that had an epithelial component that could be scored for

staining), over 60% of the ovarian cancer samples stained 80% or

greater of the tumor epithelium highly positive for NPC (intensity

2–3) (Tables S2, S3). Figure 5B shows examples of a normal

ovarian surface epithelium (left panel, denoted by the arrow) and

three cases of ovarian serous adenocarcinoma, the most predom-

inant ovarian tumor type. Though the normal ovarian epithelia

stained positively for NPC, the intensity of staining was

characteristically much weaker (intensity 1–2).

Thus, we observed that a large proportion of breast and ovarian

tumors express an increased level of NPC. It is quite possible that

the tumors in which NPC is not over-expressed, importin

transport factors, such as importin B and importin 7, may well

be, though available antibodies are not yet suitable for

immunohistochemical staining of tissues.

Discussion

Although the Ras/MAPK pathway has been investigated

extensively in mammalian cells, many key observations have been

made using continuously cultured, transformed cell lines. Mitogen

stimulation of these cells results in a significant portion of phospho-

MAPK accumulating transiently in the nucleus. Here we report

that primary epithelial cells restrict the amount of phospho-ERK

localized in the nucleus after pathway stimulation, although the

cells obviously have an intact Ras/MAPK signaling pathway and

the means to activate ERK. In fact, the actual time course of

activation between primary and carcinoma cell lines is remarkably

similar, though primary cells maintain higher levels of activated

ERK longer following mitogenic stimulation, which would be

expected since termination of the signal by MAPK-specific

phosphatase MKP1 and MKP2 occurs in the nucleus [18]. The

effect of this restriction is to limit the proliferation of the cells or

tissues and maintain the differentiated phenotype.

Figure 3. Immortalization and transformation increase transcription levels of nuclear import proteins. (A,B) The expression of a panel
of nuclear import factors was examined by Nanostring nCounter methodology for ovarian (A) and breast epithelial (B) cells. (A, Top Panel) Relative
mRNA levels of importin 7 (Imp7) and importin B1 (ImpB1) in normal primary HOSE, HIO, and ovarian cancer cell lines. The numbers on the x-axis
correspond to the cells listed to the right of the figure. (A, Middle Panel) Expression profiles for Nup153 and Nup214 for the set of cells listed, as in the
top panel. (A, Bottom panel) The expression of a panel of nuclear import factors was examined by Nanostring nCounter methodology. The data
represent the mean +/2 s.d. for HOSE (n = 7), HIO (n = 1), and carcinoma (n = 7) cell cultures. Differences considered statistically significant (p,0.01),
calculated using Student’s t-test, are indicated by an ‘‘*’’. Transcripts were examined for importin 7 (Imp7), importin-alpha6 (KPNA6), importin-beta1
(ImpB1), nucleoporin 153 (Nup153), nucleoporin 214 (Nup214), nucleoporin 62 (Nup62), nucleoporin 88 (Nup88), nuclear transport factor 2 (NUTF2),
Ran binding protein 5 (RNBP5), and exportin 1 (XPO1). (B) Nanostring nCounter analyses were performed for 3 HBE, the immortalized MCF10 cells,
and 4 breast carcinoma cell lines (MCF7, MDA-MB-231, MDA-MB-468, T47D), as in Figure 3A. (C) Immunoblot analyses were performed for Importin 7,
Importin B, and NPC in primary HOSE and HBE cells, human immortalized ovarian epithelial (HIO) cells, MCF7 breast carcinoma cells, and a panel of
ovarian carcinoma cells (ES2, UPN251, A1847, A2780, and Ovcar5). NPC proteins were detected with a pan-anti-NPC mouse monoclonal antibody
(from Sigma). (D) Primary HOSE and HBE cells and SKOV3 and MCF7 carcinoma cells were fixed and stained for nuclear pores using a pan-anti-NPC
mouse monoclonal antibody and an Alexa555-conjugated goat anti-mouse secondary antibody. All images were treated identically using Adobe
Photoshop.
doi:10.1371/journal.pone.0009295.g003
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Primary epithelial cells, such as HOSE, require EGF and other

serum factors for maintenance, growth, and clonal propagation in

culture, as shown in early studies designed to configure growth

conditions for isolated cells [36–38], and these cells express the

EGF receptor both in vivo and in culture [39]. The ovarian

surface epithelial cells are believed to proliferate slowly in the

intact organ [40], yet these cells must proliferate to cover the site

where ovulation has occurred. Follicle rupture simulates a physical

injury, which forces the cells in the area to enter mitosis, and

several rounds of division occur to repair the wound [41]. This is

very similar to the findings made in the mouse embryo, where

wounding or scraping stimulates an accumulation of phospho-

MAPK in the nucleus [5], and suggest that an event(s) or factor(s)

separate from or in addition to growth factor stimulation is

required to force nuclear translocation of phospho-MAPK in the

primary cells. These factors could include cytoskeletal rearrange-

ments and expression, calcium fluxes, cell interactions with stroma,

matrix, or other cells, shape changes, altered expression of import

proteins, or a specific phosphorylation signal on ERK [42]. An

increase in the local concentration of EGF via release from

platelets recruited to the wound site after ovulation may be

involved [38,43], as well as the local microenvironment [40].

It is likely that the mechanism responsible for MAPK nuclear

restriction may differ between cells and tissue types or develop-

mental stages. Preliminary data in embryonic carcinoma cells

suggests that importin B down-regulation may suppress c-Fos

expression following serum stimulation and MAPK activation

(unpublished observations). Furthermore, both importin 7 (DIM7/

MSK) and importin B (Ketel) were originally found to affect

MAPK nuclear import in Drosophila [30]. In some specific phases

of eye development, importin 7/MSK seems to restrict, rather

than promote, nuclear import of MAPK by its being sequestered

apically and thereby holding phospho-MAPK in the cytoplasm,

promoting differentiation over proliferation [8,9]. Another report,

however, suggests that activation of MAPK must be spatially

coupled by integrin-mediated phosphorylation of importin 7/

MSK, and this activated complex permits MAPK to be imported

efficiently [31]. In this latter study, changes in MAPK phosphor-

ylation were not examined. Thus, how these multiple signals are

initiated and specified to regulate MAPK are obvious important

questions to investigate.

The results from this study show that global changes in

expression of nuclear transport components occur with immortal-

ization and transformation of breast and ovarian epithelial cells, as

indicated by the increase in NPC, as well as importin B and

importin 7, which would modulate entrance of a cargo (such as

MAPK) to the pore itself. More importantly, enhanced nuclear

transport or permeability may be permissive or alternatively

required for transformation. Specific nucleoporin levels apparently

regulate cell cycle progression and phase-specific gene expression

[44], and expression of individual pore and transport factor

proteins can differ between tissues and developmental stages

[24,35,45], and in several disease states, where over-expression of

Figure 4. Suppressed expression of nucleoporins decreases c-
Fos expression in carcinoma cells. OVCAR-10 and SKOV3 ovarian
and MCF7 breast cancer cells were transiently transfected with siRNA
constructs to Nup153 and Nup62, as well as a control siRNA (from Santa
Cruz). After 48 h, cells were serum-starved overnight, then stimulated
with 20% FBS for 90 min, and lysed for immunoblot analysis. NPC
proteins were detected with a mouse pan-anti-NPC monoclonal
antibody.
doi:10.1371/journal.pone.0009295.g004

Figure 5. NPC expression is upregulated in breast and ovarian carcinomas. (A) Immunohistochemical analysis of NPC expression was
undertaken on a tumor tissue microarray (TMA) containing normal breast epithelial tissue and tumor specimens, including DCIS (ductal carcinoma in
situ), IDC (infiltrating ductal carcinoma), and ILC (infiltrating lobular carcinoma). A mouse pan-anti-NPC monoclonal antibody was used for
immunostaining. (B) Immunohistochemical staining of NPC on ovarian TMA containing three ovarian serous carcinomas (OvCa) compared to a
normal ovarian surface epithelium (left panel). Images were taken at 4006magnification.
doi:10.1371/journal.pone.0009295.g005
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importin-alpha and –beta have been reported in colon, breast, and

lung cancers [24,35]. Our findings of increased NPC staining in

ovarian and mammary tumors substantiate this, and expression

profiling confirmed an early observation that mRNA for Nup88

was over-expressed in a panel of ovarian carcinoma cell lines [46].

A lowered level of importin 7 and in particular importin B would

be predicted to reduce the efficiency of MAPK nuclear import in

the primary cells, as it has been found in Drosophila and other cell

types [8,47,48]. Moreover, the number of functional pores is

known to vary depending upon the growth state of the cell,

increasing in proliferating versus quiescent BALB/c 3T3 cells [45].

The interaction of MAPK with the nuclear pore is obviously

specific, since down-regulation of Nup153, but not Nup62,

affected c-Fos expression. Nup62 exists in a subcomplex with

three other nucleoporins (Nup58, Nup54, and Nup62) that is

located at both the cytoplasmic and nuclear periphery of the

central core of the pore, which is embedded in the nuclear

membrane and sandwiched between a cytoplasmic and nuclear

ring. The cytoplasmic ring has eight fibrils that extend into the

cytoplasm; the nuclear ring carries eight fibrils that form a basket-

like structure that extends into the nucleoplasm. Nup153 faces the

midsection of the nuclear basket [24,25,35,49]. It is known that

general nuclear transport remains efficient even when changes

occur in the pore composition, and changes in Nup153 appear to

modulate modestly NLS-mediated import [50]. As we observed,

however, suppression of Nup153 significantly alters specific

MAPK signaling dependent upon its nuclear import.

In summary, we conclude that ERK1/2 nuclear entry is a rate

limiting step in primary cells and in vivo, and the restriction of

nuclear entry is abolished in transformed cells by increased

expression of nuclear pores and/or nuclear transport factors.

Materials and Methods

Ethics Statement
Primary tumor and non-tumor tissue samples were obtained

from patients who underwent surgical resection at Fox Chase

Cancer Center. Tumor microarrays (TMAs) were constructed

from the tumor collection held by the Department of Pathology at

Fox Chase Cancer Center. Tumor grades and histological

subtypes were obtained from the pathology reports without

reference to the patients’ personal information. The use of these

human tissues was examined and approved by the Fox Chase

Cancer Center institutional Human Investigation Committee, and

safety and ethical guidelines were followed. Written informed

consent was obtained from each patient, and extensive precautions

were taken to preserve the privacy of the participants donating

tissue. Each patient sample was assigned a unique study code, the

only source of identification visible on the biospecimens and any

accompanying paperwork. Our work was performed blinded,

without reference to patient sample number.

Antibodies
Antibodies were obtained from multiple sources and used at the

specified dilutions for immunofluorescence microscopy: activated

diphosphorylated Erk2/1 mouse monoclonal (Clone MAPK-YT,

Sigma) 1:200; phospho-p44/42 MAP kinase rabbit polyclonal and

MAP kinase rabbit polyclonal (Cell Signaling Technology) 1:250;

Erk1 mouse monoclonal (BD Transduction Lab) 1:50. For

immunoblots, antibodies were used at the following dilutions:

NPC proteins mouse monoclonal (Sigma) 1:5000; Importin B1

mouse monoclonal (Affinity Bioreagents) 1:5000; Importin 7 goat

polyclonal (Imgenex) 1:1000; c-Fos rabbit polyclonal (Santa Cruz)

1:1000; activated diphosphorylated Erk2/1 (Sigma) 1:5000; beta-

actin mouse monoclonal (Sigma) 1:5000. Alexa-488-conjugated,

Alexa-555, and Rhodamine Red-conjugated secondary antibodies

came from Molecular Probes.

Preparation and Culture of Primary Ovarian Surface
Epithelial Cells

Isolation of human ovarian surface epithelial cells is based on

the relatively loose attachment of surface ovarian epithelial cells to

underlying structures [3,37]. Cells were prepared from intact

human ovaries of non-diseased patients, obtained with informed

consent, following oophorectomies at Fox Chase Cancer Center.

The institutional Human Investigation Review Board of Fox

Chase Cancer Center fully approved the use of the samples and

making of cell lines. The cells were cultured in flasks coated with

0.1% swine skin gelatin in Medium 199/MCCB 105 (1:1 ratio)

containing 15% FBS, penicillin and streptomycin, 2 mM L-

glutamine, and 0.25 U/ml insulin. In some later experiments,

medium also contained bovine pituitary extract. Expansion of

HOSE cells typically begins 7–14 days after isolation, and the cells

can be subcultured 10–15 times before undergoing replicative

senescence [38]. Human immortalized ovarian surface epithelial

cell lines were derived and characterized as described previously

[32,33]. Ovarian tumor cell lines were previously established [41]

or obtained from ATCC (Rockville, MD). The tumor cells were

cultured in RPMI containing 10% FBS and 1X antibiotic/

antimycotic solution (Gibco). Carcinoma cell lines were transfected

with 20 nM siRNA constructs (Santa Cruz) for 48 h, using

Lipofectamine 2000 according to the manufacturer’s protocol

(Invitrogen).

Isolation and Culture of Primary Mammary Epithelial Cells
Epithelial cells were obtained as outgrowths of normal breast

tissue acquired from breast reduction surgery and digested to

epithelial organoids, as described [51,52]. Cell cultures were

maintained at a high density on tissue culture flasks coated with

0.1% swine skin gelatin in DMEM/F12 supplemented with 5%

horse serum, 20 ng/ml EGF, 100 ng/ml cholera toxin, 10 mg/l

insulin, 0.5 mg/l hydrocortisone, 0.04 mM calcium chloride, and

1X antibiotic/antimycotic, and split 1:1 or 1:2 when confluent.

Active growth of these cells generally begins 3–4 days after seeding

and maintained for approximately 10 passages, with subculture

every 7–14 days [51]. In some cases, breast epithelial cells were

frozen in 90% FBS/10% DMSO, and cultures were re-established

from frozen stocks.

Recombinant Proteins and Nuclear Import Assays
The cDNA encoding rat His-tagged GFP-ERK2 was a generous

gift of Dr. Melanie Cobb (University of Texas Southwestern

Medical Center) and was prepared as described [53]. In this

construct the rat ERK2 cDNA was subcloned into pRSETB-His6-

GFP using KpnI and HindIII restriction sites. Preparation and

purification of GFP-ERK2 followed the published procedures

[53]. Import assays were performed using HOSE or SKOV3 cells

plated on gelatinized glass coverslips in 6-well dishes [19,54]. Cells

were plated on coverslips at least 2 days before the assay and

incubated in serum-free culture medium at least 24 h before

nuclear import of GFP-ERK2 was assayed.

NanoString nCounter Expression Analysis
The mRNA content of cell lysates was analyzed by NanoString

methodology according to published procedures [28], and was

performed by the Oncogenomic Core Facility at the UM-Sylvester

Comprehesive Cancer Center. Briefly, 100 ng of total RNA per
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replicate or lysate of 10,000 cells in Qiagen RLT lysis buffer were

hybridized to the target specific codeset ON at 65uC. The codeset

contained probes against a panel of 13 genes encoding proteins

involved in nuclear import. The hybridized reactions were loaded

onto the NanoString Prep station, which removes excess reporter,

binds the reporter to the cartridge surface, and stretches the probes

for scanning. Subsequently, the cartridges were loaded onto the

NanoString Digital Analyzer and scanned. Nanominer software

was used to perform normalization compared to Actin and basic

statistical analysis on the data. The normalized results are

expressed as the relative mRNA level, and values for normal

and carcinoma cells were averaged and shown as mean 6 s.d.

Statistical significance was calculated using Student’s t-test and was

set as p,0.01.

Immunostaining
Immunological staining was performed using the mouse DAKO

Envision TM+ System and the peroxidase (DAB) kit (DAKO

Corporation, Carpineria, CA) as described [55]. Tumor micro-

arrays were constructed from the tumor collection held by the

Department of Pathology at Fox Chase Cancer Center. Tumor

grades and histological subtypes were obtained from the pathology

reports without reference to the patients’ personal information.

Immunofluorescence Microscopy
Cells were grown on glass coverslips in 6-well dishes in the

appropriate culture medium. After treatment, cells were washed

once with PBS at room temperature and fixed in 4%

paraformaldehyde for 10 min, lysed with 0.1% Triton X-100 in

PBS for 5 min at room temperature, and processed for

immunofluorescence [10]. Slides were viewed on a Nikon Eclipse

TE300 microscope using a 1006oil-immersion objective, coupled

to a Roper Scientific CoolSnap ES camera, and analyzed with

MetaVue (Universal Imaging/Molecular Devices) or NIS-Ele-

ments Basic Research (Nikon) and Adobe Photoshop software.

Alternatively some fixed and stained cells were viewed on a Nikon

E800 upright microscope equipped with a BioRad 2000 confocal

scanhead using a 606 oil-immersion objective, and images were

deconvoluted using the Laser Sharp2000 (Zeiss) and MetaVue

software and analyzed using Adobe Photoshop. To quantitate

NPC, confocal images were taken on a Zeiss LSM ZeissLSM510

Confocal laser-scanning microscope using 636oil objective (N/A

1.4), and the section with the widest cross-section of the nucleus

selected for further analysis. All images were zoomed using Adobe

Photoshop and treated identically.

Cytoskeleton Isolation
Cytoskeleton was prepared in microtubule stabilizing buffer

(MSB) with the addition of protease inhibitors (Complete Mini,

Roche). Cells were plated on glass coverslips in 6-well dishes.

Following treatment, cells were washed two times in MSB (0.1 M

Pipes, pH 6.9, adjusted with KOH, 1 mM EDTA, 4% glycerol,

1 mM sodium orthovanadate). Soluble proteins were extracted for

5 min in MSB containing 0.2% Triton X-100. The dishes were

then washed twice with MSB, and cytoskeletons were fixed at

room temperature in 4% paraformaldehyde in PBS.

Supporting Information

Figure S1 Primary HOSE and SKOV3 ovarian carcinoma cells

were growth arrested overnight, then stimulated with serum for 0

or 90 min, or continuously grown in the presence of serum (NS,

non-synchronized). Lysates were analyzed for c-Fos and phospho-

ERK (p-ERK) expression.

Found at: doi:10.1371/journal.pone.0009295.s001 (4.15 MB TIF)

Table S1 NPC immunostaining of breast tumor tissue micro-

array. The breast tumor tissue microarray (06-01) was stained for

NPC by immunohistochemistry. The data shown in Table S3 was

tabulated according to the percent of the total number of samples

for each tumor type staining low (+), medium (++), or high (+++)

for NPC. Seven of nine normal breast tissue samples contained

sufficient epithelial component to score.

Found at: doi:10.1371/journal.pone.0009295.s002 (0.03 MB

DOC)

Table S2 NPC immunostaining of ovarian tumor tissue

microarrays. The ovarian tumor tissue microarrays were stained

for NPC by immunohistochemistry. The data shown in Table S3

was tabulated according to the percent of the total number of

samples for each tumor type staining low (+), medium (++), or high

(+++) for NPC. Only two of the seven normal tissue samples

contained sufficient epithelial component to score.

Found at: doi:10.1371/journal.pone.0009295.s003 (0.05 MB

DOC)

Table S3 Immunostaining of ovarian and breast cancer tissue

microarrays. Breast and ovarian tumor tissue microarrays were

stained for NPC by immunohistochemistry. Scoring of NPC

staining represents the % of epithelial cells that were positive for

NPC, whereas intensity is scored from undetectable (0), low (+),

medium (++), to high (+++). Some cases contained an insufficient

epithelial component and are left unscored (---).

Found at: doi:10.1371/journal.pone.0009295.s004 (0.16 MB

DOC)
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