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Background: Spinal cord injury (SCI) is a severe neurological deficit affecting both
young and older people worldwide. The potential role of key enhancer RNAs (eRNAs) in
SCI remains elusive, which is a prominent challenge in the trauma repair process. This
study aims to investigate the roles of key eRNAs, transcription factors (TFs), signaling
pathways, and small-molecule inhibitors in SCI using multi-omics bioinformatics
analysis.

Methods: Microarray data of peripheral blood mononuclear cell (PBMC) samples
from 27 healthy volunteers and 25 chronic-phase SCI patients were retrieved from
the Gene Expression Omnibus database. Differentially expressed transcription factors
(DETFs), differentially expressed enhancer RNAs (DEeRNAs), and differentially expressed
target genes (DETGs) were identified using the Linear Models for Microarray Data
(limma) package. Fraction of immune cells was estimated using CIBERSORT algorithm.
Gene Set Variation Analysis (GSVA) was applied to identify the downstream signaling
pathways. The eRNA regulatory network was constructed based on the correlation
results. Connectivity Map (CMap) database was used to find potential drugs for SCI
patients. The cellular communication analysis was performed to explore the molecular
regulation mechanism of SCI based on single-cell RNA sequencing (scRNA-seq) data.
Chromatin immunoprecipitation sequencing (ChIP-seq) and Assay for Transposase-
Accessible Chromatin using sequencing (ATAC-seq) data were used to validate the
key regulatory mechanisms. scRNA-seq dataset was used to validate the cell subtype
localization of the key eRNAs.

Results: In total, 21 DETFs, 24 DEeRNAs, and 829 DETGs were identified. A regulatory
network of 13 DETFs, six DEeRNAs, seven DETGs, two hallmark pathways, two immune
cells, and six immune pathways was constructed. The link of Splicing factor proline and
glutamine rich (SFPQ) (TF) and vesicular overexpressed in cancer prosurvival protein
1 (VOPP1) (eRNA) (R = 0.990, p < 0.001, positive), VOPP1 (eRNA) and epidermal
growth factor receptor (EGFR) (target gene) (R = 0.974, p < 0.001, positive), VOPP1,
and T helper (Th) cells (R = −0.987, p < 0.001, negative), and VOPP1 and hallmark
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coagulation (R = 0.937, p < 0.001, positive) was selected. Trichostatin A was considered
the best compound target to SCI-related eRNAs (specificity = 0.471, p < 0.001).

Conclusion: VOPP1, upregulated by SFPQ, strengthened the transient expression of
EGFR. Th cells and coagulation were the potential downstream pathways of VOPP1.
This regulatory network and potential inhibitors provide novel diagnostic biomarkers and
therapeutic targets for SCI.

Keywords: spinal cord injury, multi-omics bioinformatics analysis, biomarkers, eRNA regulatory network,
therapeutic targets

INTRODUCTION

Spinal cord injury (SCI) refers to functional or structural injury of
the spinal cord causing total or partial loss of motor, sensory, and
sphincter function below the injured segment (Nakae et al., 2011;
Anderson et al., 2018). Whether the pathogenesis is disease or
trauma, SCI exhibits high disability rates. It affects approximately
347,000 individuals in the United States, with about 17,500
new cases diagnosed every year (Badhiwala et al., 2019; GBD
2016 Neurology Collaborators, 2019). According to the illness
course, SCI can be divided in three phases: the acute phase (0–
15 days), the subacute phase (3–5 months), and the chronic
phase (6–12 months) (Pouw et al., 2011). The most common
pathological characteristics of SCI are a cascade of molecular
and cellular events triggered by inflammation, and excitotoxicity
impairs endogenous regeneration, namely, axonal outgrowth
and remyelination.

It is arduous to repair injured neurons and restore conducting
function of axons, so treatments of SCI have become worldwide
problems (Borton et al., 2014). Importantly, there are no
efficacious drugs or therapeutic approaches for SCI. Thus,
many patients suffer substantial physical and psychological
consequences. To date, the molecular mechanisms of SCI remain
unclear, so it is difficult to develop novel drugs or treatments.
Thus, it is urgent to determine specific molecular mechanisms
that underlie the pathogenesis of SCI.

The gene mutation and aberrant expression are implicated
in the development of numerous diseases and may involve
various types of regulatory molecules. Enhancer refers to a kind
of distal regulatory DNA element that is able to enhance the
transcription of corresponding target genes via coordinating with
target gene promoters (Blackwood and Kadonaga, 1998). Widely
acknowledged as DNA elements that nucleate transcription
factor (TF) binding, enhancers were identified to also transcribe
non-coding RNAs recently, which are referred to as enhancer
RNAs (eRNAs) (Kim et al., 2010). Numerous eRNAs have been
identified in Homo sapiens so far, and many of them were
suggested to play crucial parts in the transcriptional circuitry
(Li et al., 2016).

Inflammation after SCI is a fundamental basis of secondary
damage. Inflammatory response is coordinated by various
signaling modalities that include the epigenetic modification of
promoters and eRNAs (Rudman et al., 2018). Large amounts of
cytokines are quickly generated and released from various cells
in the damaged structures after SCI (Hayashi et al., 2000; Pineau

and Lacroix, 2007). Cytokines activate apoptosis of pathological
nerve cells and recruitment of active leukocytes in myelopathic
lesions (Beck et al., 2010; Chen et al., 2011). Leukocyte infiltration
contributes to cascaded amplification of inflammation cytokine
signaling, increasing neurotoxicity, and thus promoting fibrotic
scar formation via recruiting fibroblasts in damaged regions (Zhu
et al., 2015). In addition, damaged areas chronically maintain
pro-inflammatory phenotype after injury, hindering regeneration
and healing of the injured spinal cord (Beck et al., 2010). Because
of the detrimental inflammatory effects after SCI, reducing
inflammatory response is a major demand for improving clinical
outcomes of SCI patients. Nevertheless, eRNA-targeted anti-
inflammation agents that effectively inhibit inflammation and
improve the prognosis of SCI patients are still insufficient, and
novel anti-inflammation interventions are urgently needed.

In this study, transcription factors (TFs), differentially
expressed enhancer RNAs (DEeRNAs), and target genes in
patients with SCI were identified. Significant immune cells
and immune-related pathways were identified by cell type
identification by estimating relative subsets of RNA transcripts
(CIBERSORT) and single-sample Gene Set Enrichment
Analysis (ssGSEA) algorithms, respectively. In addition, TFs,
eRNAs, target genes, immune cells, immune-related gene sets,
hallmark gene sets (signaling pathways) acquired by the Gene
Set Variation Analysis (GSVA) were merged in correlation
analysis. Only remarkable interactions were extracted for
construction of eRNA regulatory network. Moreover, we
performed Connectivity Map (CMap) analysis to explore the
potential inhibitors specific to SCI-related eRNAs. Furthermore,
chromatin immunoprecipitation sequencing (ChIP-seq) and
Assay for Transposase-Accessible Chromatin using Sequencing
(ATAC-seq) data were utilized for validation of the key regulation
mechanisms in this network.

MATERIALS AND METHODS

Data Acquisition
The present study was endorsed by the Ethics Committee of
the Shanghai Tongji Hospital affiliated to Tongji University.
Microarray data and clinical information of 27 peripheral blood
mononuclear cell (PBMC) samples from healthy volunteers
and 25 PBMC samples from SCI patients were obtained from
the Gene Expression Omnibus (GEO) database (accession
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number: GSE82152)1 (Barrett et al., 2011) and E-GEOD-69901
(ArrayExpress)2 (Athar et al., 2019), respectively. In addition,
these two batches of microarray data were both retrieved
from a platform called GPL21975 [PrimeView] Affymetrix
Human Gene Expression Array [Brainarray ENTREZG Version
17],3 compared with data merging based on multiple different
platforms, and resulted in less error. TFs were obtained from the
Cistrome Cancer database4 (Zheng et al., 2019). Immunologically
related genomic expression profiles were downloaded from
the ImmPort database5 (Bhattacharya et al., 2014). Hallmark
signaling pathways were collected from the Molecular Signatures
Database (MSigDB, v7.2)6 (Liberzon et al., 2015). ChIP-seq data
of H3K27ac (accession number: GSE134744) and ATAC-seq data
of key eRNAs (accession number: GSE139099) were obtained
from the GEO database (see text foot note 1) (Barrett et al., 2011).

Data Preprocessing and Differential
Expression Analysis
Samples and patients with incomplete clinical information
were excluded. All original microarray data were read
using affy package, followed by robust multi-array average
(RMA) background correction, standardization, probe-specific
background correction, and summarizing probe set values in one
expression measure (Irizarry et al., 2003; Gautier et al., 2004).
Then, two batches of microarray data aforementioned were
corrected using normalizeBetweenArrays function in Linear
Models for Microarray Analysis (limma) package, which were
then merged for differential expression analysis. Differential
expression analysis of eRNAs (DEeRNAs), target genes (DETGs)
and TFs (DETFs) between SCI and normal blood was conducted
using the Linear Models for Microarray Data (limma) package
(Smyth, 2004). For p-value, false discovery rate (FDR) was
utilized for multiple testing correction. Absolute log2[Fold
Change (FC)] ≥ 1.0 and the FDR < 0.05 were cutoff criteria.

Functional Enrichment Analysis
We conducted Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analyses to identify
biological processes and pathways that were most related to
DEeRNAs with FDR p-value < 0.05 as cutoff value (Zhang T.
et al., 2013).

Identification of Potential Immune Cells,
Immune Pathways, and Hallmark
Pathways
Immune cell proportions in the SCI and normal samples were
analyzed utilizing the cell type identification by estimating
relative subsets of RNA transcripts (CIBERSORT) algorithm
(Newman et al., 2015). To identify the association between eRNA

1https://www.ncbi.nlm.nih.gov/geo/
2https://www.ebi.ac.uk/arrayexpress/
3https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL21975
4http://cistrome.org/
5http://www.immport.org/
6http://software.broadinstitute.org/gsea/msigdb/

signature and immune cell infiltration in SCI tissues, we uploaded
gene expression matrix data to CIBERSORT database7 to purify
cellular subtype-specific gene expression. Infiltrating immune
cells were all extracted for further analysis. Furthermore, non-
parametric tests were used to identify correlations between these
immune cells/pathways and various clinical phenotypes.

In addition, ssGSEA algorithm was conducted to evaluate and
quantify the enrichment level of 10 immune-related pathways
in SCI samples (Xiao et al., 2020). Furthermore, Pearson
correlation analysis was carried out to determine the correlations
between key eRNAs and immune-related signaling pathways
or immune genes, in which a p-value < 0.05 was considered
statistically significant.

Identification of Potential Downstream
Hallmark Pathways
GSVA (Ferreira et al., 2021) and GSEA (Subramanian et al.,
2007) were both utilized for exploring potential downstream
hallmark pathways of DEeRNAs. Absolute quantification of
50 hallmark signaling pathways was evaluated to extract
differentially expressed hallmark pathways between SCI and
normal blood using ClusterProfiler package and GSVA package
(Yu et al., 2012; Hanzelmann et al., 2013). GSEA was carried
out to reveal the significant enrichment of upregulated and
downregulated hallmark pathways in SCI and normal blood.
Furthermore, correlations of hallmark pathways of GSVA and
GSEA were extracted, and the interactional pathways were
suggested as key pathways.

Construction of Regulation Network for
Transcription Factors, Enhancer RNAs,
Immune Cells, Immune-Related
Pathways, Target Genes, and Hallmark
Gene Sets
Pearson correlation analysis was conducted based on key TFs,
eRNAs, immune genes, immune cells, target genes, and hallmark
pathways aforementioned. An eRNA regulatory network was
then reconstructed by Cytoscape (3.7.1) (Kohl et al., 2011).

Molecular complex detection (MCODE) plugin of Cytoscape
software was utilized to identify significant molecules within this
network in a recognition standard MCODE score ≥ 4 to extract
the modules of hub genes. Interaction relationships between
key eRNAs and other components were controlled based on
p-value < 0.05 and | correlation coefficient| > 0.40.

Connectivity Map Analysis
Here, we used CMap (build 02) to find potential inhibitors that
may target SCI-related eRNAs. In total, 6,100 gene expression
cases covering 1,309 drugs were obtained from the CMap
database8 (Lamb et al., 2006). That is, a candidate drug might
correspond to various gene expression cases. Genes in each case
were ranked via taking differential expression values between
drug-untreated and drug-treated cell lines, and 6,100 gene lists

7https://cibersort.stanford.edu/
8https://portals.broadinstitute.org/cmap/
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related to drugs were then generated. Based on identified key
DEeRNAs involved in SCI and 6,100 drug-related cases, we
conducted a non-parametric test to explore the relationship
between drugs and SCI.

Information on targeting compounds is available in the
mechanism of actions (MoA)9 that includes transcriptional
responses of various human cell lines to perturbagens,
structural formulas, and protein targets. On the basis of
MoA, compounds that may target SCI-related eRNAs/enhancers
in this study were extracted.

Single-Cell RNA Sequencing Data
Processing
Following the procedure of 10x Genomics Chromium10 (Chen
et al., 2020), the preprocessing of samples and scRNA-seq data
was conducted. After demultiplexing, the sequencing results were
divided into two pair-ended reads fastq files that were then
trimmed to eliminate template switch oligo (TSO) sequence
and polyA tail sequence. Additionally, clean reads were aligned
with the GRCh38 (Version: 100) genome assembly, which were
quantified using the Cell Ranger Software (Version 1.0.0).11

The quantitative gene expression matrices (The row names of
matrices were genes and column names were barcodes) acquired
from seven libraries that included seven vertical section samples
and 14 cross-section samples were analyzed with Seurat pipeline
(Version: 3.2.2) for further analysis (Butler et al., 2018). Only
cells with less than 10% mitochondrial gene mapped and more
than 100,000 transcripts expressing were extracted for subsequent
analysis. In addition, genes that expressed in over three single
cells were included in follow-up analyses. After the completion
of quality control (QC), all samples were merged in one Seurat
object with the function of “IntegrateData” that were then scaled
and standardized with the function of “ScaleData.” Top 1,500
variable genes were identified using “vst” method. To reduce
model dimensionality, principal component (PC) analysis (PCA)
was initially carried out, and the top 20 PCs were incorporated as
input file for Uniform Manifold Approximation and Projection
(UMAP) for dimension reduction analysis. The UMAP plots that
illustrated cell subclusters were constructed using the “DimPlot”
and “RunUMAP” function.

Differential Expression Analysis of
Single-Cell RNA Sequencing
Genes with remarkable differential expression from the top 1,500
variable genes were defined as differentially expressed genes
(DEGs) with “wilcox” method using “FindAllMarkers” function.

Cell Type Annotation
To identify the cell type of each unsupervised cluster, DEGs of
all subclusters were utilized as potential references that were
combined with known specific cell surface biomarkers obtained
from CellMarker12 (Zhang et al., 2019) for a comprehensive

9http://clue.io/
10https://www.10xgenomics.com/instruments/chromium-x-series
11http://10xgenomics.com/
12http://biocc.hrbmu.edu.cn/CellMarker/

annotation of cell type. Given the variable gene expression
patterns in SCI, a specific cellular annotation method was utilized
in the present study. Firstly, known cell surface biomarkers of
neuron (Rph3a, Tubb3, Gnal), neuron precursor cell (NPC)
(Sox2, Prom1, Sox9), astrocyte (Gfap, S100b, Vim), fibroblast
(Col1a1, Col1a2, Col4a1), oligodendrocyte (Mbp, Olig2, Gjb1),
oligodendrocyte precursor cell (OPC) (Olig1, Apoc4, Epn2),
microglia (Cx3cr1, Aif1, Itgam), and macrophage (Cd68, Itgam,
Fcgr3) were used to annotate the cell type of the eight
cells aforementioned. Furthermore, because several biomarkers
of macrophage and microglia were overlapping, cells with
transcripts per million (TPM) of Cd68 < 2 and Aif1 > 1.38 were
identified as microglia, while cells with TPM of Cd68 > 2 were
identified as macrophages. In addition, the cellular feature plots,
dot plots, violin plots, and heat maps were constructed to show
the marker genes of each cell type using SCANPY (Version: 1.7.1)
and Seurat R package (Version: 3.2.2) under the environment of
Python 3.6 (Butler et al., 2018; Wolf et al., 2018).

Cellular Communication Analysis
In order to elucidate the significant cellular communication
patterns and ligand–receptor pairs among various different cell
types in the spinal cord, cellular communication analysis was
carried out using iTALK R package (Version: 0.1.0)13 (Wang
et al., 2019). Firstly, because of the scarcity of musculus resources
in present mainstream cellular communication algorithms,
the top 1,500 variable genes were transformed to human
genes using biomaRt package (Version: 2.46.0) in a certain
homologous degree with “getLDS” function (Durinck et al.,
2009). Secondly, the normalized expression matrix of these genes
was incorporated into the iTALK object with the “rawParse”
function. Finally, the top 200 ligand–receptor pairs were shown
by ligand–receptor plots and iTALK networks.

Chromatin Immunoprecipitation
Sequencing Validation
Histone H3K27ac was implicated in enhancer-specific
modifications, which were essential for enhancers to activate the
transcription of relevant target genes (Kang et al., 2021). Role
of H3K27ac in eRNA transcription was evaluated by analyzing
ChIP-seq data (accession number: GSE134744) in peripheral
blood (Grubert et al., 2020).

The ChIP-seq data of Splicing factor proline and glutamine
rich (SFPQ) (accession number: GSM2827312, GSM1411215,
GSM2825596, GSM1097497, GSM2827311, and GSM1097496)
(Dunham et al., 2012; ENCODE Project Consortium, 2012;
West et al., 2014) and H3K27 (accession number: GSM732912,
GSM575294, and GSM663427) (Lister et al., 2009; Guenther
et al., 2010; Wang et al., 2011) were obtained from the Cistrome
database for validating binding relationships between key eRNAs
and other significant biomarkers in this study. Furthermore, we
determined the eRNA binding relationships using the University
of California Santa Cruz (UCSC) Genome Browser14 based on the
original ChIP-seq data (Robinson et al., 2011; Li et al., 2015).

13https://github.com/Coolgenome/iTALK
14http://genome.ucsc.edu
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Assay for Transposase-Accessible
Chromatin Using Sequencing Validation
The ATAC-seq (Buenrostro et al., 2013) refers to an impressively
flexible, simple, and powerful technique to profile chromatin
regions genome-wide compared to traditional methods like
functional assays or sequence conservation analyses.

We downloaded peak data of key TFs and eRNAs (accession
number: GSE139099) (Grubert et al., 2020) and performed the
correlation analysis using ggpubr.15 In order to explore the
potential super-enhancers, we performed the peak calling with
macs14 (Feng et al., 2012).16 Furthermore, we ranked enhancers
and determined super-enhancers using ROSE (Whyte et al.,
2013).17 Multiple SCI-enriched ATAC-seq peaks that represented
candidate regulation elements were located near established
eRNAs and were enriched in distinct sets of TF binding sites.

Online Single-Cell RNA Sequencing
Validation
To identify the expression of the key biomarkers in single-cell
level, scRNA-seq data of developing mouse spinal cord (accession
number: GO0006836 and GO0098609) were downloaded from
Single Cell Expression Atlas (Delile et al., 2019).18 Then, we
validated the cellular location of these biomarkers’ expression.

Statistics Analysis
All statistical analyses were put into effect using R version 3.6.1
(Institute for Statistics and Mathematics, Vienna, Austria).19 In
descriptive statistics, mean ± standard deviation was utilized for
continuous variables in normal distribution.

In addition, when encountering continuous variables in
abnormal distribution, the median was utilized. Two-sided
p-value < 0.05 was suggested to be necessary for statistics.

RESULTS

Identification of Differentially Expressed
Enhancer RNAs
Analysis process of the present study was illustrated in Figure 1.
Samples and patients with incomplete clinical information
were excluded, and conformers were shown in Supplementary
Table 1. Based on the threshold, a total of 3,979 eRNAs were
identified as DEeRNAs between 27 healthy volunteers and 25 SCI
patients from 5,100 eRNAs, which were shown in the Heat map
(Figure 2A) and volcano plot (Figure 2B).

Functional Enrichment Analysis
GO and KEGG enrichment analyses were both conducted to
explore the potential mechanism of identified DEeRNAs. In
GO analysis, the most important terms in biological process

15https://github.com/kassambara/ggpubr
16https://liulab-dfci.github.io/
17http://younglab.wi.mit.edu/super_enhancer_code.html
18https://www.ebi.ac.uk/gxa/sc/experiments/E-MTAB-7320/results/tsne
19www.r-project.org

(BP), cellular component (CC), and molecular function (MF)
were neutrophil activation, endosomal part, and cell adhesion
molecule binding (Figure 2C). The most significant KEGG
pathway was mitogen-activated protein kinase (MAPK) signaling
pathway (Figure 2D). In the heat map (Figure 3A) and volcano
plot (Figure 3B), 24 differentially expressed SCI-related eRNAs
were identified, which were considered to be key eRNAs in
patients with SCI.

Correlation Analysis of Key Differentially
Expressed Enhancer RNAs and
Differentially Expressed Transcription
Factors
Twenty-one DETFs (log2 FC > 1 or < −1 and FDR < 0.05)
were identified using limma package that were shown in the heat
map (Figure 3C) and volcano plot (Figure 3D). In addition,
to explore the relationship between DETFs and DEeRNAs,
Pearson correlation analysis was carried out, and 27 regulatory
relationships were identified (correlation coefficient < −0.300
or > 0.300, and p-value < 0.001). Based on the correlation
analysis results for regulation relationships of key DETFs and
DEeRNAs, link of SFPQ (TF) and vesicular overexpressed in
cancer prosurvival protein 1 (VOPP1, eRNA) was extracted
(R = 0.990, p < 0.001, positive).

Correlation Analysis of Key Differentially
Expressed Enhancer RNAs and
Differentially Expressed Target Genes
In total, 829 DETGs (log2 FC > 1 or < −1 and FDR < 0.05)
were identified using limma package and illustrated in the heat
map (Figure 4A) and volcano plot (Figure 4B). Furthermore, to
determine the relationships between the identified DETGs and
DEeRNAs, eight regulation relationships were identified using
Pearson correlation analysis (correlation coefficient < −0.300
or > 0.300 and p-value < 0.001). Additionally, based on
significant regulation relationships of key DEeRNAs and DETGs
acquired by Pearson analysis, the link of VOPP1 (eRNA) and
epidermal growth factor receptor (EGFR, target gene) was
extracted (R = 0.974, p < 0.001, positive).

Correlation Analysis of Key Differentially
Expressed Enhancer RNAs, Immune
Cells/Pathways
Twenty-two types of immune cells/pathways were identified
using CIBERSORT. The bar chart showed the percentage of
22 kinds of immune cells in 27 healthy volunteers and 25 SCI
patients (Figure 4C). The heat map showed the expression level
of 22 immune cells by CIBERSORT (Figure 4D). Results of non-
parametric tests demonstrated significant correlation between
immune cells/pathways and SCI (Figure 4E). Furthermore,
ssGSEA was conducted to identify 28 immune cells/pathways
that were significantly correlated with differentially expressed
SCI-related eRNAs. Results of ssGSEA were shown in the heat
map (Figure 4F).
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FIGURE 1 | The analysis flowchart of all analysis processes.

Then, by co-analyzing VOPP1 and 22 types of immune cells or
pathways, the top 3 immune cells or immune-related pathways
were extracted for further analysis, which included Antigen-
presenting cells (APC) co-inhibition (R = 0.936, p < 0.001,
positive), MHC class I (R = −0.973, p < 0.001, negative), and T
helper (Th) cells (R = −0.987, p < 0.001, negative). Th cells were
finally extracted in further analyses.

Identification of Potential Downstream
Hallmark Pathways of Key Differentially
Expressed Enhancer RNAs
Results of GSVA (| log2 FC| > 0.1, p < 0.05) were shown in the
heat map (Figure 5A). The volcano plot showed 28 differentially

expressed hallmark pathways between 27 healthy volunteers and
25 SCI patients (Figure 5B). The t-value of GSVA score of
these pathways was shown in the t-test bar chart (Figure 5C).
Furthermore, 38 hallmark pathways were extracted from the
50 hallmark pathways for further analysis, controlled by cutoff
values of | log2 FC| > 0.1 and p < 0.05. Importantly, VOPP1 and
hallmark coagulation (R = 0.937, p < 0.001, positive) showed the
strongest interaction.

Construction of the Enhancer RNA
Regulation Network
A co-expression regulation network of key DETFs, DEeRNAs,
DETGs, immune cells/pathways, and hallmark pathways was
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FIGURE 2 | Identification of differentially expressed enhancer RNAs (DEeRNAs) and functional annotation. (A) Heat map showing the expression level of DEeRNAs.
(B) Volcano plot showing the p-value and log| FC| value of DEeRNAs by the differential expression analysis above. (C) The output of Gene Ontology (GO) analysis.
(D) The output of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis.

constructed, which elaborated on the regulatory relationships
among the aforementioned components (Figure 5D).
Furthermore, to quantify the interaction coefficients among
them, co-expression analysis was performed at the transcriptional
level (Figure 6A).

Connectivity Map Analysis
Because eRNAs were implicated in the pathological processes
of SCI and traditional long-term treatment with drugs may
result in severe side effects and/or insufficient inflammation and
pain relief, it is urgent to find potential compounds that target
SCI-related eRNAs. Through exploring potential compounds
in CMap database, we identified 19 compounds that have been
validated to target SCI-related eRNAs in multiple clinical trials,
including 15-delta prostaglandin J2, anisomycin, azaperone,
bumetanide, dosulepin, felodipine, lycorine, metrizamide,
MG-262, mitoxantrone, naftifine, pirinixic acid, Prestwick-
864, probenecid, puromycin, rifampicin, trichostatin A
(TSA), troglitazone, and valinomycin (Figure 6B). TSA
(specificity = 0.471, p < 0.001) and 15-delta prostaglandin J2

(specificity = 0.128, p < 0.001) with the highest specificity were
considered the best compounds to target SCI-related eRNAs
(Figures 6C,D), and TSA was extracted for further analysis.

Integrated Analysis of Single-Cell RNA
Sequencing
The UMAP scatter plots and cellular feature plots showed
the cell types and marker genes of different cell types
(Figure 7A). Furthermore, the top 1,500 variable genes (|
log2(FC)| > 0.5 and FDR < 0.05) were extracted by DEG
analysis. Gene expression levels of the most significant DEGs of
multiple inflammation cells (astrocyte, dendritic, Div-myeloid,
endothelial, ependymal, fibroblast, lymphocyte, macrophage,
microglia, monocyte, neutrophil, oligodendrocyte, OPC, and
pericyte) and neuron were illustrated in Figure 7B. In addition,
the proportion of these cells in different SCI samples was also
shown in the bar plot (Figure 7B). Specifically, average number
and cell proportion of these cells were illustrated in Figure 7C.
The feature plots of VOPP1, EGFR, and SFPQ were shown
in Figure 7D. Importantly, VOPP1 was significantly highly
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FIGURE 3 | Identification of differentially expressed spinal cord injury (SCI)-related enhancer RNAs (eRNAs) and transcription factors (TFs). (A) Heat map showing the
expression level of differentially expressed SCI-related eRNAs. (B) Volcano plot showing the p-value and log| FC| value of differentially expressed SCI-related eRNAs.
(C) Heat map showing the expression level of differentially expressed TFs. (D) Volcano plot showing the p-value and log| FC| value of differentially expressed TFs.

expressed in lymphocytes, which was consistent with the previous
analysis. In addition, EGFR and SFPQ were highly expressed in
fibroblast and microglia, respectively. Finally, intersected cellular
communication network and ligand–receptor plot showed the
mechanisms of intercellular signal transduction, and fibroblast
was the core cellular component among these intersected ligand–
receptor pairs (Figures 7E,F). It showed that lymphocytes
received signals from myeloid cells and various neurocytes
including microglia and then played a role in the downstream
pathological process of SCI.

The UMAP scatter plots and cellular feature plots showed
various cell types and marker genes for corresponding cell types,
respectively (Figure 8A). Cellular feature plots of marker genes in
different cell types were shown in Figure 8B. The most significant

DEGs of neuron and inflammation cells were annotated on the
DEG heat map (Figure 8C).

Chromatin Immunoprecipitation
Sequencing and Assay for
Transposase-Accessible Chromatin
Using Sequencing Validation
In order to explore the role of enhancer-specific histone in
modifications of eRNA transcription, ChIP-seq data of H3727ac
were obtained and analyzed. The UCSC Genome Browser tracks
illustrated enrichment of H3K27ac on multiple loci in various
key eRNAs identified in this study (CPT1A, MAPK6, PCCA,
PRRC2C, USP3, and VOPP1) (Figure 9).
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FIGURE 4 | Identification of differentially expressed target genes (DETGs) and evaluation of immune cells/gene sets. (A) Heat map showing the expression level of
DETGs. (B) Volcano plot showing the p-value and log| FC| value of DETGs. (C) Bar chart showing the percentage of 22 kinds of immune cells from healthy
volunteers and spinal cord injury (SCI) samples by cell type identification by estimating relative subsets of RNA transcripts (CIBERSORT). (D) Heat map showing the
expression level of 22 immune cells by CIBERSORT. (E) Box plot showing the fraction of 22 immune cells from healthy volunteers and SCI samples by
non-parametric tests. (F) Heat map showing the expression level of 28 immune cells/pathways via single-sample Gene Set Enrichment Analysis (ssGSEA).

Regulatory relationships between VOPP1 and other key
markers (SFPQ and H3K27) were further explored using
ChIP-seq and ATAC-seq methods. We retrieved relative
data from the Cistrome database to detect DNA fragments
binding with SFPQ and H3K27ac in various SCI-related
and inflammation-related cases. The results showed that in
ChIP-seq data of SFPQ (Supplementary Figure 1) and H3K27

(Supplementary Figure 2), there were strong binding peaks
in the position of VOPP1, which basically coincided with
the open chromosome region shown in the ATAC-seq results
(Supplementary Figure 3). Furthermore, we downloaded the
original ChIP-seq data of SFPQ and H3K2 to analyze the results
with UCSC Genome Browser. Binding peaks in SFPQ and H3K27
groups were obviously stronger than those in control groups
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FIGURE 5 | Identification of key hallmark pathways. (A) Heat map showing the co-expression level of hallmark sets in spinal cord injury (SCI) samples by Gene Set
Variation Analysis (GSVA). (B) Volcano plot showing the co-expression level of hallmark sets in SCI samples by GSVA. (C) The bar plot revealing the t-value of GSVA
score. (D) Overview of the protein–protein interaction network of OA-related enhancer RNAs (eRNAs), translational factors (TFs), immune cells/pathways, and
hallmark gene sets. The diamonds represented key eRNAs. The arrows represented TFs. The ellipses represented immune cells. The triangles represented immune
pathways. The hexagons represented target genes. The rectangle represented hallmark gene sets.

in the chromosomal position of VOPP1, further validating the
binding relationship.

Online Single-Cell RNA Sequencing
Validation
To explore the cell subtype localization of the key eRNAs in
the speculative regulation mechanisms, transcriptome combined
with scRNA-seq data of SCI samples was analyzed. Sixteen
clusters were identified using t-distributed stochastic neighbor
embedding (t-SNE) (Supplementary Figure 4A). The heat map
plot showed the top 5 marker genes of each cluster in SCI

samples (Supplementary Figure 4B). The feature plots illustrated
the distribution and expression level of SFPQ (Supplementary
Figure 4C), VOPP1 (Supplementary Figure 4D), and EGFR
(Supplementary Figure 4E) in SCI tissues.

DISCUSSION

Multiple pathogenic factors contribute to the damage of the
spinal cord and lead to SCI, which is a common orthopedic
disease (Phillips et al., 2015). SCI is a pathological process with
multi-gene mutation and multi-pathway dysfunction that causes
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FIGURE 6 | Correlation analysis of the key biomarkers and identification of potential small-molecule drugs for spinal cord injury (SCI). (A) Heat map showing the
results of correlation analysis (Pearson analysis) of enhancer RNAs (eRNAs), transcription factors (TFs), target genes, immune cells/pathways, and hallmark
pathways. (B) Heat map showing perturbagens from the Connectivity Map (CMap) that might be capable of targeting SCI-related eRNAs. (C) Structural formula of
trichostatin A. (D) Structural formula of 15-delta prostaglandin J2.

serious neurological dysfunction (Forner et al., 2016). Primary
injuries of SCI during the early stages are usually accompanied
by secondary ischemia, tissue edema, and ischemia–reperfusion
injury. Because of the non-renewable features of nerve cells and
extremely high deformity rates, SCI has brought economic and
psychological burdens (Smith et al., 2015). Research reported that
primary damages induced by early stage of SCI caused massive
neuronal apoptosis and keratinocyte regeneration. Moreover,
formation of glial scars also inhibited nerve fiber growth, as

well as exogenous and endogenous factors (Selvarajah et al.,
2015). Currently, studies of SCI are mainly concentrated in mice,
whereas research on gene expression changes in peripheral whole
blood is relatively inadequate (Jin et al., 2015; Ropper et al., 2015).

In this study, on the basis of comprehensive bioinformatics
analysis, DETFs, SCI-related eRNAs, and target genes were all
identified. Furthermore, according to 27 SCI-related DEeRNAs
and significant DETF links, link of SFPQ (TF) and VOPP1
(eRNA) was extracted (R = 0.990, p < 0.001, positive). Based on
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FIGURE 7 | Integrated analysis of single-cell RNA sequencing (scRNA-seq) and cellular communication. (A) Uniform Manifold Approximation and Projection (UMAP)
scatter plots and cellular feature plots showing the cell types and marker genes of each cell type. (B) Dot plot showing gene expression levels of the most significant
differentially expressed genes (DEGs) of multiple inflammation cells and neuron. In addition, the proportion of these cells in different spinal cord injury (SCI) samples
was also shown in the bar plot. (C) Bar plots showing the average number and cell proportion of these cells. (D) Feature plots of vesicular overexpressed in cancer
prosurvival protein 1 (VOPP1), epidermal growth factor receptor (EGFR), and Splicing factor proline and glutamine rich (SFPQ). (E) Network showing the intersected
cellular communication genes. (F) Circle plot showing the intersected cellular communication genes.

eight regulation relationships of key DEeRNAs and DETGs, the
link of VOPP1 (eRNA) and EGFR (target gene) was extracted
(R = 0.974, p < 0.001, positive). And by co-analyzing VOPP1

and 22 types of immune cells or immune-related pathways, Th
cells (R = −0.987, p < 0.001, negative) were postulated to be the
most significant immune cells. On the basis of comprehensive
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FIGURE 8 | Cell type annotation and cellular communication analysis. (A) Uniform Manifold Approximation and Projection (UMAP) scatter plots and cellular feature
plots showing the cell types and marker genes for each cell type. (B) Cellular feature plots showing marker genes of different cell types. (C) Heat map showing the
most significant differentially expressed genes (DEGs) of neuron and inflammation cells.

consideration of GSVA and correlation results of VOPP1 and 50
hallmark gene sets, VOPP1 and hallmark coagulation (R = 0.937,
p < 0.001, positive) showed the strongest interaction. Eventually,

positively regulated by SFPQ, VOPP1 strengthened the transient
expression of EGFR. Th cells and hallmark coagulation were the
downstream immune cells/pathways of VOPP1 in SCI.
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FIGURE 9 | Chromatin immunoprecipitation sequence (ChIP-seq) analysis of key differentially expressed enhancer RNAs (DEeRNAs). (A) In ChIP-seq data of
H3K27ac, multiple binding peaks were found in CPT1A sequences. (B) In ChIP-seq data of H3K27ac, multiple binding peaks were found in MAPK6 sequences.
(C) In ChIP-seq data of H3K27ac, multiple binding peaks were found in PCCA sequences. (D) In ChIP-seq data of H3K27ac, multiple binding peaks were found in
PRRC2C sequences. (E) In ChIP-seq data of H3K27ac, multiple binding peaks were found in USP3 sequences. (F) In ChIP-seq data of H3K27ac, multiple binding
peaks were found in vesicular overexpressed in cancer prosurvival protein 1 (VOPP1) sequences.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 14 October 2021 | Volume 9 | Article 728242

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-728242 October 5, 2021 Time: 17:57 # 15

Huang et al. Key eRNAs for SCI

Neurocytes with enhanced expression of SFPQ and EGFR
signal the lymphocytes overexpressing VOPP1 to infiltrate
peripheral blood, which may play important roles in apoptosis
and promote the development of inflammation in patients with
SCI based on scRNA-seq and cellular communication analysis.
In addition, based on ChIP-seq and ATAC-seq analysis, multiple
binding peaks in SFPQ and H3K27 groups were identified in
the chromosomal position of VOPP1, further validating the
binding relationship.

VOPP1, also known as glioblastoma-amplified secreted
protein (Dunham et al., 2012) and EGFR-coamplified and
overexpressed protein (ECOP) (Fang et al., 2020), is upregulated
in multiple human tumors, such as gastric cancer and squamous
cell carcinoma (Baras et al., 2011; Gao et al., 2015). Overwhelming
evidence demonstrates that VOPP1 acts as a critical regulator
of nuclear factor kappa B (NF-κB) signaling pathway, and it
could be implicated in apoptosis resistance (Li et al., 2017). The
nuclear factor of kappa light polypeptide gene enhancer in B-cells
inhibitor alpha (IκBα) is correlated with NF-κB that prevents
NF-κB from binding cognate promoters and also leads to steady-
state cytoplasm localization. When stimulated by activation
signals including tumor necrosis factor alpha (TNFα), IκBα is
quickly degraded by phosphorylation-dependent ubiquitination
(Karin and Ben-Neriah, 2000). Degradation of IκBα causes NF-
κB to translocate to the nucleus and leads to the activation of
multiple genes that are significant in various processes, including
apoptosis, immune-related and inflammation response, and
cellular proliferation (Park and James, 2005). Inhibition of
VOPP1 expression in PBMCs alleviated the inflammatory
response in advanced sepsis patients (Li et al., 2018). Taken
together, increased VOPP1 expression could confer resistance
to apoptosis and promote the development of inflammation.
Further study of VOPP1 in SCI pathological process may
bring insights into refining therapeutic regimens, as well as
other disease states that are associated with elevated VOPP1
activity, such as asthma, arthritis, chronic/acute inflammation,
and diverse tumors (Karin et al., 2002).

SFPQ refers to a multifunctional protein, which contributes
to substantial biological processes, including DNA synthesis,
gene expression regulation, DNA repair, RNA splicing, and
apoptosis (Shav-Tal and Zipori, 2002). Importantly, SFPQ plays
a critical role in neuronal differentiation and survival (Lowery
et al., 2007). Furthermore, central nervous system (CNS) injury
stimulates SFPQ expression, hindering neurogenesis and nerve
regeneration, which may inhibit the repair of injured spinal
cord (Elsaeidi et al., 2014). SFPQ is rich in paraspeckles, RNA-
protein structures identified in the interchromatin space of
nucleus, which increase in response to pro-inflammatory stimuli
(Fox and Lamond, 2010). Additionally, SFPQ were significantly
upregulated in chronic inflammatory diseases, including Crohn’s
disease and ulcerative colitis (Hasler et al., 2011). Hence, this
provides novel options for researchers in the field of SCI because
SFPQ not only shows SCI-specific effects of inflammation that
serves as a diagnostic biomarker but also can be a potential target
for therapeutic intervention of SCI.

Based on integrated multinomial bioinformatics analysis and
other studies, EGFR was suggested to be a target gene of VOPP1

(Wang et al., 1998; Eley et al., 2002). EGFR belongs to the receptor
tyrosine kinase (RTK) superfamily, consisting of three other
members, ErbB2/Neu/HER-2, ErbB3/HER-3, and ErbB4/HER-
4 (Romano and Bucci, 2020). Being a neurotrophin receptor
to initiate cellular signaling and regulate neuronal processes,
EGFR has many important roles in the CNS (Hennigan et al.,
2007). Moreover, EGFR is important in neural stem cells self-
renewal, and loss of EGFR signaling induces these cells to
differentiate preferentially into glia, which may promote glia
scar formation in SCI and influence functional recovery (Robson
et al., 2018). Furthermore, EGFR is crucial in regulating the
differentiation of precursors to astrocytes, and increased EGFR
expression levels determine their differentiation to astrocytes
(Burrows et al., 1997). EGFR also plays an important role
in astrocytes’ morphology. Blockade of its expression causes
disorganization of astrocytes in CNS development, losing their
processes surrounding neurons, which induces degeneration of
abundant axons of nerve (Liu and Neufeld, 2007). Modulation of
EGFR expression may be propitious to activate regeneration and
counteract neurodegeneration (Ceresoli, 2012). Therefore, EGFR
is critical for differentiation, growth, and repair of the injured
tissue in the spinal cord, which could be a potential target for
therapy of patients with SCI.

Immune response in peripheral blood plays an important
role in maintaining spinal cord homeostasis. Dysfunction
or disorder caused by SCI in vegetative innervation of
lymphatic and endocrine systems leads to long-term
abnormal inflammation responses (Zhang Y. et al., 2013).
Differentiating to functionally distinct Th subsets, Th cells are
crucial in normal immune surveillance and proper immune
regulation (Murphy and Reiner, 2002). Importantly, SCI is
associated with immune depression syndrome, owing to the
dysregulated hypothalamic–pituitary–adrenal (HPA) axis and
dysfunctioned sympathetic nervous system (Jones, 2014).
Based on bioinformatics analysis and other studies, a rapid
decrease in Th cells was identified in patients with SCI,
contributing to immunosuppression in the acute phase of
SCI (Gao et al., 2021). We postulated that overexpression of
VOPP1 decreased the counts of Th cells in peripheral blood
of SCI patients. It is an important reason that acute SCI
patient becoming chronic, revealing novel targets for future
SCI immunotherapy.

SCI is correlated with a remarkable thrombophilia and
aberrant coagulation. In addition, the relation between deep
venous thrombosis (DVT) and SCI has been well established
(Yao, 1992). Numerous experimental research with fibrinogen
scanning has shown the presence of DVT in nearly 100%
of patients with acute SCI (Maynard et al., 1997). Sequelae
from SCI affect the three components of Virchow triad,
which are responsible for DVT, blood flow deceleration,
vascular endothelial damage, release of procoagulants, and
coagulation cascade activation, resulting in hypercoagulability
state. Furthermore, patients with SCI often show dehydration and
secondary increase of blood viscosity, aggravating the stasis and
hypoxia in injured spinal cord (Ersoz et al., 1999). On the basis
of bioinformatics analysis and other studies, coagulation was
postulated to contribute to the pathogenesis and progress of SCI
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via the positive regulation of VOPP1, which is a promising entry
point of therapeutic interventions for SCI (Ghlissi et al., 2019).

TSA refers to a highly specific hydroxamic acid that can inhibit
histone deacetylase (HDAC) enzymes. Importantly, HDACs
repress repressor element 1 silencing transcription factor (REST)
that is able to counteract neuronal differentiation traits and
Sp1, a TF that can mediate neuronal antioxidant signaling
pathways. TSA leads to histone hyperacetylation, accompanied
by activation of antioxidant gene expression and neuronal
maturation, which indicate TF derepression of REST and
Sp1 (Hakimi et al., 2002; Ryu et al., 2003). Moreover, TSA
can block immune cell proliferation and suppress pro-Th1
factor IFN-γ, which could cause the transformation of Th1
to Th2 phenotype, indicating neuroimmunoprotective effects
(Dangond et al., 2004). Importantly, TSA can also inhibit
CNS immune cell infiltration and lipid breakdown products
absorbing of microglial cells, which are consistent with anti-
microglial activation of TSA recently reported (Konishi et al.,
2002). Furthermore, a recent treatment showed TSA was able
to decrease nitrosylation of spinal cord tissues, protecting
nerve cells from free radical attack after SCI (Dasgupta et al.,
2003). TSA increases histone acetylation and E2F-dependent
transcripts in injured spinal cords, indicating its significant
neuroprotective effect. Taken together, the general effect of TSA is
to adjust dysregulated homeostatic processes, promoting histone
acetylation and harnessing much more favorable genes than
pathogenicity gene such as chemokine and pro-Th1, which may
be effective for SCI treatment.

There were still several limitations to this study. First, the
data were obtained from public sources statistically imperfect
with limited samples. Second, information on other confounding
variables in this study, such as smoking, was not available. Third,
a prospective study is needed to evaluate the significance of these
key biomarkers in terms of long-term clinical outcomes and
possible applications of molecular drugs for SCI therapy. Finally,
further experiment is an absolute necessity in demonstrating
the regulatory mechanisms of key eRNAs implicated in SCI.
Therefore, ChIP-seq data of H3K27ac from online databases
were obtained and analyzed, which broadened the scope of
validation and supplemented the specific regulatory mechanisms
of eRNA action involved in the pathogenesis of SCI. ATAC-
seq data of VOPP1 (key eRNA) were also utilized to validate
the eRNA regulatory mechanisms. Moreover, the cell subtype
localizations of the key eRNAs and TFs were identified
by scRNA-seq validation fluorescence immunohistochemistry.
Additionally, a comprehensive transcriptome bioinformatics
analysis of spatial transcriptome and scRNA-seq, fluorescence
immunohistochemistry, and eRNA-related direct mechanism
experiments would be the further research directions.

CONCLUSION

Based on integrated multinomial bioinformatics analysis, we
found that SFPQ was the most significant TF and VOPP1
was the most significant key eRNA in the progression of SCI
patients. In addition, during this pathological process, VOPP1

upregulated the transient expression of EGFR. Th cells and
hallmark coagulation were the potential downstream pathways of
VOPP1. Moreover, this study provided candidate small-molecule
compounds as potential targets for the treatment of SCI patients.
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(ChIP-seq) data, multiple binding peaks were identified in VOPP1 sequences.

Supplementary Figure 3 | In SFPQ Assay for Transposase-Accessible
Chromatin with high-throughput sequencing (ATAC-seq) data, multiple binding
peaks were identified in VOPP1 sequences.

Supplementary Figure 4 | Single-cell RNA-seq validation. (A) A total of 25
numbered clusters were identified by t-NSE. (B) Feature plots illustrating the
distribution and expression of SFPQ. (C) Feature plots illustrating the distribution
and expression of VOPP1. (D) Feature plots illustrating the distribution and
expression of EGFR. (E) Heat map showing the expression level of the top 5
marker genes of each cluster.

Supplementary Table 1 | Baseline information of 27 normal peripheral blood
mononuclear cell (PBMC) samples and 25 spinal cord injury PBMC samples.
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